JPH03270795A - Treatment of waste water containing sterilizer - Google Patents

Treatment of waste water containing sterilizer

Info

Publication number
JPH03270795A
JPH03270795A JP6999590A JP6999590A JPH03270795A JP H03270795 A JPH03270795 A JP H03270795A JP 6999590 A JP6999590 A JP 6999590A JP 6999590 A JP6999590 A JP 6999590A JP H03270795 A JPH03270795 A JP H03270795A
Authority
JP
Japan
Prior art keywords
wastewater
activated carbon
absorbance
denitrification
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6999590A
Other languages
Japanese (ja)
Other versions
JP2765170B2 (en
Inventor
Susumu Sato
進 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Envirotech Inc
Original Assignee
Sumitomo Heavy Industries Envirotech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Envirotech Inc filed Critical Sumitomo Heavy Industries Envirotech Inc
Priority to JP2069995A priority Critical patent/JP2765170B2/en
Publication of JPH03270795A publication Critical patent/JPH03270795A/en
Application granted granted Critical
Publication of JP2765170B2 publication Critical patent/JP2765170B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To improve the obstruction of nitration and to stabilize the removal of nitrogen by adsorbing a sterilizer by activated carbon by adding powdery activated carbon to waste water containing a large amount of the sterilizer and subsequently adapting biological treatment to the waste to water apply nitration and denitrification treatment thereto. CONSTITUTION:Waste water containing a large amount of a sterilizer such as the waste water of an airplane is transferred to a nitration/denitrification tank 3 from a raw water conditioning tank 1 through an activated carbon reaction tank 2. When the absorbancy of the waste water stagnated in the raw water conditioning tank 1 exceeds 1.5, a pump P is driven through a sequencer 7 to send powdery activated carbon (a) slurried in a slurrying tank 5 to the activated carbon reaction tank 2 and the absorbancy of the waste water in the tank 2 is controlled to about 0.5-1.5. As a result, the sterilizer in the waste water flowing in the nitration/denitrification tank 3 is adsorbed and removed to a degree generating no obstruction of nitration by activated carbon and a nitration/denitrification reaction condition can be well held.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、航空機から排出されるトイレ排水のように
殺菌剤を多量に含む排水の生物処理法に改良を施したも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is an improved method for biological treatment of wastewater containing a large amount of disinfectant, such as toilet wastewater discharged from aircraft.

[従来の技術] 殺菌剤を多量に含む排水、例えば、航空機内で循環使用
されたし尿性排水の処理法としては、大別して、生物処
理方式と凝集沈殿法による化学処理方式とが知られてい
る。
[Prior Art] There are two known methods for treating wastewater containing large amounts of disinfectants, such as night soil wastewater recycled in aircraft: biological treatment methods and chemical treatment methods using coagulation and sedimentation methods. There is.

ところで、航空機排水には衛生上の観点がち多量の臭素
系殺菌剤が添加されているため、生物処理法によって排
水処理を行う場合、その過程において、排水中に含まれ
る多量の殺菌剤による有機物阻害が懸念されたが、有機
物除去については支障なく処理できることが確認されて
いる。これは有FR物(BOD)分解菌が殺菌剤に馴養
し耐性を得たためとみられる。
Incidentally, aircraft wastewater contains a large amount of bromine-based disinfectants from a sanitary perspective, so when wastewater treatment is carried out using biological treatment methods, organic matter is inhibited by the large amount of disinfectants contained in the wastewater. However, it has been confirmed that organic matter can be removed without any problems. This appears to be because the FR-degrading bacteria (BOD) became accustomed to the fungicide and developed resistance.

しかしながら、生物処理法によって有機物除去のほかに
硝化・脱窒を行う場合には、有機物除去は十分に可能で
あっても、殺菌剤が硝化菌に阻害を与え、硝化阻害を生
起して安定した窒素除去かなされないという問題点があ
る。
However, when nitrification and denitrification are performed in addition to organic matter removal using biological treatment methods, even if it is possible to sufficiently remove organic matter, the fungicide inhibits nitrifying bacteria and inhibits nitrification, resulting in a stable condition. There is a problem that nitrogen is not removed.

