JPH03270713A - Apparatus for treatment of nox gas - Google Patents

Apparatus for treatment of nox gas

Info

Publication number
JPH03270713A
JPH03270713A JP2068905A JP6890590A JPH03270713A JP H03270713 A JPH03270713 A JP H03270713A JP 2068905 A JP2068905 A JP 2068905A JP 6890590 A JP6890590 A JP 6890590A JP H03270713 A JPH03270713 A JP H03270713A
Authority
JP
Japan
Prior art keywords
gas
nox
reaction
tube
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2068905A
Other languages
Japanese (ja)
Other versions
JP2864640B2 (en
Inventor
Yoshihiko Asano
義彦 浅野
Hoki Haba
方紀 羽場
Shigeru Yamashita
茂 山下
Yoshito Shoji
庄子 義人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2068905A priority Critical patent/JP2864640B2/en
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to EP90908663A priority patent/EP0466927B1/en
Priority to US07/768,212 priority patent/US5271915A/en
Priority to KR1019910701287A priority patent/KR940006400B1/en
Priority to CA002051627A priority patent/CA2051627C/en
Priority to DE69019346T priority patent/DE69019346D1/en
Priority to PCT/JP1990/000709 priority patent/WO1991012070A1/en
Priority to AU56772/90A priority patent/AU644073B2/en
Publication of JPH03270713A publication Critical patent/JPH03270713A/en
Application granted granted Critical
Publication of JP2864640B2 publication Critical patent/JP2864640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance NOX treatment efficiency by integrally incorporating a plasma discharge system in a scrubber type NOX gas treatment apparatus. CONSTITUTION:In an NOX gas treatment apparatus, a reaction cylinder 1 in which an aqueous solution of an azide compound is charged under an acidic condition and the plasma generating pipe 5 fixed within the reaction cylinder 1 and equipped with a plasma generator A are provided. A flange part 3 having an introducing pipe 2 equipped with a spirally formed blade 9 and introducing a gaseous mixture consisting of NOX and one of air and oxygen connected thereto is connected to the upper part of the reaction cylinder 1 and a flange part 4 is connected to the lower part of the reaction cylinder 1. An exhaust port 13 is provided to the reaction cylinder 1 in order to reduce and remove NOX gas by reacting the aforementioned gaseous mixture with the azide compound. The NOX gas subjected to decomposition treatment is discharged to the outside of the reaction cylinder 1 as N2 gas from the exhaust port 13.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明はNOxガスの処理装置に関し、特にデイ−セル
機関およびガスターヒン原動機の排気ガス中のNO,ガ
スの処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an apparatus for treating NOx gas, and more particularly to an apparatus for treating NOx gas in the exhaust gas of day-cell engines and gas turbine engines.

B1発明の概要 本発明はNOxガスの処理装置において、酸素条件下で
アジ化化合物を溶解した水溶液を投入する反応筒内にプ
ラズマ発生装置を備えたプラズマ発生管を設けることに
より同一反応筒内でプラズマとアジ化化合物が直接的に
相まって相乗的に働くことにより有害で危険なアンモニ
アを使用することなくNo、を低減すると共に処理装置
のより一層の小型化を可能とする。
B1 Overview of the Invention The present invention provides a NOx gas processing apparatus in which a plasma generation tube equipped with a plasma generator is installed in the reaction tube into which an aqueous solution containing an azide compound dissolved under oxygen conditions is introduced. By directly combining the plasma and the azide compound and working synergistically, it is possible to reduce No. without using harmful and dangerous ammonia and to further downsize the processing equipment.

C1従来の技術 従来、NOxガス処理は排煙脱硝技術として実用化され
ている。排煙脱硝方法としては乾式法と湿式法に大別さ
れ、最も進んでいるのは乾式法の選択接触還元法である
。この方法の利点としては次の3点が挙げられる。
C1 Prior Art Conventionally, NOx gas treatment has been put to practical use as a flue gas denitrification technology. Flue gas denitrification methods are broadly divided into dry methods and wet methods, and the most advanced dry method is the selective catalytic reduction method. This method has the following three advantages.

(1)システムが簡単である。(1) The system is simple.

(2)高脱硝率が可能である。(2) High denitrification rate is possible.

(3)No、が無害なN2とHtOに分解され排出処理
等が不要である。
(3) No. is decomposed into harmless N2 and HtO, eliminating the need for discharge treatment.

