JPH03273826A - Active filter used also passively - Google Patents

Active filter used also passively

Info

Publication number
JPH03273826A
JPH03273826A JP2078409A JP7840990A JPH03273826A JP H03273826 A JPH03273826 A JP H03273826A JP 2078409 A JP2078409 A JP 2078409A JP 7840990 A JP7840990 A JP 7840990A JP H03273826 A JPH03273826 A JP H03273826A
Authority
JP
Japan
Prior art keywords
voltage
pwm converter
filter
harmonic
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2078409A
Other languages
Japanese (ja)
Other versions
JPH078111B2 (en
Inventor
Takeshi Shioda
剛 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Publication of JPH03273826A publication Critical patent/JPH03273826A/en
Publication of JPH078111B2 publication Critical patent/JPH078111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To prevent an adverse effect on juxtaposed apparatus due to the harmonic voltage at a power receiving point by suppressing respective harmonic voltages at the power receiving point and power supply system due to harmonic components of a load current through using first and second PWM converters. CONSTITUTION:PWM converters 4, 4' conducts suppressing harmonic waves by turning ON-OFF their switching elements by a trigger signal generated in a controller. With regard to fundamental waves, when an AC filter 6 is operated as a phase-advancing capacitor and further the PWM converters 4, 4' are operated as zero impedances, a fundamental wave voltage is no longer applied to the PWM converters 4, 4'. With regard to the harmonic waves also, the PWM converter 4' works so that the AC filter 6 more absorbs the harmonic current of a load 7 and the PWM converter 4 works so that the harmonic voltage of the power supply system is not applied to the receiving point. That is, the harmonic voltage of the receiving point can be reduced to almost zero so that an adverse effect on other juxtaposed apparatus can be prevented.

Description

【発明の詳細な説明】 〔童東上の利用分野〕 本発明は、高調波電流を補償するパッシブ併用アクティ
ブフィルタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of Dou Tojo] The present invention relates to a passive and active filter that compensates for harmonic current.

〔従来の技術〕[Conventional technology]

単一高調波に共振するコンデンサとりアクドルの直列回
路よりなる同調フィルタ、抵抗およびリアクトルの並列
回路とコンデンサとの直列回路よりなる高次フィルタで
構成される交流フィルタ、この交流フィルタと非線形負
荷の接続点より電源側に変圧器を介して電源に直列に3
相電圧形PWM変換器を接続したべ、シブ併用アクティ
ブフィルタは、昭和63年電気学会産業応用部門全国大
会論文集の論文番号64「新しい原理に基づく高調波抑
制装置」等でも解説された通り公知である。また交流フ
ィルタと、交流フィルタと直列に変圧器を介し3相電圧
形PWM変換器を接続してなるパ。
An AC filter consisting of a tuned filter consisting of a series circuit of a capacitor and an actuator that resonates with a single harmonic, a high-order filter consisting of a parallel circuit of a resistor and reactor, and a series circuit of a capacitor, and a connection between this AC filter and a nonlinear load. 3 in series with the power supply via a transformer on the power supply side from the point
The active filter combined with a phase voltage type PWM converter is well known as explained in the Proceedings of the National Conference of the Industrial Application Division of the Institute of Electrical Engineers of Japan in 1988, paper number 64 "Harmonic suppression device based on a new principle", etc. It is. Also, a power filter is constructed by connecting an AC filter and a three-phase voltage type PWM converter in series with the AC filter via a transformer.

シブ併用アクティブフィルタは、平成元年電気学会産業
応用部門全国大会論文集の論文番号76「新しい原理に
基づく高調波抑制装置−LOフィルタとPWM変換器の
直列接続システム」等でも解説されている通り公知であ
る。
The active filter combined with SIB is as explained in the Proceedings of the 1989 National Conference of the Industrial Application Division of the Institute of Electrical Engineers of Japan, paper number 76, "Harmonic suppression device based on a new principle - Series connection system of LO filter and PWM converter" etc. It is publicly known.

第3図は従来のPWM変換器を電源に直列接続したべ、
シブ併用アクティブフィルタを備えた三和交流系統例を
示す系統図、第4図はその等価回路、第5図は交流フィ
ルタと直列にPWM変換器を接続した場合の系統図、第
6図はその等価回路、第7図はPWM変換器の制御回路
である。
Figure 3 shows a conventional PWM converter connected in series to the power supply.
A system diagram showing an example of a Sanwa AC system equipped with a combined active filter. Figure 4 is its equivalent circuit. Figure 5 is a system diagram when a PWM converter is connected in series with an AC filter. Figure 6 is its equivalent circuit. The equivalent circuit shown in FIG. 7 is a control circuit for a PWM converter.