[この発明が解決しようとする課題] この発明は、上記問題点を解決することを課題としてな
されたものであって、殺菌剤を含む排水を生物処理法に
よって硝化・脱窒処理を行うに当たり、その前段階又は
処理の過程において、排水中に含まれる多量の殺菌剤を
活性炭により吸着除去して硝化阻害を改善し、安定した
窒素除去を可能ならしめる手段を提供することを目的と
するものである。
[Problems to be Solved by the Invention] The present invention has been made with the aim of solving the above-mentioned problems. The purpose is to provide a means to improve nitrification inhibition and enable stable nitrogen removal by adsorbing and removing a large amount of disinfectants contained in wastewater using activated carbon in the preliminary stage or during the treatment process. be.

[課題を解決するための手段] この発明は、前記課題を解決するための手段を提供する
ものであって、多量の殺菌剤を含む排水を生物処理法に
よって硝化・脱窒処理を行うに当たり、排水中に粉末状
活性炭を添加することを特徴とする排水の処理法を要旨
とし、ながんづく、前記殺菌剤が有色殺菌剤である場合
には、当該殺菌剤特有の吸光度最大吸収波長により排水
の吸光度を測定し、該吸光度が1.5を超える場合、排
水中に粉末状活性炭を添加し、添加後の吸光度を0.5
〜1.5の範囲内とすることを特徴とし、例えば、ブル
ーの色彩を有し臭素を含むメチレンブルーを主体とする
多量の殺菌剤を含む航空機のし尿系排水を生物処理法に
よって硝化・脱窒処理を行うに当たっては、当該殺菌剤
特有の吸光度最大吸収波長である波長662nmにより
排水の吸光度を測定し、該吸光度が1.5を超える場合
、排水中に粉末状活性炭を添加し、添加後の吸光度を0
.5〜1.5の範囲内とすればよい。
[Means for Solving the Problems] The present invention provides means for solving the above problems, and includes the following steps when performing nitrification/denitrification treatment on wastewater containing a large amount of disinfectant using a biological treatment method. The gist is a wastewater treatment method characterized by adding powdered activated carbon to the wastewater, and if the fungicide is a colored fungicide, the absorbance maximum absorption wavelength specific to the fungicide is used. Measure the absorbance of the wastewater, and if the absorbance exceeds 1.5, add powdered activated carbon to the wastewater and reduce the absorbance after addition to 0.5.
For example, aircraft human waste wastewater, which has a blue color and contains large amounts of bactericidal agents mainly methylene blue containing bromine, can be nitrified and denitrified by biological treatment. When carrying out the treatment, the absorbance of the waste water is measured at a wavelength of 662 nm, which is the maximum absorbance wavelength unique to the disinfectant, and if the absorbance exceeds 1.5, powdered activated carbon is added to the waste water, and the absorbance to 0
.. It may be within the range of 5 to 1.5.

また、粉末状活性炭はスラリー状として添加するを可と
し、その添加位置は、硝化・脱窒工程の前段において添
加しても、硝化・脱窒工程において添加してもよい。
Further, the powdered activated carbon can be added in the form of a slurry, and its addition position may be in the previous stage of the nitrification/denitrification process or in the nitrification/denitrification process.

C作用] 本発明によれば、多量の殺菌剤ながんつく有色殺菌剤を
含む排水を生物処理法によって硝化−脱窒処理を行うに
当たり、当該殺菌剤特有の吸光度最大吸収波長により排
水の吸光度を測定し、該吸光度が1.5を超える場合は
、殺菌剤過多による硝化阻害を除去するため、排水中に
粉末状活性炭を添加し、過剰殺菌剤を活性炭により吸着
除去することによって、硝化阻害要因を排除することが
できる。硝化阻害を排除するためには、活性炭添加後の
吸光度を、0.5〜1,5の範囲内とするのが好ましい
C action] According to the present invention, when performing nitrification-denitrification treatment on wastewater containing a large amount of a colored fungicide that is a strong fungicide, the absorbance of the wastewater is determined by the maximum absorbance wavelength specific to the fungicide. If the absorbance exceeds 1.5, powdered activated carbon is added to the wastewater to remove the nitrification inhibition caused by too much disinfectant, and the excess disinfectant is adsorbed and removed by the activated carbon. factors can be eliminated. In order to eliminate nitrification inhibition, the absorbance after addition of activated carbon is preferably within the range of 0.5 to 1.5.

