JPH03270520A - Optical repeater - Google Patents

Optical repeater

Info

Publication number
JPH03270520A
JPH03270520A JP2071564A JP7156490A JPH03270520A JP H03270520 A JPH03270520 A JP H03270520A JP 2071564 A JP2071564 A JP 2071564A JP 7156490 A JP7156490 A JP 7156490A JP H03270520 A JPH03270520 A JP H03270520A
Authority
JP
Japan
Prior art keywords
optical
signal
amplification
section
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2071564A
Other languages
Japanese (ja)
Inventor
Mitsuo Kitamura
北村 光雄
Katsumi Kikawa
木川 克己
Hitoshi Inada
稲田 仁志
Fujito Fukutome
福留 不二燈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2071564A priority Critical patent/JPH03270520A/en
Publication of JPH03270520A publication Critical patent/JPH03270520A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To repeat a supervisory signal in the optical direct amplification system by using an erbium doped optical fiber or a high dispersion optical fiber and applying AGC amplification to a signal branched optically, amplitude- modulating the resulting signal with a monitor system signal to apply optical direct amplification and relating the amplified signal. CONSTITUTION:The gain of a laser diode 15 in a preamplifier section is controlled by a supervisory section 10, induced stimulation is caused from an optical coupler 11, from which a pump light for optical direct amplification is generated. A photoelectric converter 16 converts an optical signal branched by a beam splitter 12 into an electric signal, from which a desired supervisory system, signal is extracted. Then only a signal at a desired frequency band passes through a filter 18 and is given to the monitor section 10. The supervisory signal from the section 10 is converted by a laser diode 17 at a post-stage amplifier section into an optical signal, which is used to apply amplitude modulation to an optical output from an AGC amplifier 13 and the result is subject to optical direct amplification and the result is sent to an optical fiber 1.

Description

【発明の詳細な説明】 〔概  要〕 光信号を直接増幅して中継する方式に関し、Erドープ
光フアイバ増幅方式や光ファイバラマン増幅方式を用い
て光自体を中継処理の対象とする方式を実現することを
目的とし、 エルビウムドープ光ファイバ又は高分散光ファイバを用
いて光分岐した信号をAGC増幅させると共にこのAG
C増幅した信号を監視系信号によって振幅変調して光直
接増幅し中継するように構成する。
[Detailed Description of the Invention] [Summary] Regarding the method of directly amplifying and relaying optical signals, we have realized a method in which the light itself is the target of relay processing using an Er-doped optical fiber amplification method or an optical fiber Raman amplification method. With the purpose of
The C-amplified signal is amplitude-modulated by a monitoring system signal, optically directly amplified, and then relayed.

〔産業上の利用分野〕[Industrial application field]

本発明は、光中継器に関し、特に光信号を直接増幅して
中継する方式に関するものである。
The present invention relates to an optical repeater, and more particularly to a method for directly amplifying and repeating optical signals.

現在、実用化されている光中継器は、中継器において光
を一旦電気に変換して増幅・整形し、この電気信号を半
導体レーザー等により光に戻すという方式を採用してい
るが、この方式では、■処理する信号の速度が、電気回
路により定まるビットレートに制約されてしまい、また
、■使用できる光波長が限定されてしまう。
Optical repeaters currently in practical use use a method in which light is first converted into electricity in the repeater, amplified and shaped, and then this electrical signal is returned to light using a semiconductor laser, etc. Then, (1) the speed of the signal to be processed is limited by the bit rate determined by the electrical circuit, and (2) the optical wavelength that can be used is limited.

これに対して光信号を直接増幅・整形して中継を行う光
中継器では、■ビットレートの変更が10Gb/s程度
まで随時行える、■双方向増幅や波長多重化信号の一括
増幅も可能になっている、ので、これらの点から光直接
中継方式の採用が求められている。
On the other hand, optical repeaters that directly amplify and shape optical signals and relay them can: ■ Change the bit rate at any time up to around 10 Gb/s; ■ Bidirectional amplification and batch amplification of wavelength multiplexed signals are also possible. Therefore, from these points, there is a demand for the adoption of an optical direct relay system.