この選択接触還元法では還元剤としてアンモニア、炭化
水素、−酸化炭素が使用されている。この中でアンモニ
アは酸素が共存していても選択的にNOxと反応するが
他の還元剤は酸素と反応する。このため特にディーゼル
およびガスタービン原動機の場合は酸素が共存していて
も選択的にNOxと反応するアンモニアガスが用い与れ
でいろ。
In this selective catalytic reduction method, ammonia, hydrocarbons, and carbon oxides are used as reducing agents. Among these, ammonia selectively reacts with NOx even in the presence of oxygen, while other reducing agents react with oxygen. For this reason, particularly in the case of diesel and gas turbine engines, ammonia gas, which selectively reacts with NOx, can be used even if oxygen is present.

また、この反応に使用する触媒としてはPtなどの貴金
属系やA l to s、 T 102などに担持させ
た各種金属酸化物などが挙げられる。ディーゼルおよび
ガスタービン原動機の燃焼で生成するNO。
In addition, examples of catalysts used in this reaction include noble metals such as Pt, and various metal oxides supported on Al tos, T102, and the like. NO produced by combustion in diesel and gas turbine prime movers.

の成分はほとんどがNoでありNO,は5%程度である
。このためNOをアンモニアガスと混合させて、この混
合気体を触媒上で接触還元させてN2とH,Oに分解し
ている。次にこの反応式を示す。
Most of the components are No, and NO is about 5%. For this purpose, NO is mixed with ammonia gas, and this mixed gas is catalytically reduced on a catalyst to be decomposed into N2, H, and O. This reaction formula is shown next.

反応式: 4 N O+ 4 N H3+ Ot→4 
Nt+ 6 HtO(關) しかしながら、上記反応式で示した選択的接触還元法で
は次に示すような問題点かあった。
Reaction formula: 4 N O+ 4 N H3+ Ot→4
Nt+ 6 HtO (related) However, the selective catalytic reduction method shown in the above reaction formula had the following problems.

(1)No、を分解するために有害で危険なアンモニア
ガスを使用しなくてはならない。
(1) Harmful and dangerous ammonia gas must be used to decompose No.

(2)アンモニアガスによる還元触媒性能が劣化する。(2) The performance of the reduction catalyst caused by ammonia gas deteriorates.

特に還元触媒は排気されるガス成分によっても劣化する
ため、交換等を必要としてその操作が面倒である。
In particular, the reduction catalyst deteriorates due to the exhaust gas components, and therefore requires replacement, which is cumbersome to operate.

(3)使用温度の範囲が制限される。(3) The operating temperature range is limited.

即ち、高温(1000℃程度)では触媒成分の焼結が進
行し、結晶の相転移により触媒性能が劣化する。また、
320℃以下ではアンモニアガスと水分がSOxを含む
排気ガスと反応して酸性硫安などの化合物を生じ、脱硝
性能の低下を生じる。
That is, at high temperatures (approximately 1000° C.), sintering of catalyst components progresses, and catalyst performance deteriorates due to crystal phase transition. Also,
At temperatures below 320° C., ammonia gas and moisture react with exhaust gas containing SOx to produce compounds such as acidic ammonium sulfate, resulting in a decrease in denitrification performance.

これらのことから、従来の還元法の使用温度の範囲は3
20〜450℃であった。従って使用温度範囲力j制限
されると共に常温での使用が困難であった。
For these reasons, the operating temperature range for the conventional reduction method is 3.
The temperature was 20-450°C. Therefore, the operating temperature range was limited and it was difficult to use at room temperature.

(4)処理装置全体の小型化が困難である。(4) It is difficult to downsize the entire processing device.

このことは、上記反応式からNOxの還元反応は等モル
であるため、脱硝率に合せてNOx量にほぼ等しいアン
モニアガスを排気ガス中へ注入しなければならず、その
ためアンモニアガスボンへ、触媒等が大型となり装置全
体の小型化か困難なためである。
This means that from the above reaction formula, the reduction reaction of NOx is equimolar, so ammonia gas that is approximately equal to the amount of NOx must be injected into the exhaust gas in accordance with the denitrification rate. This is because the size of the device makes it difficult to downsize the entire device.

このため本発明者らは上記問題点を解決すべく鋭意研究
した結果、有害で危険なアンモニアガスに代えてアジ化
ナトリウム(以下、Na N 3という)を用いること
、及び酸素及びプラズマ処理から選ばれる少なくとも一
種を用いることにより著しくNo、を低減できることを
見い出し、NOxガスの処理方法及びその装置を完成し
た(特願平第1−30236号及び第2−29255号
)。
Therefore, as a result of intensive research to solve the above problems, the present inventors found that sodium azide (hereinafter referred to as NaN3) was used instead of the harmful and dangerous ammonia gas, and that a solution selected from oxygen and plasma treatment was used. The inventors have discovered that NOx gas can be significantly reduced by using at least one type of NOx gas, and have completed a method and apparatus for treating NOx gas (Japanese Patent Application Nos. 1-30236 and 2-29255).