長時間飛行した航空機のし尿系排水の処理について説明
すると、航空機排水は、衛生上の観点がら、ブルーの色
彩を有し臭素を含むメチレンブルーを主体とする多量の
殺菌剤を含んでいるが、この排水を生物処理法によって
硝化・脱窒処理する場合には、当該殺菌剤特有の吸光度
最大吸収波長である波長662nmにより排水の吸光度
を測定し、該吸光度が1.5を超える場合、排水中に粉
末状活性炭を添加し、添加後の吸光度を0.5〜(、う
の範囲内とずれは、硝化阻害要因となる過剰殺菌剤は活
性炭により吸着除去され、硝化阻害を生起することなく
、硝化・脱窒処理を行うことができる。
To explain the treatment of night soil wastewater from aircraft that have flown for long periods of time, aircraft wastewater contains large amounts of disinfectants, mainly methylene blue, which has a blue color and contains bromine, from a sanitary perspective. When nitrifying and denitrifying wastewater using a biological treatment method, the absorbance of the wastewater is measured at a wavelength of 662 nm, which is the maximum absorbance wavelength unique to the disinfectant, and if the absorbance exceeds 1.5, the absorbance of the wastewater is Powdered activated carbon is added, and the absorbance after addition is within the range of 0.5 to 0.000.・Can perform denitrification treatment.

[実験例] 航空機排水を例にとって説明すると、殺菌剤としては、
ブルーの色素を有し臭素を含んだメチレンブルーを主体
とする殺菌剤が用いられ、排水中にはBr濃度で通常2
mg/β程度含まれている。
[Experiment example] Taking aircraft wastewater as an example, disinfectants include:
A disinfectant based mainly on methylene blue, which has a blue pigment and contains bromine, is used, and the Br concentration in wastewater is usually 2.
Contains approximately mg/β.

この程度のBr濃度であれば、BOD分解菌も消化菌も
■週間程度で馴養される。
With this level of Br concentration, both BOD-degrading bacteria and digestive bacteria can become acclimatized in about 2 weeks.

しかしながら、航空機排水における殺菌剤の使用量は、
航空機各社でその使用マニュアルにバラツキがあり、計
算上、最小値と最大値では100倍程度の殺菌剤濃度差
となり得る。
However, the amount of disinfectant used in aircraft wastewater is
Each aircraft company has different manuals for use, and calculations show that the difference in disinfectant concentration between the minimum and maximum values can be about 100 times.

(1)実験例■ そこで、Br濃度を前記通常値(211g、/ l! 
、>の5倍<LoIIg/11)とした場合の処理水中
に含まれるN H4”−Nの増加状況を実験例■として
第2図に示す。
(1) Experimental example ■ Therefore, the Br concentration was set to the normal value (211 g, / l!).
, >5 times <LoIIg/11), the increase in N H4''-N contained in the treated water is shown in FIG. 2 as an experimental example (2).

この実験例■によれば、経過日数3日目にBr濃度を通
常値(2mg/n)の5倍(lOIIg/()とした場
合、処理水のNH4−N濃度は急上昇し明らかに硝化阻
害を引き起こすことが分かる。
According to this experimental example (■), when the Br concentration was set to 5 times the normal value (2 mg/n) (lOIIg/()) on the third day, the NH4-N concentration of the treated water suddenly increased and nitrification was clearly inhibited. It is known that it causes

この場合添加5日後(経過日数8日目〉には以前のNH
4”−N濃度となるため、硝化菌は高濃度の殺菌剤にも
馴養し耐性を得ることが分かる。
In this case, 5 days after addition (8th day elapsed), the previous NH
4''-N concentration, it can be seen that the nitrifying bacteria become accustomed to and become resistant to high-concentration disinfectants.