第3図および第5図において、lは三相交流系統電源、
2は電源インダクタンス、3.3′は変圧器、4.4′
はPWM変換器、5.5′は直流コンデンサ、6は交流
フィルタ、7は負荷である。
In Figures 3 and 5, l is a three-phase AC power supply;
2 is the power inductance, 3.3' is the transformer, 4.4'
is a PWM converter, 5.5' is a DC capacitor, 6 is an AC filter, and 7 is a load.

また、第4図および第6図において、j3は電源電流、
ILは負荷電流、12は交流フィルタ1lllt−Vs
は三相交流系統電源の供給電圧、VCはPWM変換器出
力電圧、V〒は受電点電圧、zrは交流フィルタのイン
ピーダンスである。
In addition, in FIGS. 4 and 6, j3 is the power supply current,
IL is the load current, 12 is the AC filter 1lllt-Vs
is the supply voltage of the three-phase AC system power supply, VC is the PWM converter output voltage, V〒 is the receiving point voltage, and zr is the impedance of the AC filter.

すなわち、三相交流系統電源1はサイリスタレオナード
装置等の負荷7に電源インダクタンス2を介して電力を
供給する。交流フィルタ6は、第5高調波に共振するコ
ンデンサ61およびリアクトル62の直列回路からなる
第5高調波同調フイルタと第7高調波に共振するコンデ
ンサ63およびリアクトル64の直列回路からなる第7
高調波同調フイルタと抵抗66およびリアクトル67の
並列回路とコンデンサ65との直列接続による第11次
高調波以上の吸収効果を有する高次フィルタより構成し
、負荷7の高調波電流を吸収する。電圧形のPWM変換
器4は変圧器3を介し電源に直列に接続され、電圧形の
PWMfi臭44′は変圧器3′を介して交流フィルタ
6に直列に接続されていて、それぞれ基本波に対し零イ
ンピーダンスとして、高調波電圧に対しては数にΩの抵
抗として作用するよう@7図に示す如き制御回路により
制御される。なお、コンデンサ5.5′は直流電圧を一
定にするためのものである。
That is, the three-phase AC system power supply 1 supplies power to a load 7 such as a thyristor Leonard device through a power supply inductance 2. The AC filter 6 includes a fifth harmonic tuning filter consisting of a series circuit of a capacitor 61 and a reactor 62 that resonates with the fifth harmonic, and a seventh harmonic tuning filter consisting of a series circuit of a capacitor 63 and a reactor 64 that resonates with the seventh harmonic.
It is composed of a high-order filter having an effect of absorbing more than the 11th harmonic by connecting a harmonic-tuned filter, a parallel circuit of a resistor 66 and a reactor 67, and a capacitor 65 in series, and absorbs the harmonic current of the load 7. The voltage type PWM converter 4 is connected in series to the power supply via the transformer 3, and the voltage type PWM filter 44' is connected in series to the AC filter 6 via the transformer 3'. On the other hand, it is controlled by a control circuit as shown in Figure 7 so that it has zero impedance and acts as a resistance of several Ω against harmonic voltage. Note that the capacitor 5.5' is for keeping the DC voltage constant.

第7図において、101は電力演算回路、102はバイ
パスフィルタ、103は二相電流演算回路、104は(
二相/三相)の変換回路、105は三角波発生回路、1
06は増幅器、107は電圧制御回路である。
In FIG. 7, 101 is a power calculation circuit, 102 is a bypass filter, 103 is a two-phase current calculation circuit, and 104 is (
2-phase/3-phase) conversion circuit, 105 is a triangular wave generation circuit, 1
06 is an amplifier, and 107 is a voltage control circuit.

また、1str * isv 、 iswは三相の電源
電流、VTTJ−、*   、*   、* ■アV l ”TWは三相の受電点電圧、IU、1v、
1wは二相より三相に変換された各相の電流指令値、S
は三角波キャリア電圧、vGはPWM変換器のスイッチ
ング素子を叩くトリが信号である。
In addition, 1str * isv, isw are the three-phase power supply current, VTTJ-, *, *, * ■A V l "TW is the three-phase power receiving point voltage, IU, 1v,
1w is the current command value of each phase converted from two-phase to three-phase, S
is the triangular wave carrier voltage, and vG is the signal that hits the switching element of the PWM converter.

そして、電力演算回路101は、電源電流’gelis
v 、iswおよび受電点電圧vTU 、vTv# V
twを入力とする。
Then, the power calculation circuit 101 calculates the power supply current 'gelis'.
v, isw and receiving point voltage vTU, vTv# V
tw is input.

ここで、瞬時実電力pおよび虚電力qと二相電流1sa
cz 、”!111βを計算すると、つぎの如くである
Here, instantaneous real power p, imaginary power q, and two-phase current 1sa
cz, ``!111β is calculated as follows.