即ち本発明者らは上記出願でNaN、を投入したNOx
処理装置(以下、スクラバ一方式という)とプラズマ発
生装置を備えたプラズマ反応筒(以下、プラズマ放電方
式という)とがそれぞれ分離又は独立した構造を有する
NOxガスの処理装置を提案した。
That is, in the above application, the present inventors introduced NOx with NaN.
We have proposed a NOx gas processing device in which a processing device (hereinafter referred to as a scrubber type) and a plasma reaction tube equipped with a plasma generator (hereinafter referred to as a plasma discharge type) are separated or independent.

D0発明が解決しようとする課題 しかしながら、上記出願に係る処理装置ではスクラバ一
方式がプラズマ放電方式と分離されているため、プラズ
マ効果とN a N s効果を十分発揮し得す、装置自
体の小型化にも限界があった。
D0 Problems to be Solved by the Invention However, in the processing equipment according to the above application, the scrubber system is separated from the plasma discharge system, so the equipment itself is small enough to fully demonstrate the plasma effect and NaNs effect. There were also limits to this.

従って本発明は上記出願に係る問題点を解決するために
創案されたものであって、 NO8処理装置のスクラバ一方式がプラズマ放電方式と
一体化することによりプラズマ効果とN a N 3効
果とが一体となりより一層相乗的効果を生じ、これによ
り著しくNO,処理率を向上させかつNOx処理装置を
より一層小型化することを目的とする。
Therefore, the present invention was devised to solve the problems related to the above-mentioned application, and by integrating one type of scrubber of the NO8 treatment device with a plasma discharge method, the plasma effect and the NaN3 effect can be reduced. The purpose is to produce a more synergistic effect by integrating the two, thereby significantly improving the NOx treatment rate and further downsizing the NOx treatment device.

23課題を解決するための手段及び作用本発明者らは上
記問題点を解決すべく鋭意検討した結果、Noえ処理装
置のスクラバ一方式にプラズマ放電方式を組み込むこと
により、−層NOx処理率を向上できることを見い出し
、本発明に係るNOxガスの処理装置を完成した。
23 Means and Action for Solving the Problems As a result of intensive studies to solve the above problems, the inventors of the present invention have found that by incorporating a plasma discharge method into one type of scrubber of the Noe treatment equipment, the -layer NOx treatment rate can be increased. We have found that improvements can be made and have completed the NOx gas treatment device according to the present invention.

即ち、本発明に係るNOxガスの処理装置は、酸性条件
下でN a N 3を溶解した水溶液を投入する反応筒
と、 該反応筒内に固定されプラズマ発生装置を備えたプラズ
マ発生管と、 該プラズマ発生管内に前記反応筒と連結されかつラセン
状に形成されたバネを備えたNOxと空気及び酸素から
選ばれる一種との混合気体を導入する導入管と、 前記混合気体と前記アジ化化合物を反応させて、前記N
Oxガスを還元除去するために前記反応筒に設けた排気
口と、を含むことをその解決手段としている。
That is, the NOx gas processing apparatus according to the present invention includes: a reaction tube into which an aqueous solution containing NaN3 dissolved under acidic conditions is introduced; a plasma generation tube fixed in the reaction tube and equipped with a plasma generation device; an introduction tube connected to the reaction tube and equipped with a helical spring into the plasma generation tube for introducing a gas mixture of NOx and one selected from air and oxygen; and the gas mixture and the azide compound. by reacting the N
The solution is to include an exhaust port provided in the reaction column to reduce and remove Ox gas.

以下、本発明について更に詳細に説明する。The present invention will be explained in more detail below.

本発明に係る装置に使用するNOxガスの処理方法は特
に理論にこだわるつもりはないが、NaN3を水に溶解
し、この水溶液とNOxガスとの反応でNOxをN2+
H20に化学的に変えることをその原理とする。
The method for treating NOx gas used in the device according to the present invention is not intended to be particularly theoretical; however, NaN3 is dissolved in water, and the NOx is converted into N2+ by the reaction between this aqueous solution and NOx gas.
The principle is to chemically change it to H20.

即ち、この反応は次の3つの式から説明される。That is, this reaction can be explained by the following three equations.