〔従来の技術とその課題〕[Conventional technology and its issues]

現在研究が進められている光直接増幅方式にはEr(エ
ルビウム)ドープ光ファイバや、半導体レーザーや、光
ファイバラマン等を用いた増幅方式があるが、半導体レ
ーザーの場合には、■装置自体から雑音が発生される、
■製品にバラツキがある、等の点からErドープ光ファ
イバや光ファイバラマン増幅方式を用いた方が好ましい
Direct optical amplification methods currently being researched include amplification methods using Er (erbium)-doped optical fibers, semiconductor lasers, optical fiber Ramans, etc.; noise is generated,
(2) It is preferable to use an Er-doped optical fiber or an optical fiber Raman amplification method in view of product variations.

しかしながら、未だErドープ光フアイバ増幅方式や光
ファイバラマン増幅方式を用いて監視系信号の中継(ド
ロップ・インサート)を行う光中継器は提案されていな
いのが現状である。
However, at present, no optical repeater has been proposed that uses an Er-doped optical fiber amplification method or an optical fiber Raman amplification method to relay (drop insert) a monitoring system signal.

従って、本発明は、Erドープ光フアイバ増幅方式や光
ファイバラマン増幅方式を用いて光自体を中継処理の対
象とする方式を実現することを目的とする。
Therefore, it is an object of the present invention to realize a system in which light itself is subject to relay processing using an Er-doped optical fiber amplification system or an optical fiber Raman amplification system.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するため、第1の本発明に係る光中継
器では、第1図に概念的に示すように、エルビウムドー
プ光ファイバ1の光入力に対してポンプ光を与えて光直
接増幅するための光カプラ2と、該光カプラ2からの光
出力を分岐するビーム・スプリッタ3と、該ビーム・ス
プリッタ3からの分岐光を電気信号に変換する光−電気
変換部4と、該電気信号を一定の時定数で増幅するAG
C増幅器5と、該電気信号から監視系信号を抽出するフ
ィルタ6と、該監視系信号をドロ、ブすると共に別の監
視系信号をインサートする監視部7と、該監視部7の出
力信号と台底されて振幅変調された該AGC増幅器5の
出力信号を該ポンプ光に変換する電気−光変換部8とを
備え、該時定数が該監視信号の周期に影響されない程度
に大きいように構成している。
In order to solve the above problems, in the optical repeater according to the first aspect of the present invention, as conceptually shown in FIG. an optical coupler 2 for splitting the optical output from the optical coupler 2, a beam splitter 3 for splitting the optical output from the optical coupler 2, an optical-to-electrical converter 4 for converting the branched light from the beam splitter 3 into an electrical signal, AG that amplifies the signal with a fixed time constant
C amplifier 5, a filter 6 for extracting a monitoring system signal from the electrical signal, a monitoring section 7 for dropping the monitoring system signal and inserting another monitoring system signal, and an output signal of the monitoring section 7. an electric-to-optical converter 8 that converts the amplitude-modulated output signal of the AGC amplifier 5 into the pump light, and is configured such that the time constant is large enough to be unaffected by the period of the monitoring signal. are doing.

また、第2のの本発明に係る光中継器は、第2図に概念
的に示すように、エルビウムドープ光ファイバ1の光入
力を監視部IOで制御されたボンブ光により前置増幅す
る第1の光カプラ11と、該第1の光カプラ11の光出
力から監視系信号を分岐して該監視部10に与える第1
のビーム・スプリッタ12と、該第1のビーム・スプリ
ッタ12からの光入力に対してポンプ光を与えて光直接
増幅するための第2の光カプラ2、該第2の光カプラ2
からの光出力を分岐する第2のビーム・スプリッタ3、
該第2のビーム・スプリッタ3からの分岐光を電気信号
に変換する光−電気変換部4、該電気信号を一定の時定
数で増幅するAGC増幅器5、及び該AGC増幅器5の
出力信号を該第2の光カプラ2へのポンプ光に変換する
電気−光変換部8で構成された光AGC増幅部13と、
該光AGC増幅部13の出力を該監視部10からのポン
プ光により後置増幅する第3の光カプラ14とで構成さ
れている。
The second optical repeater according to the present invention, as conceptually shown in FIG. a first optical coupler 11 and a first optical coupler 11 that branches a monitoring system signal from the optical output of the first optical coupler 11 and supplies it to the monitoring unit 10;
a beam splitter 12, a second optical coupler 2 for directly amplifying the light by giving pump light to the optical input from the first beam splitter 12, and the second optical coupler 2.
a second beam splitter 3 for splitting the optical output from the
An optical-to-electrical converter 4 that converts the branched light from the second beam splitter 3 into an electrical signal, an AGC amplifier 5 that amplifies the electrical signal with a constant time constant, and an output signal of the AGC amplifier 5 that converts the split light from the second beam splitter 3 into an electrical signal. an optical AGC amplification unit 13 configured with an electric-to-optical conversion unit 8 that converts into pump light to the second optical coupler 2;
The third optical coupler 14 post-amplifies the output of the optical AGC amplification section 13 using pump light from the monitoring section 10.