ただしea、eβと15a、15βはそれぞれ受電点電
圧VTU ・Viv r VTwト’ft1l電flL
 1str −igv * igvヲ(二相−三相)変
換したものであり、p、qは前記瞬時実電力pと瞬時虚
電力qの交流会である。
However, ea, eβ and 15a, 15β are the receiving point voltages VTU and Viv r VTw and ft1l and 15b respectively.
1str - igv * igvwo (two-phase to three-phase) conversion, where p and q are the exchanges of the instantaneous real power p and the instantaneous imaginary power q.

バイパスフィルタ102は、瞬時実電力pおよび虚電力
qのそれぞれの交流会p、qを出力する。二相電流演算
回路103は瞬時実電力pおよび虚電力qのそれぞれの
交流会p+qおよび受電点電圧V?U −Vty −V
TW ヲ入力Lr式(2)ニ基ツイr二相電流1saa
およびi、βを出力する。変換回路104は、二相電流
’fiHaおよびismβを入力し、(2相−3相)変
換により、電流指令値j(1、凰v+iw”を出力する
。増#IA器106は、電流指令値iU*、V* 、 
i−を入力し、ゲインに倍して電圧指令信号 KIU  、x、v、に□を出力する。三角波発生回路
105は、数kHz以上の周波数を有する三角波キャリ
ア電圧Sを出力する。電圧制御1路107は、三角波キ
ャリア電圧Sと電圧指令値KKrJ、KIv本 に□ を比較してPWM変換fF4の出力を制御する。
The bypass filter 102 outputs the respective exchanges p and q of the instantaneous real power p and the imaginary power q. The two-phase current calculation circuit 103 calculates the exchange rate p+q of the instantaneous real power p and the imaginary power q, and the receiving point voltage V? U-Vty-V
TW Input Lr formula (2) Two-phase current 1saa
and outputs i and β. The conversion circuit 104 inputs the two-phase current 'fiHa and ismβ, and outputs the current command value j (1, 凰v+iw)'' by (2-phase-3-phase) conversion. iU*, V*,
It inputs i-, multiplies it by the gain, and outputs □ as voltage command signals KIU, x, v. The triangular wave generation circuit 105 outputs a triangular wave carrier voltage S having a frequency of several kHz or more. The voltage control path 107 compares the triangular wave carrier voltage S with the voltage command values KKrJ, KIv and controls the output of the PWM conversion fF4.

このように制御されるPWM変換器4および交流フィル
タ6等を有するパッシブ併用アクティブフィルタは、第
4図に示す等優回路において、電源電流1Bに高調波が
含まれず、また電源電圧vsに含まれる高調波電圧は受
電点電圧vTには現れない。
The passive and active filter having the PWM converter 4 and the AC filter 6 etc. controlled in this way is such that, in the equal superiority circuit shown in FIG. Harmonic voltages do not appear in the receiving point voltage vT.

さらに、PWM変換器4′は変圧器3′を介して交流フ
ィルタ6に直列に接続されている。そしてPWM変換器
4′も同様に第7図の如き制御回路により制御され、第
6図の等価回路に示すように、電源電流18には高調波
電流が含まれず、また電源電圧に含まれる高調波電圧に
よる高調波電流が交流フィルタ6に流入しない。
Further, the PWM converter 4' is connected in series to the AC filter 6 via the transformer 3'. The PWM converter 4' is similarly controlled by a control circuit as shown in FIG. 7, and as shown in the equivalent circuit of FIG. Harmonic current due to the wave voltage does not flow into the AC filter 6.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、かかる電源に直列にPWM変換器を有するパッ
シブ併用アクティブフィルタにおいては、電源に含まれ
る高調波電圧は力、トされるが、負荷電流の高調波電流
成分をigHとすれば、受電点電圧vTは交流フィルタ
のインピーダンスZIPと負荷電流の高周波成分igi
の積(Zr’1xT)となり受電点に高調波電圧が現わ
れ、併設される他の機器に悪影響を及ぼす。
However, in a passive and active filter that has a PWM converter in series with such a power supply, the harmonic voltage contained in the power supply is suppressed, but if the harmonic current component of the load current is igH, then the voltage at the receiving point is vT is the impedance ZIP of the AC filter and the high frequency component igi of the load current
(Zr'1xT), and harmonic voltage appears at the power receiving point, which adversely affects other equipment installed in parallel.

一方、交流フィルタに直列にPWM変換器を有するパッ
シブ併用アクティブフィルタにおいては。
On the other hand, in a passive combined active filter that has a PWM converter in series with an AC filter.

電源に含まれる高調波VIIHが現われ、同様に受電点
に併設される他の機器に悪影響を与える。
Harmonic VIIH contained in the power supply appears and similarly has an adverse effect on other equipment attached to the power receiving point.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上述したような点に鑑みなされたものであり、
その具体的な構成例はつぎの如きものである。
The present invention has been made in view of the above points,
A specific example of the configuration is as follows.