NO+NO!+→2HNO1・(1) 6 N a N3+ 6 Hcl→6 N3H+ 6 
Nacl−(2)2 HNOt+ 6 N5H−10N
2+ 4 H2O・・(3)通常、ガスを液体に吸収さ
せるのは非常に効率が悪い。上記(す式はNo、NO2
を水に吸収させてHNO,にする反応てあり、この反応
が全反応速度を支配するいわゆる律速段階である。従っ
てこの段階の反応が効率よく行うことかてき礼ば、上記
(3)式の反応は容易に進行する。このことが未発明が
解決せんとする中心課題と言える。
NO+NO! +→2HNO1・(1) 6 N a N3+ 6 Hcl→6 N3H+ 6
Nacl-(2)2 HNOt+ 6 N5H-10N
2+ 4 H2O... (3) Normally, it is very inefficient to absorb gas into a liquid. Above (formula is No, NO2
is absorbed into water to form HNO, and this reaction is the so-called rate-determining step that controls the overall reaction rate. Therefore, if it is ensured that the reaction at this stage is carried out efficiently, the reaction of the above formula (3) will proceed easily. This can be said to be the central problem that non-inventions seek to solve.

即ちこのNOxガスの処理方法では上記(1)式の反応
を酸素を用いることで効率よく進行させることができる
。また、酸素を含む限り、空気を用いることもでき、い
ずれを用いてもNO,ガスの処理目的は十分達成し得る
が、上記(1)式をより効率的に進行させるためには酸
素濃度は高い方が好ましい。
That is, in this method of treating NOx gas, the reaction of the above formula (1) can be made to proceed efficiently by using oxygen. In addition, air can be used as long as it contains oxygen, and the purpose of treating NO and gas can be sufficiently achieved using either of them, but in order to proceed with the above equation (1) more efficiently, the oxygen concentration must Higher is preferable.

次に、上記(2)式の反応は予め別に行い、これにより
NaN、はNsHに変換される。この際、完全に反応を
進行させるため酸性条件下にする必要がある。この条件
はpHを3以下にすることか望ましく塩酸などを数滴添
加すれば足りる。
Next, the reaction of formula (2) above is performed separately in advance, thereby converting NaN to NsH. At this time, acidic conditions are required to allow the reaction to proceed completely. This condition is preferably such that the pH is 3 or less, and it is sufficient to add a few drops of hydrochloric acid or the like.

更に、上記(3)式の反応は上記(1)式で得られたH
NO,を上記(2)で得られたN3Hにより還元してN
2とH,Oに分解する。こうして処理されたN、を処理
ガスとして排出する。
Furthermore, the reaction of the above formula (3) is performed using the H obtained in the above formula (1).
NO, is reduced with N3H obtained in (2) above to produce N
It decomposes into 2, H, and O. The N treated in this way is discharged as a treatment gas.

次に、このNOxガスの処理方法を好適に実施し得る本
発明に係るNoいガスの処理装置について説明する。
Next, a Nox gas processing apparatus according to the present invention that can suitably implement this NOx gas processing method will be described.

上記(1)〜(3)の反応はすべてこの装置内に設けら
れた反応筒内で進行する。この反応筒には導入管か連結
され、この導入管を通じてまず塩酸なとを数滴添加した
N a N s水溶液を反応筒内に投入し上記(2)の
反応式を進行させる。次に、この導入管を通じてNOx
と空気及び酸素から選ばれる一種との混合気体を導入し
、導入管に設けられた吹出し口から反応筒内に注入し、
上記(1)及び(3)の反応式を進行させる。この際、
導入管にらせん状に形成されたバネを設け、混合気体を
バネに沿って上昇させ、N a N 3水溶液との接触
時間を長くし、上記(1)及び(3)の反応式を十分に
進行させる。
All of the reactions (1) to (3) above proceed in a reaction column provided within this apparatus. An introduction tube is connected to this reaction column, and through this introduction tube, an aqueous solution of NaNs to which several drops of hydrochloric acid have been added is first introduced into the reaction column, and the reaction equation (2) above is allowed to proceed. Next, through this introduction pipe, NOx
A mixture of gas and one selected from air and oxygen is introduced and injected into the reaction cylinder from the outlet provided in the introduction pipe.
The reaction formulas (1) and (3) above are allowed to proceed. On this occasion,
A spirally formed spring is provided in the inlet pipe, and the mixed gas is raised along the spring to increase the contact time with the NaN3 aqueous solution, so that the reaction equations (1) and (3) above are sufficiently satisfied. Let it proceed.