更に第3の本発明による光中継器では、第3図に概念的
に示すように、該第1のビーム・スプリッタ12を挟ん
で該光AGC増幅部13と同一構成の別の光AGC増幅
部15を設け、両光AGC増幅部13.15が互いに一
方の光入力に対して光AGC増幅を行い、該ビーム・ス
プリッタ12が両方向の光入力に対して分岐を行い、更
に該第1及び第3の光カプラ11,14が対向した方向
に光増幅を行うように構成している。
Furthermore, in the optical repeater according to the third aspect of the present invention, as conceptually shown in FIG. 15, both optical AGC amplification sections 13.15 perform optical AGC amplification on one of the optical inputs, the beam splitter 12 performs branching on the optical inputs in both directions, and The three optical couplers 11 and 14 are configured to perform optical amplification in opposing directions.

尚、いずれの本発明においても、エルビウムドープ光フ
ァイバの代わりに、光ファイバラマン増幅を行う高分散
光ファイバを用いてもよい。
In any of the present inventions, a high dispersion optical fiber that performs optical fiber Raman amplification may be used instead of the erbium-doped optical fiber.

〔作   用〕[For production]

第1図に示す第1の本発明においては、エルビウムドー
プ光ファイバ又はラマン増幅用の高分散光ファイバ1か
らの光入力を光カプラ2で電気−光変換部(E/○)8
からのポンプ光によりボンピングを行って光直接増幅し
次の中継器へ送出するが、この送出される光出力をビー
ム・スプリッタ3で分岐させて光−電気変換部(○/E
)4で電気出力に変換する。
In the first invention shown in FIG.
Bumping is performed using pump light from
) 4 to convert to electrical output.

AGC増幅器5ではその電気出力が一定になるように自
動利得制御を行って電気−光変換部8に出力する。
The AGC amplifier 5 performs automatic gain control so that its electrical output is constant, and outputs it to the electrical-optical converter 8.

一方、光−電気変換部4からの電気出力はフィルタ6で
監視系信号だけが抽出されて監視部(SV)7に送られ
、適宜ドロップされると共に例えば対向回線からの監視
系信号をインサートして電気−光変換部8へ送る。
On the other hand, from the electrical output from the optical-to-electrical converter 4, only a monitoring signal is extracted by a filter 6 and sent to a monitoring section (SV) 7, where it is dropped as appropriate and, for example, a monitoring signal from the opposite line is inserted. and sends it to the electrical-optical converter 8.

このとき、電気−光変換部8への入力はAGC増幅器5
の出力と監視部7の出力とが合成されたものとなるが、
AGC増幅器5の出力は第4図の特性曲線Aのように一
定のレベルを呈し、然も時定数が大きいので監視部7か
らの監視系信号はこの曲線Aを振幅変調した曲線Bのよ
うになる。
At this time, the input to the electric-optical converter 8 is the AGC amplifier 5.
The output of and the output of the monitoring section 7 are combined, but
The output of the AGC amplifier 5 exhibits a constant level as shown in the characteristic curve A in FIG. 4, and since the time constant is large, the monitoring system signal from the monitoring section 7 is amplitude-modulated from this curve A, as shown in the curve B. Become.