すなわち、電源系統に負荷設備と並列に接続される交流
フィルタと、交流フィルタの他端の各相に直列に一次側
を接続された第1の変圧器と、第1の変圧器の2次側に
接続された第1のPWM変換器と、第1のPWM変換器
の直流1子間に接続された第1の直流コンデンサと、負
荷設備と交流フィルタとの接続点より電源側に電源に直
列に一次側を接続されたfa2の変圧器と、第2の変圧
器の2次側に接続された第2のPWM変換器と、第2の
PWM変換器の直流端子間に接続された第2の直流コン
デンサと、第1および第2のPWM変換器の電圧制御を
行う制御装置を備えるようにしたものであり、そしてそ
の制御装置は、電源系統の電源電流を検出して高調波電
流を演算する手段と、高調波電流を入力しゲイン倍した
第2の電圧指令信号を出力する手段と、第2の電圧指令
信号と三角波キャリア電圧を比較して第1および第2の
PWM変換器へのスイッチ指令を生成する手段とを備え
てなるものである。
That is, an AC filter connected to the power supply system in parallel with load equipment, a first transformer whose primary side is connected in series to each phase at the other end of the AC filter, and a secondary side of the first transformer. A first PWM converter connected to the first PWM converter, a first DC capacitor connected between the first DC capacitor of the first PWM converter, and a first DC capacitor connected in series to the power supply on the power supply side from the connection point between the load equipment and the AC filter. a second PWM converter connected to the secondary side of the second transformer, and a second PWM converter connected between the DC terminals of the second PWM converter. DC capacitor, and a control device that controls the voltage of the first and second PWM converters, and the control device detects the power supply current of the power supply system and calculates the harmonic current. means for inputting a harmonic current and outputting a second voltage command signal multiplied by the gain; and means for comparing the second voltage command signal and the triangular wave carrier voltage and transmitting the harmonic current to the first and second PWM converters. and means for generating a switch command.

さらには、電源系統に負荷設備と並列に接続される交f
ILフィルタと、交流フィルタの他端の各相に直列に一
次側を接続された第1の変圧器と、第1の変圧器の2次
側に接続された第1のPWM変換器と、第1のPWM変
換器の直流端子間に!!侵されたglの直流コンデンサ
と、負荷設備と交流フィルタとの接続点より電源側に電
源に直列に一次側を接続された1!2の変圧器と、第2
の変圧器の2決闘に接続された第2のPWM変換器と、
第2のPWM変換器の直流端子間に接続された第2の直
流コンデンサと、第1および第2のPWM変換器の電圧
制御を行う制御装置を備えるようにしたものであり、そ
してその制御装置は、電源系統の電源電流を検出して高
調波電流を演算する手段と、高調波電流を入力しゲイン
倍した第2の電圧指令信号を出力する手段と、第2の電
圧指令信号と三角波キャリア電圧を比較して第2のPW
M変換器へのスイッチ指令を生成する手段と、受電点電
圧を検出して高調波電圧を演算する手段と、高調波電圧
を入力しゲイン倍した第1の電圧指令信号を出力する手
段と、第1の電圧指令信号と三角波キャリア電圧を比較
してMlのPWM変換器へのスイッチ指令を生成する手
段とを備えてなるものである。
Furthermore, the AC power supply system connected in parallel with the load equipment
an IL filter, a first transformer whose primary side is connected in series to each phase at the other end of the AC filter, a first PWM converter whose primary side is connected to the secondary side of the first transformer, and a first PWM converter connected to the secondary side of the first transformer. Between the DC terminals of PWM converter 1! ! The damaged GL DC capacitor, the 1!2 transformer whose primary side was connected in series with the power supply on the power supply side from the connection point between the load equipment and the AC filter, and the 2nd transformer.
a second PWM converter connected to two dueling transformers of;
A second DC capacitor connected between the DC terminals of the second PWM converter, and a control device that controls the voltage of the first and second PWM converters, and the control device means for detecting the power supply current of the power supply system and calculating the harmonic current, means for inputting the harmonic current and outputting a second voltage command signal multiplied by the gain, and a means for outputting the second voltage command signal and the triangular wave carrier. Compare the voltage to the second PW
means for generating a switch command to the M converter; means for detecting the power receiving point voltage and calculating a harmonic voltage; and means for inputting the harmonic voltage and outputting a first voltage command signal multiplied by the gain; and means for comparing the first voltage command signal and the triangular wave carrier voltage to generate a switch command to the PWM converter of Ml.