しかしながら、Br濃度が変動する場合には、硝化菌の
馴養は期待できず、処理水のN H4+−N濃度は高い
値となる。
However, when the Br concentration fluctuates, the nitrifying bacteria cannot be expected to acclimate, and the NH4+-N concentration of the treated water becomes a high value.

(2)実験例■ 次に、殺菌剤による硝化反応への悪影響を実験例■とし
て第3図に示す。
(2) Experimental Example ■ Next, the adverse effect of a fungicide on the nitrification reaction is shown in Figure 3 as an experimental example ■.

試験条件として N−VOL : O,1kg/m”日 基質:(NH4)2C○。As a test condition N-VOL: O, 1kg/m”day Substrate: (NH4)2C○.

種汚泥:殺菌剤通常濃度(Br:2■/β)で馴養 上記試験条件により、殺菌剤に馴養した活性汚泥を使用
し、殺菌剤による硝化速度への影響を測定した結果、N
H4”−NおよびNOx−N濃度を縦軸に、経過時間を
横軸にとると第3図のとおりとであった。
Seed sludge: Acclimated with normal concentration of bactericide (Br: 2■/β) Using activated sludge that had been acclimatized to the bactericide under the above test conditions, the effect of the bactericide on the nitrification rate was measured.
The results are as shown in FIG. 3, with the H4''-N and NOx-N concentrations plotted on the vertical axis and the elapsed time plotted on the horizontal axis.

第3図により明らかなように、殺菌剤の濃度〈Br濃度
を指標として〉が通常値(2■/′β)の3倍となると
硝化速度は3/4に、また、5倍となると硝化速度は1
/2に遅速し、殺菌剤による硝化障害が生ずることが判
明した。
As is clear from Figure 3, when the concentration of the fungicide (using the Br concentration as an index) is three times the normal value (2■/'β), the nitrification rate is 3/4, and when it is five times the nitrification rate. The speed is 1
It was found that the nitrification rate was slow to 1/2, and that nitrification damage was caused by the fungicide.

(3)実験例■ ところが、硝化・脱窒工程またはその前段において排水
中に粉末状活性炭を添加すると、殺菌剤は活性炭によく
吸着され前記ブルーの色素は脱色される。
(3) Experimental Example ■ However, when powdered activated carbon is added to the wastewater during the nitrification/denitrification process or the preceding stage, the bactericide is well adsorbed to the activated carbon and the blue pigment is decolorized.

実験例■として、殺菌剤を通常値の5倍(10■7′l
)に増量した航空機排水を用い、第3図と同一試験条件
で粉末活性炭200./lを添加したところ、第4図に
示すように、通常値に近い処理結果が得られることが判
明した。
As an experimental example ■, the disinfectant was added 5 times the normal value (10■7'l).
) Powdered activated carbon 200% was used under the same test conditions as in Figure 3 using increased aircraft wastewater. As shown in FIG. 4, it was found that by adding 1/l, treatment results close to normal values could be obtained.

(4) 実験例■ 排水中の有色殺菌剤含有量は、当該殺菌剤特有の吸光度
最大吸収波長により排水の吸光度を測定することによっ
てその多寡を知ることができる。
(4) Experimental Example ■ The content of a colored fungicide in wastewater can be determined by measuring the absorbance of the wastewater using the maximum absorbance wavelength specific to the fungicide.

−例として、ブルーの色素を有し臭素を含んだメチレン
ブルーを主体とする殺菌剤の吸収度波長スキャンを第5
図に示す。すなわち、波長662Iに最大吸収があり、
この波長で活性炭添加量をコントロールできることが分
かる。
- As an example, the absorption wavelength scan of a disinfectant mainly composed of methylene blue, which has a blue pigment and contains bromine,
As shown in the figure. That is, there is maximum absorption at wavelength 662I,
It can be seen that the amount of activated carbon added can be controlled using this wavelength.