更に、本発明に係る装置では酸素に加えて高周波などに
よるプラズマを用いることでより効率的に上記(1)式
を進行させる。即ち、この装置は反応筒内にプラズマ発
生装置を備えたプラズマ発生管を設けることにより、高
周波などのいわゆる電気エネルギーにより発生するプラ
ズマによりNOlと酸素及び空気が選ばれる一種との混
合気体を活性化させ、これにより上記(1)の反応をよ
り一層効果的に進行しうる。このことは、上記(1)の
反応は酸素のみても進行するか、プラズマと酸素か相ま
うことで相乗的な効果を生じNOxをはぼ完全にHNO
2に変換できることを意味する。
Further, in the apparatus according to the present invention, in addition to oxygen, plasma generated by high frequency waves or the like is used to more efficiently proceed with the above equation (1). That is, this device activates a gas mixture of NOl, oxygen, and a selected type of air by plasma generated by so-called electrical energy such as high frequency by installing a plasma generation tube equipped with a plasma generation device in the reaction tube. This allows the reaction (1) above to proceed even more effectively. This means that the reaction in (1) above can proceed with oxygen alone, or that a synergistic effect occurs when plasma and oxygen combine, and NOx is almost completely converted into HNO.
This means that it can be converted into 2.

このプラズマ放電方式を行うに際し、導入管に設けたら
せん状に形成されたバネを回転し、混合気体を含むNa
N3水溶肢をプラズマ発生装置の設定位置より上方に上
昇させることによりNaN3水溶液中に直接プラズマ放
電を行い、混合気体の活性化を十分ならしめる。
When performing this plasma discharge method, a spirally formed spring provided in the introduction tube is rotated, and Na containing the mixed gas is
Plasma discharge is performed directly into the NaN3 aqueous solution by raising the N3 aqueous limb above the set position of the plasma generator, and the mixed gas is sufficiently activated.

このようにして処理されたNOxガスはN、ガスとして
反応筒に設けられた排気口からN、として排出する。
The NOx gas treated in this manner is discharged as N gas from an exhaust port provided in the reaction column.

F 実施例 以下、本発明を図面に示す実施例に基づいて説明する。F Example Hereinafter, the present invention will be explained based on embodiments shown in the drawings.

ここて第1図は本発明の一実施例を示すスクラバ一方式
とプラズマ放電方式か一体化したNoえガスの処理装置
の概略構成図である。
FIG. 1 is a schematic diagram of a No. 1 gas treatment apparatus in which a scrubber type and a plasma discharge type are integrated, showing an embodiment of the present invention.

(A)  この構成図において、1はスクラバ一方式の
反応筒、2はNO8及び酸素の混合気体を導入する導入
管、3及び4はフランジ部、5はプラズマ発生管、6は
管5を押えるストッパー 7は混合気体吹き出しユニッ
ト、8は混合気体の吹き出し穴、9はらせん階段状に形
成されたバネ、10はアース、IIは電線端子導入口、
12はブラズマ発生電源、13はN、の排気口、14は
NO。
(A) In this configuration diagram, 1 is a reaction tube with one type of scrubber, 2 is an introduction tube for introducing a mixed gas of NO8 and oxygen, 3 and 4 are flange parts, 5 is a plasma generation tube, and 6 is for holding down the tube 5. Stopper 7 is a mixed gas blowing unit, 8 is a mixed gas blowing hole, 9 is a spring formed in a spiral step shape, 10 is ground, II is a wire terminal inlet,
12 is a plasma generation power source, 13 is an N exhaust port, and 14 is a NO exhaust port.

ガス濃度測定器、Aは高周波電極をそれぞれ示す。In the gas concentration measuring device, A indicates a high frequency electrode.

(B)  ■まず、スクラバ一方式のNOxガス処理装
置について説明する。反応筒lはNOxガス処理処理際
し、酸性条件下てNaN3を溶解した水溶液を投入する
こと及びプラズマ放電等を考慮してステンレスなどの金
属で作製されており、反応効率等から円筒型が好ましい
(B) ■First, a one-type scrubber type NOx gas treatment device will be explained. The reaction tube l is made of metal such as stainless steel in consideration of the injection of an aqueous solution containing NaN3 dissolved under acidic conditions and plasma discharge during NOx gas treatment, and a cylindrical shape is preferable from the viewpoint of reaction efficiency. .

また、この反応筒l内にはその上部はNO8及び酸素の
混合気体を導入する導入管2が連結されフランジ部3で
接続され、その下部はフランジ部4で接続されている。
Further, an introduction pipe 2 for introducing a mixed gas of NO8 and oxygen is connected to the upper part of the reaction cylinder 1 through a flange part 3, and a flange part 4 is connected to the lower part thereof.