〔作 用〕[For production]

かかる構成により、電源系統の各相馬調波電流を演算し
てその各相馬ll4aIE流をゲイン(6)倍し、第1
に、第1および第2のPWM変換器の各相電圧指令信号
となすことにより、第2に、第2のPWM変換器の各相
電圧指令信号となすとともに、受電点電圧の高調波電圧
を演算し、その各相馬調波電圧をゲイン(6)倍して第
1のPWM変換器の各相電圧指令となすことにより、交
流フィルタに各相直列に接続された第1のPWM変換器
が出力する高調波電圧によって負荷の高調波電流を殆ど
吸収することができるために(iFZF)に基づく高調
波電圧を抑制でき、第2のPWM変換器が出力する高調
波電圧によって電源系統の高調波電圧が受電点に印加し
ないように抑制することができる。
With this configuration, each soma harmonic current of the power supply system is calculated, each soma ll4aIE current is multiplied by a gain (6), and the first
Second, by making each phase voltage command signal of the first and second PWM converters, each phase voltage command signal of the second PWM converter is made, and the harmonic voltage of the receiving point voltage is By calculating and multiplying each soma harmonic voltage by a gain (6) to obtain each phase voltage command of the first PWM converter, the first PWM converter connected in series to the AC filter Since most of the harmonic current of the load can be absorbed by the output harmonic voltage, the harmonic voltage based on (iFZF) can be suppressed, and the harmonic voltage of the power supply system can be suppressed by the harmonic voltage output by the second PWM converter. It is possible to suppress the voltage from being applied to the power receiving point.

すなわち、受電点の高調波電圧をほぼ零にでき、併設さ
れる他の機器に悪影響を及ぼさないようにすることがで
きる。
That is, the harmonic voltage at the power receiving point can be reduced to almost zero, and other equipment installed in parallel can be prevented from being adversely affected.

以下、本発明を実施例図面に基づいて詳m説明する。Hereinafter, the present invention will be explained in detail based on embodiment drawings.

〔実 澹 例〕[Actual example]

第1図は本発明による第1の実施例を示した要部構成図
である。図中、第3図および第5図に示された記号と同
一のものは同じ機能を有することを示す。
FIG. 1 is a block diagram of main parts showing a first embodiment according to the present invention. In the figure, the same symbols as those shown in FIGS. 3 and 5 indicate the same functions.

第1図において、交流フィルタ6のa端には変圧器3′
の1次巻線が接続され、その2次側巻線にはPWM変換
器4′が接続され、その直流端子間には直流コンデンサ
5′が接続されている。また、負荷7と交流フィルタ6
との接続点より電源側に、電源に直列に第2の変圧器3
の一次側巻線が接続され、変圧器3の2次側巻線にはP
WM変換器4が接続され、このPWM変換器4の直流端
子間には直流コンデンサ5が接続されている。ここで、
直流コンデンサ5.5′は直流側電圧を一定にするため
のものである。
In FIG. 1, a transformer 3' is connected to the a end of the AC filter 6.
A PWM converter 4' is connected to its secondary winding, and a DC capacitor 5' is connected between its DC terminals. In addition, the load 7 and the AC filter 6
A second transformer 3 is installed in series with the power supply on the power supply side from the connection point with the power supply.
The primary winding is connected, and the secondary winding of the transformer 3 has P
A WM converter 4 is connected, and a DC capacitor 5 is connected between DC terminals of the PWM converter 4. here,
The DC capacitor 5.5' is for keeping the DC side voltage constant.

かかる回路接続において、PWM変換器4.4′はオン
オ・7可能なスイッチング素子にそれぞれダイオードが
逆並列接続されたブリッジ回路として接続され、これは
第7図に示した如き制御装置で生成されるトリが信号V
atこより、スイッチング素子がオンオフされて高調波
抑制を行う。
In such a circuit connection, the PWM converter 4.4' is connected as a bridge circuit in which diodes are connected in antiparallel to switching elements that can be turned on and off, respectively, and this is generated by a control device as shown in FIG. Tori is signal V
From this, the switching element is turned on and off to perform harmonic suppression.

そして基本波に対しては、交流フィルタ6を進相コンデ
ンサとして動作させ、さらにはPWM変換54.4’を
零インピーダンスとして動作させると、PWM変換器4
.4′には基本波電圧が印加されないものとなる。また
高調波に対しては、PWM変換器4′が交流フィルタ6
が負荷の高11波電流をより吸収するように働き、PW
M変換器4は電源系統の高調波電圧が受電点に印加しな
いように働くものとすることができる。
For the fundamental wave, if the AC filter 6 is operated as a phase advancing capacitor and the PWM converter 54.4' is operated as a zero impedance, the PWM converter 4
.. No fundamental wave voltage is applied to 4'. In addition, for harmonics, the PWM converter 4'
works to absorb the high 11-wave current of the load, and PW
The M converter 4 can be configured to work so that harmonic voltages of the power supply system are not applied to the power receiving point.

第2図は本発明による第2の実施例を示したブロック図
である。
FIG. 2 is a block diagram showing a second embodiment according to the present invention.

第2図において、105′は三角波発生回路、107’
In FIG. 2, 105' is a triangular wave generation circuit, and 107'
.