前記実験例■■■において、波長662rvで排水の吸
光度を測定したとき、吸光度が1.5を超えると硝化阻
害が生じ、吸光度を0.5〜1.5好ましくは1.0以
下とすれば、硝化阻害が除去されることが確認された。
In the above experimental example ■■■, when the absorbance of wastewater was measured at a wavelength of 662 rv, nitrification inhibition occurred if the absorbance exceeded 1.5, and if the absorbance was set to 0.5 to 1.5, preferably 1.0 or less, It was confirmed that nitrification inhibition was removed.

[実施例] 第1図は、本発明方法を示す工程図であって、Aは粉末
活性炭を硝化・脱窒工程の前段において添加する例、B
は硝化・脱窒工程において添加する例、Cは硝化・脱窒
工程の前段と硝化・脱窒工程の双方において添加する例
を示す。
[Example] Figure 1 is a process diagram showing the method of the present invention, where A is an example in which powdered activated carbon is added in the first stage of the nitrification/denitrification process, and B
C shows an example where C is added in the nitrification/denitrification process, and C shows an example where it is added in both the first stage of the nitrification/denitrification process and the nitrification/denitrification process.

まず第1図Aに示す工程について説明すると、図中、l
は原水調整槽、2は活性炭反応槽、3は硝化・脱窒槽、
4は沈殿分離槽、5は粉末活性炭スラリー化槽、6は吸
光光度計、7はシーケンサを示し、航空機排水等多量の
有色殺菌剤を含む排水は原水調整槽1から活性炭反応槽
2を経て硝化・脱窒槽3に送られる、 粉末活性炭aはスラリー化槽5において水分と混合攪拌
されスラリー化された後、必要に応じボンプPによって
活性炭反応槽2に送られる。なお図中Mはモータ、Bは
ブロワを示す。
First, to explain the process shown in FIG. 1A, in the figure, l
is a raw water adjustment tank, 2 is an activated carbon reaction tank, 3 is a nitrification/denitrification tank,
4 is a sedimentation separation tank, 5 is a powdered activated carbon slurry tank, 6 is an absorption photometer, and 7 is a sequencer. Wastewater containing a large amount of colored disinfectants, such as aircraft wastewater, is nitrified from raw water adjustment tank 1 through activated carbon reaction tank 2. - The powdered activated carbon a sent to the denitrification tank 3 is mixed and stirred with water in the slurry tank 5 to form a slurry, and then sent to the activated carbon reaction tank 2 by a pump P as required. In the figure, M indicates a motor and B indicates a blower.

吸光光度計6は、測定管6aを介して例えば波長662
nmにより原水調整槽1内に滞留する排水の吸光度を測
定し、一方、測定管6bを介して活性炭反応槽2内の排
水の吸光度を測定する。
The spectrophotometer 6 receives a wavelength of 662, for example, through a measuring tube 6a.
The absorbance of the wastewater remaining in the raw water adjustment tank 1 is measured by nm, and the absorbance of the wastewater in the activated carbon reaction tank 2 is measured via the measuring tube 6b.

そして、原水調整槽1内に滞留する排水の吸光度が1.
5を超える場合には、シーケンサ7を介してポンプPを
駆動し、スラリー化槽5でスラリー化された粉末活性炭
aを活性炭反応槽2に送り込み、活性炭反応槽2内の排
水の吸光度を0.5〜1.5の範囲内、好ましくは1.
0以下に保つようコントロールされる。
Then, the absorbance of the wastewater remaining in the raw water adjustment tank 1 is 1.
If the absorbance exceeds 5, the pump P is driven via the sequencer 7 to feed the powdered activated carbon a slurried in the slurry tank 5 into the activated carbon reaction tank 2, and the absorbance of the waste water in the activated carbon reaction tank 2 is reduced to 0. Within the range of 5 to 1.5, preferably 1.
Controlled to keep it below 0.

その結果、硝化・脱窒槽3に流入する排水中の殺菌剤は
、硝化阻害を生起しない程度にまで活性炭により吸着除
去され、硝化・脱窒反応条件を良好に保つことができる
As a result, the disinfectant in the wastewater flowing into the nitrification/denitrification tank 3 is adsorbed and removed by the activated carbon to the extent that nitrification is not inhibited, and nitrification/denitrification reaction conditions can be maintained in good condition.