更に、反応筒I内でかつ導入管2の間にプラズマ発生管
5が設けられており、この管5は後述するバネ9をこの
管内で回転させることを考慮して、ガラス製でかつ円筒
状が好ましくフランジ部3に取り付けられたL字型直線
形状であるストッパー6で固定されている。また導入管
2の下部には取りはずし可能な混合気体吹き出しユニッ
ト7が取り付けられている。このユニット7は脱着が自
由にてきるためNO,ガス濃度に応じてユニット7を変
えることで混合気体の吹き出し量を調節できる。即ちこ
のユニット7はその底部に混合気体の吹き出し穴8が開
けである構造をなし、この穴の径を変えることで混合気
体の吹き出し量が調節できる。また、導入管の先端のや
や上方かららせん階段状に形成されたバネ9が設けられ
ており、管5の内側にぴったり入り込む構造になってい
る。このような構造にすることで、混合気体が吹き出し
ユニット7を通じて吹き出され、バネを回転することで
混合気体をバネに沿って上昇させ、反応筒1内のN a
 N 3水溶肢と管5内て接触反応を十分片わせること
かできる。
Furthermore, a plasma generation tube 5 is provided within the reaction tube I and between the introduction tube 2, and this tube 5 is made of glass and has a cylindrical shape in consideration of rotating a spring 9 described later within the tube. is preferably fixed by an L-shaped linear stopper 6 attached to the flange portion 3. Further, a removable mixed gas blowing unit 7 is attached to the lower part of the introduction pipe 2. Since this unit 7 can be freely attached and detached, the amount of mixed gas blown out can be adjusted by changing the unit 7 according to the NO gas concentration. That is, this unit 7 has a structure in which a mixed gas blowing hole 8 is opened at the bottom thereof, and by changing the diameter of this hole, the blowing amount of the mixed gas can be adjusted. Further, a spring 9 formed in the shape of a spiral step is provided from slightly above the tip of the introduction tube, and has a structure that fits snugly into the inside of the tube 5. With this structure, the mixed gas is blown out through the blowing unit 7, and by rotating the spring, the mixed gas is raised along the spring, and the Na inside the reaction tube 1 is
It is possible to sufficiently eliminate the contact reaction between the N3 water solution and the tube 5.

0次にプラズマ放電方式のプラズマ発生装置について説
明する。
A zero-order plasma discharge type plasma generation device will be described.

プラズマ発生装置はプラズマ発生管5の中間位置に円筒
状に電極Aとして設けられている。この電極Aにより無
声放電を行うことにより生成するプラズマは酸素と相ま
って、かつアジ化化合物、例えばNaN3などと一体と
なってNOxガスをN、とH2に分解し、ステンレスな
どの金属からなる導入管2を介してアースIOを通じて
放出される。これによりNOxガスはほぼ完全にN、と
H3に分解される。この電極Aはフランジ部3に設けら
れた電線端子導入口11を通じて反応筒1外に設置され
たプラズマ発生電源2と接続されている。
The plasma generator is provided as an electrode A in a cylindrical shape at an intermediate position of the plasma generating tube 5. The plasma generated by silent discharge from this electrode A is combined with oxygen and an azide compound such as NaN3 to decompose NOx gas into N and H2, and the inlet tube made of metal such as stainless steel 2 to the ground IO. As a result, NOx gas is almost completely decomposed into N and H3. This electrode A is connected to a plasma generation power source 2 installed outside the reaction tube 1 through a wire terminal inlet 11 provided in the flange portion 3 .

なお、この電極Aは高周波電極などか好ましく用いら乙
るか、こ乙に限定されるものでなく、いわし↓ろ電気工
ネルキーを発生しプラズマを生成するものであればいず
t5を用いてしよい。
It should be noted that this electrode A is preferably a high frequency electrode or the like, but is not limited to this, but any electrode that generates electrical energy and generates plasma can be used. good.

このようにして分解処理されたNOxカスはN2カスと
むって排気口13から反応筒l外に放出される。
The NOx residue thus decomposed is turned into N2 residue and is discharged from the exhaust port 13 to the outside of the reaction tube l.

(C)  次に本発明に係るNO,ガスの処理装置にお
けるNOxガスの処理過程について説明する。
(C) Next, the NOx gas treatment process in the NO and gas treatment apparatus according to the present invention will be explained.

■まず水にN a N 3を溶解し、この水溶液に塩酸
を添加し、pHを3以下に調製した後、この水溶液をス
クラバ一方式中の反応筒1に注入する。
(1) First, N a N 3 is dissolved in water, and after adding hydrochloric acid to this aqueous solution to adjust the pH to 3 or less, this aqueous solution is injected into the reaction column 1 in a single-type scrubber.