114ハ電圧制御回路、108はバンドパスフィルタ、
109は(d−q)の変換回路、110はバイパスフィ
ルタ、111は二相電圧演算回路、112は(二相/三
相)の変換回路、113は増幅器である。図中、第7図
と同符号のものは同じ機能を有する部分を示す。
114 C voltage control circuit, 108 band pass filter,
109 is a (d-q) conversion circuit, 110 is a bypass filter, 111 is a two-phase voltage calculation circuit, 112 is a (two-phase/three-phase) conversion circuit, and 113 is an amplifier. In the figure, the same reference numerals as in FIG. 7 indicate parts having the same functions.

そして、バンドパスフィルタ108は受電点電圧vTU
 、”TV 、 ”〒Wを入力し、その基本a分の電圧
■U、vV、VWヲ、IC力演算回M 101 、 二
相1fifi算回路103と変換回路109.二相電圧
演算回路111へ出力する。
Then, the bandpass filter 108 has a receiving point voltage vTU
, "TV," 〒W is input, and its basic voltage a is U, vV, VW, IC power calculation circuit M 101 , two-phase 1fifi calculation circuit 103 and conversion circuit 109 . It is output to the two-phase voltage calculation circuit 111.

ここで、電力演算回路101 、バイパスフィルタ10
2 、二相電流演算回路103 、変換回路!04.三
角波発生回路105’、増幅器106および電圧制御回
路107′で構成される部分は、第7図に示した構成と
同様であり、電圧制御回路107′がトリが信号vGz
を発生し、PWM変換器4の電圧制御し得ること明らか
である。
Here, a power calculation circuit 101, a bypass filter 10
2. Two-phase current calculation circuit 103, conversion circuit! 04. The part consisting of the triangular wave generation circuit 105', the amplifier 106, and the voltage control circuit 107' is the same as the configuration shown in FIG.
It is clear that the voltage of the PWM converter 4 can be controlled.

また、変換回路109は受電点電圧vTυ、Vア、。Further, the conversion circuit 109 has a receiving point voltage vTυ,Va,.

VTWおよび電源基本渡分の電圧VU、 Vv、 V、
を入力してd軸電圧Vdおよびq輪重圧V、をバイパス
フィル9110へ出力する。バイパスフィルター10は
入力の交流会vd、vqを二相電圧演算回路111へ出
力する。
VTW and power supply basic voltage VU, Vv, V,
is input, and the d-axis voltage Vd and the q-wheel load pressure V are output to the bypass filter 9110. The bypass filter 10 outputs the input exchange voltages vd and vq to the two-phase voltage calculation circuit 111.

二相電圧演算回路111は電圧vU、 vy 、 vy
および交流会Vd、V を入力して二相電圧v、 、 
V/を変換回路112へ出力する。
The two-phase voltage calculation circuit 111 calculates the voltages vU, vy, vy
Input the exchange voltage Vd, V and the two-phase voltage v, ,
V/ is output to the conversion circuit 112.

ここで、vsa、vsβは受電点電圧V?IT I v
TV +V?Wを(二相−三相)変換したものである。
Here, vsa and vsβ are the receiving point voltages V? IT Iv
TV+V? This is a (two-phase to three-phase) conversion of W.

そして、変換回路112は二相電圧Va、 Vpを入力
して(二相°−三相)変換により、電圧指令値マIVy
  、マW を出力する。増II器!!3は電圧指令値
VU、マvrvw を入力し、ゲインに倍して電圧指令
値Kvυ 、 Kvv、 KvW を出力する。
Then, the conversion circuit 112 inputs the two-phase voltages Va and Vp and converts them (two-phase ° - three-phase) to convert the voltage command value Ma IVy.
, MaW is output. Increase II device! ! 3 inputs voltage command values VU and MAvrvw, multiplies them by the gain, and outputs voltage command values Kvυ, Kvv, KvW.