第1図Bに示す工程は、活性炭反応槽2を省略し、スラ
リー化槽5でスラリー化された粉末活性炭aを直接硝化
−脱窒槽3に送り込むようにし、測定g6bを介して該
硝化・脱窒槽3内の排水の吸光度を測定し、その吸光度
を0.5〜1.5の範囲内に保つようにしたものであっ
て、排水中の殺菌剤の量が多量とはいえ比較的少ない場
合に適している。
In the process shown in FIG. 1B, the activated carbon reaction tank 2 is omitted, and the powdered activated carbon a slurried in the slurry tank 5 is sent directly to the nitrification-denitrification tank 3, and the nitrification and denitrification is carried out via the measurement g6b. The absorbance of the wastewater in the nitrogen tank 3 is measured and the absorbance is kept within the range of 0.5 to 1.5, and when the amount of disinfectant in the wastewater is relatively small, although it is large. suitable for

第1図Cに示す工程は、吸光光度計6およびシーケンサ
7を省略し、スラリー化槽5でスラリー化された粉末活
性炭aを常に活性炭反応槽2および硝化・脱窒槽3に添
加するようにしたものであって、排水中に含まれる殺菌
剤の量が既知である場合に適している。
In the process shown in FIG. 1C, the spectrophotometer 6 and the sequencer 7 are omitted, and powdered activated carbon a slurried in the slurry tank 5 is always added to the activated carbon reaction tank 2 and the nitrification/denitrification tank 3. and is suitable when the amount of disinfectant contained in the wastewater is known.

[効果] 本発明によれば、多量の殺菌剤を含む排水を生物処理法
によって硝化・脱窒処理を行うに当たり排水中に粉末状
活性炭を添加することによって、排水中の殺菌剤を活性
炭により吸着除去することができ硝化・脱窒条件を良好
に保ことができる。
[Effect] According to the present invention, by adding powdered activated carbon to the wastewater when nitrifying and denitrifying wastewater containing a large amount of disinfectant using a biological treatment method, the disinfectant in the wastewater is adsorbed by the activated carbon. nitrification and denitrification conditions can be maintained in good condition.

なかんづく、前記殺菌剤か有色殺菌剤である場合には、
当該殺菌剤特有の吸光度最大吸収波長により排水の吸光
度を測定し、該吸光度が1.5を超える場合、排水中に
粉末状活性炭を添加し、添加後の吸光度を0.5〜1.
5の範囲内とすることによって、硝化阻害を除去するこ
とができる。
In particular, in the case of said fungicides or colored fungicides,
The absorbance of the wastewater is measured using the maximum absorbance wavelength specific to the disinfectant, and if the absorbance exceeds 1.5, powdered activated carbon is added to the wastewater, and the absorbance after addition is adjusted to 0.5 to 1.
By setting it within the range of 5, nitrification inhibition can be removed.

また、粉末状活性炭をスラリー状として添加することに
よって排水中にほぼ均一に添加することができ、その添
加位置は、殺菌剤の含有量の多寡によって適当に選択す
ることができる。
Furthermore, by adding powdered activated carbon in the form of a slurry, it can be added almost uniformly into the waste water, and the addition position can be appropriately selected depending on the amount of fungicide contained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A、B、Cは本発明方法の工程を示す説明図、第
2図ないし第5図は実験例を示すグラフ図である。 1:原水調整槽   2:活性炭反応槽3・硝化・脱窒
槽  4:沈殿分離槽 5:粉末活性炭スラリー化槽 6:吸光光度計   7:シーケンサ P:ボンプ  M:モータ  Bニブロワ第 図(A) 第 国(B)
FIGS. 1A, B, and C are explanatory views showing the steps of the method of the present invention, and FIGS. 2 to 5 are graphs showing experimental examples. 1: Raw water adjustment tank 2: Activated carbon reaction tank 3/nitrification/denitrification tank 4: Precipitation separation tank 5: Powdered activated carbon slurry tank 6: Absorption photometer 7: Sequencer P: Bump M: Motor B nib blower diagram (A) Country (B)

Claims (1)