■次に、この溶液中にNOxガスと酸素との混合気体を
導入管2を通じて導入し、吹き出し穴8から管5内に吹
き出す。
(2) Next, a mixed gas of NOx gas and oxygen is introduced into this solution through the introduction pipe 2 and is blown out into the pipe 5 from the blow-off hole 8.

■更に、らせん階段状に形成されたバネ9を回転させ、
混合気体をバネに沿って持ち上げ十分にN a N 3
溶液に拡散しつつ、この溶液を管5の電極A位置より上
部まで上昇させる。
■Furthermore, rotate the spring 9 formed in the shape of a spiral staircase,
Lift the gas mixture along the spring and add enough N a N 3
While diffusing into the solution, the solution is raised above the electrode A position of the tube 5.

■この際、電極Aおよび導入管2の間でプラズマを無声
放電させ、NO,ガスを分解処理する。
(2) At this time, plasma is silently discharged between the electrode A and the introduction tube 2 to decompose NO and gas.

■次に、分解処理されたN、ガスを排気口13から排出
する。
(2) Next, the decomposed N and gas are discharged from the exhaust port 13.

G1発明の効果 (1)本発明はスクラバ一方式のNOxガスの処理装置
にプラズマ放電方式を組み込むように一体的に構成され
ている。従って本発明に係るNO,ガスの処理装置はプ
ラズマ効果と酸素及びN a N 3の効果が一体とな
り一層相乗的効果を生じ、これにより著しく No、処
理率を向上でき、かつNO3処理装置のより一層の小型
化を可能とする。
G1 Effects of the Invention (1) The present invention is integrally constructed so that a plasma discharge method is incorporated into a NOx gas treatment apparatus having one type of scrubber. Therefore, in the NO and gas treatment apparatus according to the present invention, the plasma effect and the effects of oxygen and NaN3 are integrated to produce a synergistic effect, which can significantly improve the NO and gas treatment rate, and further improve the NO3 treatment rate. Enables further miniaturization.

(2)本発明は上述のように構成されているので、次に
記載する効果を奏する。
(2) Since the present invention is configured as described above, it produces the following effects.

田水発明に係る装置によれば、アジ化化合物を使用する
ため有害で危険むアンモニアを使用することなくNO、
ガスを低減できる。
According to the device according to Tadamizu's invention, NO, NO, etc. can be produced without using harmful and dangerous ammonia because it uses an azide compound.
Gas can be reduced.

■本発明に係る装置によれば、酸素及びプラズマか反応
促剤として働くことにより、更にこれか相まって相乗的
に働き、窒素酸化物排出基準値に比し著しく NO,を
低減できる。
(2) According to the device according to the present invention, oxygen and plasma act as reaction accelerators, and these act synergistically in combination, making it possible to significantly reduce NO, compared to the nitrogen oxide emission standard value.

■本発明に係る装置によれば、還元触媒を必要としない
ことから装置全体を小型化でき、その操作も簡・便化て
きる。
(2) Since the apparatus according to the present invention does not require a reduction catalyst, the entire apparatus can be downsized and its operation can be simplified and convenient.