よって、電圧制御回路114は三角波キャリア電圧S′
と電圧指令値KVU  I KVV  、KVW  を
比較してトリガ信号vG□を発生し、PWM変換器4′
の出力を制御できる。
Therefore, the voltage control circuit 114 controls the triangular wave carrier voltage S'
A trigger signal vG□ is generated by comparing the voltage command values KVU I KVV and KVW, and the PWM converter 4'
The output can be controlled.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、パッシブ併用アクティブフィルタ
ーこおいて、交流フィルタに直列に接続された第1のP
WM変換器により負荷iE流の高調波成分に基ずく受電
点の高調波電圧が抑制され、受電点よりtIjI側に直
列に接続される第2のPWM変換器により、電源系統の
高調波電圧が阻止されるために受電点の高fAIjl電
圧をほぼ零となし、併設される他の機器に悪影響を及ぼ
さない格別な装置を提供できる。
As explained above, in the passive combined active filter, the first P
The WM converter suppresses the harmonic voltage at the power receiving point based on the harmonic component of the load iE current, and the second PWM converter connected in series from the power receiving point to the tIjI side suppresses the harmonic voltage in the power supply system. This makes it possible to reduce the high fAIjl voltage at the power receiving point to almost zero, thereby providing an exceptional device that does not adversely affect other equipment attached.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による第1の実施例を示す要部構成図、
第2図は本発明による第2の実施例を示すプロ、り図で
ある。 また第3図〜第7図は従来技術の説明のため示したもの
であり、第3図、第4図は受電点より電源側にPWM変
換器を接続したバ、シブ併用アクティブフィルタの系統
図および等価回路、第5図。 第6図は交流フィルタに直列にPWM変換器を接続した
系統図および等価回路、第7図は制御回路プロ、り図で
ある。 1・・−・・・三相交流系統電源、3.3′−・・−・
・変圧器、4.4′・・・・・・PWM変喚益、5.5
’・−・・・−直流コンデンサ、6・・・・・・交流フ
ィルタ、7・・・・・・負荷、101・・・−・電力演
算回路、 102 、110・・・・−・バイパスフィ
ルタ、103・・・・・・二相電流演算回路、104 
、109 。 112・−・・・・変換回路、105 、105’・川
・・三角波発生回路、106 、113・・・・・・増
幅@、 107 、107’、 114川−・・電圧制
御回路、108・・・・・・バンドパスフィルタ、11
1・・−・・・二相電圧演算回路。
FIG. 1 is a main part configuration diagram showing a first embodiment according to the present invention,
FIG. 2 is a diagram showing a second embodiment of the present invention. In addition, Figures 3 to 7 are shown to explain the prior art, and Figures 3 and 4 are system diagrams of a combined active filter with a PWM converter connected to the power supply side from the power receiving point. and equivalent circuit, FIG. FIG. 6 is a system diagram and an equivalent circuit in which a PWM converter is connected in series to an AC filter, and FIG. 7 is a diagram of a control circuit. 1...3-phase AC system power supply, 3.3'-...
・Transformer, 4.4'... PWM conversion gain, 5.5
'...-DC capacitor, 6... AC filter, 7... Load, 101...- Power calculation circuit, 102, 110... Bypass filter , 103...Two-phase current calculation circuit, 104
, 109. 112... Conversion circuit, 105, 105' River... Triangular wave generation circuit, 106, 113... Amplification@, 107, 107', 114 River... Voltage control circuit, 108... ...Band pass filter, 11
1...--Two-phase voltage calculation circuit.

Claims (1)