【特許請求の範囲】 1)多量の殺菌剤を含む排水を生物処理法によって硝化
・脱窒処理を行うに当たり、排水中に粉末状活性炭を添
加することを特徴とする排水の処理法。 2)多量の有色殺菌剤を含む排水を生物処理法によによ
って硝化・脱窒処理を行うに当たり、当該殺菌剤特有の
吸光度最大吸収波長により排水の吸光度を測定し、該吸
光度が1.5を超える場合、排水中に粉末状活性炭を添
加することを特徴とする排水の処理法。 3)多量の有色殺菌剤を含む排水を生物処理法によって
硝化・脱窒処理を行うに当たり、当該殺菌剤特有の吸光
度最大吸収波長により排水の吸光度を測定し、該吸光度
が1.5を超える場合、排水中に粉末状活性炭を添加し
、添加後の吸光度を0.5〜1.5の範囲内とすること
を特徴とする排水の処理法。 4)ブルーの色彩を有し臭素を含むメチレンブルーを主
体とする多量の殺菌剤を含む航空機のし尿系排水を生物
処理法によって硝化・脱窒処理を行うに当たり、当該殺
菌剤特有の吸光度最大吸収波長である波長662nmに
より排水の吸光度を測定し、該吸光度が1.5を超える
場合、排水中に粉末状活性炭を添加し、添加後の吸光度
を0.5〜1.5の範囲内とすることを特徴とする排水
の処理法。 5)粉末状活性炭を、スラリー状として添加する請求項
1)乃至4)記載の排水の処理法。 6)活性炭を硝化・脱窒工程の前段において添加する請
求項1)乃至5)記載の排水の処理法。 7)活性炭を硝化・脱窒工程において添加する請求項1
)乃至5)記載の排水の処理法。
[Scope of Claims] 1) A method for treating wastewater, which comprises adding powdered activated carbon to wastewater when nitrifying and denitrifying wastewater containing a large amount of disinfectant using a biological treatment method. 2) When performing nitrification/denitrification treatment on wastewater containing a large amount of colored fungicides using the biological treatment method, the absorbance of the wastewater is measured at the maximum absorbance wavelength specific to the fungicide, and the absorbance is determined to be 1.5. A wastewater treatment method characterized by adding powdered activated carbon to the wastewater. 3) When performing nitrification/denitrification treatment on wastewater containing a large amount of colored fungicides using a biological treatment method, the absorbance of the wastewater is measured at the maximum absorbance wavelength specific to the fungicide, and if the absorbance exceeds 1.5. A method for treating wastewater, which comprises adding powdered activated carbon to the wastewater, and adjusting the absorbance after the addition to a range of 0.5 to 1.5. 4) When carrying out nitrification and denitrification treatment of aircraft wastewater wastewater, which contains a large amount of disinfectant mainly consisting of methylene blue, which has a blue color and contains bromine, by the biological treatment method, the absorbance maximum absorption wavelength unique to the disinfectant is determined. Measure the absorbance of the wastewater at a wavelength of 662 nm, and if the absorbance exceeds 1.5, add powdered activated carbon to the wastewater and make the absorbance after addition within the range of 0.5 to 1.5. A wastewater treatment method characterized by: 5) The method for treating wastewater according to claims 1) to 4), wherein the powdered activated carbon is added in the form of a slurry. 6) The method for treating wastewater according to claims 1) to 5), wherein activated carbon is added at a stage before the nitrification/denitrification process. 7) Claim 1 in which activated carbon is added in the nitrification/denitrification process.
) to 5) the wastewater treatment methods described above.
JP2069995A 1990-03-20 1990-03-20 Treatment of wastewater containing fungicides Expired - Lifetime JP2765170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2069995A JP2765170B2 (en) 1990-03-20 1990-03-20 Treatment of wastewater containing fungicides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2069995A JP2765170B2 (en) 1990-03-20 1990-03-20 Treatment of wastewater containing fungicides

Publications (2)

Publication Number Publication Date
JPH03270795A true JPH03270795A (en) 1991-12-02
JP2765170B2 JP2765170B2 (en) 1998-06-11