■本発明に係る装置によれば、室温でNOxガスの還元
反応が可能となり、加熱するための装置等が不要となり
NO、ガスの処理を容易に行うことかてきる。
(2) According to the apparatus according to the present invention, the reduction reaction of NOx gas is possible at room temperature, and a heating device or the like is not required, making it possible to easily process NOx gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るNO8ガスの処理装置の一例を示
す概略構成図、第2図は混合気体吹き出しユニットの断
面図である。 l・スクラバ一方式による反応筒、2・屋台気体を導入
する導入管、5・・・プラズマ発生管、8混合気体の吹
き出し穴、9・・・らせん階段状に形成されたバネ、1
:31;、の排気口、A・高周波電極。
FIG. 1 is a schematic configuration diagram showing an example of a NO8 gas processing apparatus according to the present invention, and FIG. 2 is a sectional view of a mixed gas blowing unit. 1. Reaction tube with one type of scrubber, 2. Inlet pipe for introducing stall gas, 5.. Plasma generation tube, 8. Blowout hole for mixed gas, 9.. Spring formed in the shape of spiral steps, 1.
:31;, exhaust port, A. High frequency electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)酸性条件下でアジ化化合物を溶解した水溶液を投
入する反応筒と、 該反応筒内に固定されプラズマ発生装置を備えたプラズ
マ発生管と、 該プラズマ発生管内に前記反応筒と連結されかつラセン
状に形成されたバネを備えたNO_xと空気及び酸素か
ら選ばれる一種との混合気体を導入する導入管と、 前記混合気体と前記アジ化化合物を反応させて、前記N
O_xガスを還元除去するために前記反応筒に設けた排
気口と、を含むことを特徴とするNO_xガスの処理装
置。
(1) A reaction tube into which an aqueous solution in which an azide compound is dissolved under acidic conditions is introduced, a plasma generation tube fixed within the reaction tube and equipped with a plasma generation device, and a plasma generation tube connected to the reaction tube within the plasma generation tube. and an inlet pipe for introducing a gas mixture of NO_x and one selected from air and oxygen, which is equipped with a spring formed in a helical shape;
An NO_x gas processing apparatus, comprising: an exhaust port provided in the reaction tube for reducing and removing O_x gas.
JP2068905A 1990-02-08 1990-03-19 NO ▲ lower x gas processing equipment Expired - Lifetime JP2864640B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2068905A JP2864640B2 (en) 1990-03-19 1990-03-19 NO ▲ lower x gas processing equipment
US07/768,212 US5271915A (en) 1990-02-08 1990-05-31 Method for processing nitrogen oxide gas
KR1019910701287A KR940006400B1 (en) 1990-02-08 1990-05-31 Method and apparatus for processing nitrogen oxide gas
CA002051627A CA2051627C (en) 1990-02-08 1990-05-31 Method and apparatus for processing nitrogen oxide gas
EP90908663A EP0466927B1 (en) 1990-02-08 1990-05-31 Method and apparatus for processing nitrogen oxide gas
DE69019346T DE69019346D1 (en) 1990-02-08 1990-05-31 METHOD AND DEVICE FOR TREATING STICKOXYDES.
PCT/JP1990/000709 WO1991012070A1 (en) 1990-02-08 1990-05-31 Method and apparatus for processing nitrogen oxide gas
AU56772/90A AU644073B2 (en) 1990-02-08 1990-05-31 Method and apparatus for processing nitrogen oxide gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2068905A JP2864640B2 (en) 1990-03-19 1990-03-19 NO ▲ lower x gas processing equipment

Publications (2)

Publication Number Publication Date
JPH03270713A true JPH03270713A (en) 1991-12-02
JP2864640B2 JP2864640B2 (en) 1999-03-03

Family

ID=13387136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2068905A Expired - Lifetime JP2864640B2 (en) 1990-02-08 1990-03-19 NO ▲ lower x gas processing equipment

Country Status (1)

Country Link
JP (1) JP2864640B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112479226A (en) * 2020-11-30 2021-03-12 大连保税区科利德化工科技开发有限公司 High-purity ammonia deep purification device and implementation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112479226A (en) * 2020-11-30 2021-03-12 大连保税区科利德化工科技开发有限公司 High-purity ammonia deep purification device and implementation method thereof
CN112479226B (en) * 2020-11-30 2023-06-20 大连科利德半导体材料股份有限公司 High-purity ammonia deep purification device and implementation method thereof

Also Published As

Publication number Publication date
JP2864640B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
KR20070072535A (en) Plasma-assisted nox reduction
JP2001170454A (en) Exhaust gas cleaning system and exhaust gas cleaning catalyst
JPH03270713A (en) Apparatus for treatment of nox gas
JP4214073B2 (en) Urea water addition device
JPH0691138A (en) Method for processing exhaust gas and device therefor
JP2000117049A (en) Purification method and device for removing nitrogen oxides and sulfur oxides
JPH06178914A (en) Waste gas treatment device
JP2864641B2 (en) NO ▲ lower x gas processing equipment
JPH0699031A (en) Device and method for treating waste gas
JP2993133B2 (en) Exhaust gas treatment method and apparatus
JP4652047B2 (en) Exhaust gas treatment method and urea SCR type automobile exhaust gas treatment device
JP2006239691A (en) Removing method for nitrogen oxide and sulfur oxide and removing apparatus therefor
JP2864689B2 (en) NOx gas treatment method
KR940006400B1 (en) Method and apparatus for processing nitrogen oxide gas
JPH03232518A (en) Method and apparatus for treating gaseous nox
RU1809774C (en) Method for decreasing nitric-oxides content in tail gases of weak nitric acid production process
JP2864642B2 (en) NO ▲ lower x ▼ Gas treatment method
JP2006239690A (en) Nitrogen oxide removing method
JP2864643B2 (en) NO ▲ lower x ▼ Gas treatment method
JP2864677B2 (en) NOx gas treatment method
JPS62163732A (en) Simultaneous treatment of nitrogen oxide and carbon monoxide contained in exhaust gas
JP2607639B2 (en) DeNOx method
JPH0487620A (en) Treatment of nox gas
JPH05220349A (en) Method and device for treating nox
JPH07289848A (en) Equipment for denitrating waste combustion gas