【特許請求の範囲】 1 電源系統に負荷設備と並列に接続される交流フィル
タと、該交流フィルタの他端に直列に1次側を接続され
た第1の変圧器と、該第1の変圧器の2次側に接続され
た第1のPWM変換器と、該第1のPWM変換器の直流
端子間に接続された第1のコンデンサと、前記負荷設備
と交流フィルタとの接続点より電源側に直列に1次側を
接続された第2の変圧器と、該第2の変圧器の2次側に
接続された第2のPWM変換器と、該第2のPWM変換
器の直流端子間に接続された第2の直流コンデンサと、
第1のPWM変換器および第2のPWM変換器の電圧制
御を行う制御装置とを備えるとともに、該制御装置は、
電源系統の電源電流に含まれる高調波電流を検出して演
算する手段および該高調波電流のゲイン倍した第2の電
圧指令信号を出力する手段と、三角波キャリア電圧を発
生させ、かつ該キャリア電圧と前記第2の電圧指令信号
を比較して前記第1のPWM変換器および第2のPWM
変換器のスイッチ指令を生成する手段とを備えたことを
特徴とするパッシブ併用アクティブフィルタ。 2 電源系統に負荷設備と並列に接続される交流フィル
タと、該交流フィルタの他端に直列に1次側を接続され
た第1の変圧器と、該第1の変圧器の2次側に接続され
た第1のPWM変換器と、該第1のPWM変換器の直流
端子間に接続された第1のコンデンサと、前記負荷設備
と交流フィルタとの接続点より電源側に直列に1次側を
接続された第2の変圧器と、該第2の変圧器の2次側に
接続された第2のPWM変換器と、該第2のPWM変換
器の直流端子間に接続された第2の直流コンデンサと、
第1のPWM変換器および第2のPWM変換器の電圧制
御を行う制御装置とを備えるとともに、該制御装置は、
電源系統の電源電流に含まれる高調波電流を検出して演
算する手段および該高調波電流のゲイン倍した第2の電
圧指令信号を出力する手段と、三角波キャリア電圧を発
生させる手段と、該三角波キャリア電圧と前記第2の電
圧指令信号を比較して第2のPWM変換器の第2のスイ
ッチ指令を生成する手段と、受電点電圧に含まれる高調
波電圧を検出して演算する手段および該高調波電圧のゲ
イン倍した第1の電圧指令信号を出力する手段と、前記
三角波キャリア電圧と第1の電圧指令信号を比較して第
1のPWM変換器の第1のスイッチ指令を生成する手段
とを備えたことを特徴とするパッシブ併用アクティブフ
ィルタ。
[Claims] 1. An AC filter connected in parallel with load equipment in a power supply system, a first transformer whose primary side is connected in series to the other end of the AC filter, and the first transformer. A first PWM converter connected to the secondary side of the converter, a first capacitor connected between the DC terminals of the first PWM converter, and a power source from the connection point between the load equipment and the AC filter. a second transformer whose primary side is connected in series to the side, a second PWM converter connected to the secondary side of the second transformer, and a DC terminal of the second PWM converter. a second DC capacitor connected between;
A control device that performs voltage control of a first PWM converter and a second PWM converter, and the control device includes:
A means for detecting and calculating a harmonic current included in a power supply current of a power supply system, a means for outputting a second voltage command signal obtained by multiplying the gain of the harmonic current, and a means for generating a triangular wave carrier voltage and for generating the carrier voltage. and the second voltage command signal to control the first PWM converter and the second PWM converter.
1. A combination of passive and active filter, comprising: means for generating a switch command for a converter. 2. An AC filter connected to the power supply system in parallel with the load equipment, a first transformer whose primary side is connected in series to the other end of the AC filter, and an AC filter connected to the secondary side of the first transformer. A connected first PWM converter, a first capacitor connected between the DC terminals of the first PWM converter, and a primary capacitor connected in series to the power supply side from the connection point between the load equipment and the AC filter. a second transformer connected to the secondary side of the second transformer; a second PWM converter connected to the secondary side of the second transformer; and a second PWM converter connected between the DC terminals of the second PWM converter. 2 DC capacitor,
A control device that performs voltage control of a first PWM converter and a second PWM converter, and the control device includes:
means for detecting and calculating a harmonic current included in a power supply current of a power supply system; a means for outputting a second voltage command signal obtained by multiplying the gain of the harmonic current; a means for generating a triangular wave carrier voltage; means for comparing the carrier voltage and the second voltage command signal to generate a second switch command for the second PWM converter; means for detecting and calculating a harmonic voltage included in the power receiving point voltage; means for outputting a first voltage command signal multiplied by the gain of the harmonic voltage; and means for comparing the triangular wave carrier voltage and the first voltage command signal to generate a first switch command for the first PWM converter. A combination of passive and active filters.
JP2078409A 1990-02-05 1990-03-27 Active filter with passive Expired - Lifetime JPH078111B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-25698 1990-02-05
JP2569890 1990-02-05

Publications (2)

Publication Number Publication Date
JPH03273826A true JPH03273826A (en) 1991-12-05
JPH078111B2 JPH078111B2 (en) 1995-01-30

Family

ID=12173010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2078409A Expired - Lifetime JPH078111B2 (en) 1990-02-05 1990-03-27 Active filter with passive

Country Status (1)

Country Link
JP (1) JPH078111B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574144U (en) * 1992-03-06 1993-10-08 日新電機株式会社 Voltage fluctuation countermeasure device with harmonic suppression function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574144U (en) * 1992-03-06 1993-10-08 日新電機株式会社 Voltage fluctuation countermeasure device with harmonic suppression function

Also Published As

Publication number Publication date
JPH078111B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US4812669A (en) Harmonic suppressing device
Hafner et al. A shunt active power filter applied to high voltage distribution lines
US4651265A (en) Active power conditioner system
US5321598A (en) Three-phase active filter utilizing rotating axis transformation
JP2739027B2 (en) Control device for power converter
Espinoza et al. Decoupled control of the active and reactive power in three-phase PWM rectifiers based on non-linear control strategies
CN109873423A (en) A kind of series hybrid electric energy quality controller
JP3386295B2 (en) Interconnected power converter
KR100547569B1 (en) 12th order active filter to remove 11th and 13th harmonics simultaneously
JP3585730B2 (en) Power supply system
JPH03273826A (en) Active filter used also passively
JPH07123726A (en) Power converter
JPH11164481A (en) Method for controlling active filter
JPH03243135A (en) Active/passive filter
JPH03139124A (en) Active resonant filter
Chen et al. A current source with one-cycle control and its application in serial hybrid active power filter
JPH04319717A (en) Power compensating device
JPH0382338A (en) Higher harmonic voltage suppressing apparatus
CN206432900U (en) A kind of high frequency three-phase and four-line digital power
JPH11206020A (en) Pwm controller
Srinivas et al. Harmonic elimination by reference current strategy using shunt active power filter (SAPF)
JP3318348B2 (en) Control circuit of active filter with passive
JP3076107B2 (en) Active filter
JPH0646565A (en) Power converter
JPH05284652A (en) Control circuit for universal filter