Family

ID=13418769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2069995A Expired - Lifetime JP2765170B2 (en) 1990-03-20 1990-03-20 Treatment of wastewater containing fungicides

Country Status (1)

Country Link
JP (1) JP2765170B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004298763A (en) * 2003-03-31 2004-10-28 Nippon Steel Chem Co Ltd Method and apparatus for removing nitrate nitrogen
CN103387281A (en) * 2012-05-10 2013-11-13 天津恒英科技有限公司 Acetic acid mixed solution as sewage denitrification carbon source additive
CN105668809A (en) * 2016-04-07 2016-06-15 莆田市岛之星水产有限公司 Abalone culture water purification method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7648637B1 (en) * 2009-01-29 2010-01-19 Otv S.A. Water treatment method by ballasted flocculation, settling, and prior adsorbent contact

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264148A (en) * 1975-11-21 1977-05-27 Sanki Eng Co Ltd Method of denitrifying organic waste water containing ammonia nitrogen
JPS61185394A (en) * 1985-02-12 1986-08-19 Mitsubishi Kakoki Kaisha Ltd Treatment of organic high concentration waste solution
JPS61197097A (en) * 1985-02-25 1986-09-01 Mitsubishi Kakoki Kaisha Ltd Method for denitrifying waste water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264148A (en) * 1975-11-21 1977-05-27 Sanki Eng Co Ltd Method of denitrifying organic waste water containing ammonia nitrogen
JPS61185394A (en) * 1985-02-12 1986-08-19 Mitsubishi Kakoki Kaisha Ltd Treatment of organic high concentration waste solution
JPS61197097A (en) * 1985-02-25 1986-09-01 Mitsubishi Kakoki Kaisha Ltd Method for denitrifying waste water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004298763A (en) * 2003-03-31 2004-10-28 Nippon Steel Chem Co Ltd Method and apparatus for removing nitrate nitrogen
CN103387281A (en) * 2012-05-10 2013-11-13 天津恒英科技有限公司 Acetic acid mixed solution as sewage denitrification carbon source additive
CN105668809A (en) * 2016-04-07 2016-06-15 莆田市岛之星水产有限公司 Abalone culture water purification method
CN105668809B (en) * 2016-04-07 2018-07-10 福建省海岛之星水产有限公司 A kind of abalone culture water purification method

Also Published As

Publication number Publication date
JP2765170B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
JPH0347159B2 (en)
JPH03270795A (en) Treatment of waste water containing sterilizer
Bicudo et al. Effects of intermittent-cycle extended-aeration treatment on the fate of nutrients, metals and bacterial indicators in pig slurry
US6602426B2 (en) Water treatment using ozone and having a reduced likelihood of bromate formation from bromides found in the water
EP0027694A1 (en) Composition and method for stimulation of aerobic bacteria
JP3958888B2 (en) Method for treating wastewater containing dimethyl sulfoxide
EP3457831B1 (en) Sanitary waste treatment method
JPH04126593A (en) Method for dissolving bulking due to filamentous fungus in apparatus for treating waste water
JPH0947780A (en) Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor
JPS5528759A (en) Treating method of high concentration organic waste water
Bhargava et al. An analysis of nitrification during the aerobic digestion of secondary sludges
JP3118220B2 (en) Organic wastewater biological treatment method
Potts et al. Chlorination of channel catfish ponds
JP2000210074A (en) Acclimation of degrading microorganism, obtaining of acclimated microorganism and degradation of organic compound
JPH01199697A (en) Biological denitrifying and dephosphorizing method for night soil sewage
JP3329194B2 (en) Activated sludge floating control method
JPS6146198B2 (en)
SU1212978A1 (en) Method of processing waste water sediment
JPH09141294A (en) Biological nitrogen removing method
JP3329195B2 (en) Activated sludge floating control method
JPS6249997A (en) Activated sludge treatment by coal ash
JPH05309388A (en) Bulking preventing agent of activated sludge
JP3279364B2 (en) Activated sludge bulking inhibitor
JPH0688889B2 (en) Fungicides for filamentous bacteria and methods for eliminating bulking of activated sludge
KR810001168B1 (en) Method of treating organic waste water