そして、電気−光変換部8は人力電気信号を光に変換し
てポンプ光として光カプラ2に与えることとなる。
The electrical-optical converter 8 converts the human-powered electrical signal into light and supplies it to the optical coupler 2 as pump light.

このようにして、光直接増幅方式により中継器の監視系
信号を扱うことができる。
In this way, the repeater monitoring system signal can be handled using the optical direct amplification method.

但し、この第1図の第1の本発明では、AGC増幅器5
のAGC動作により光信号の振幅が平均化されるため、
変調度が下がり(監視系信号か弱まり)監視系信号の復
調性能が劣化してしまうと共に対向回線からの監視系信
号を拾ってしまうという欠点がある。
However, in the first invention shown in FIG.
Since the amplitude of the optical signal is averaged by the AGC operation,
There are disadvantages in that the degree of modulation decreases (the supervisory signal becomes weaker), the demodulation performance of the supervisory signal deteriorates, and the supervisory signal from the opposite line is picked up.

このため、第2図に示した第2の本発明では、AGC増
幅を行う前に監視系信号を分岐するため、光ファイバ1
を通過する監視系信号を第1のビーム・スプリッタ12
で分岐してから光AGC増幅部13(光カプラ2とビー
ム・スプリッタ3と光−電気変換部4とAGC増幅器5
と電気−光変換部8とで構成されたもの)でAGC増幅
し、中継器の出力側の第3の光カプラ13で監視部10
からの監視系信号を振幅変調(及び光直接増幅)するこ
とにより上記の欠点を解決している。
Therefore, in the second invention shown in FIG. 2, in order to branch the monitoring system signal before performing AGC amplification, the optical fiber 1
The monitoring system signal passing through the first beam splitter 12
After branching at
and an electric-to-optical converter 8), and a third optical coupler 13 on the output side of the repeater performs AGC amplification.
The above-mentioned drawbacks are solved by amplitude modulating (and optical direct amplification) the monitoring system signal from.

但し、中継器への光入力信号は減衰しているので、監視
系信号の分離前には光AGC増幅部5によるAGC動作
を行わずに監視部10からのポンプ光により第1の光カ
プラ11で前置増幅を行う。
However, since the optical input signal to the repeater is attenuated, the optical AGC amplifier 5 does not perform the AGC operation before separating the monitoring system signal, and the pump light from the monitoring unit 10 causes the first optical coupler 11 to Perform preamplification with .

従って、中継器は光カプラ11と2と14の3段増幅構
威となっており、この内、光カプラ11と14による光
増幅は直接監視系信号に関係しているが、光AGC増幅
部13は監視系信号と完全に分離されており、監視系信
号の振幅変調周波数とAGC時定数とは無関係になるの
で、振幅変調がAGC動作の影響を受けずに済む。
Therefore, the repeater has a three-stage amplification structure consisting of optical couplers 11, 2, and 14. Of these, the optical amplification by optical couplers 11 and 14 is directly related to the monitoring system signal, but the optical AGC amplification section 13 is completely separated from the monitoring system signal, and the amplitude modulation frequency of the monitoring system signal has no relation to the AGC time constant, so that the amplitude modulation is not affected by the AGC operation.

上記の第2の本発明は第2図中、光入力は左側に限定さ
れているが、第3図に示した第3の本発明では、光AG
C増幅部13と同し構成の光AGC増幅部15をビーム
・スプリッタ12を挟んで逆増幅方向に設けており、ビ
ーム・スプリッタ12が両方向の光入力を分岐できると
共に、光カプラ11,14が互いに向かい合った方向に
光増幅を行うようにしているので、いずれの方向の光入
力も光カプラ11又は14で光増幅され、光AGC増幅
部15又は13でAGC増幅を行ってビーム・スプリッ
タ12から監視部10に監視系信号を分岐でき、第2図
と同様の動作を実現することができる。
In the second invention described above, the optical input is limited to the left side in FIG. 2, but in the third invention shown in FIG.
An optical AGC amplification section 15 having the same configuration as the C amplification section 13 is provided in the opposite amplification direction with the beam splitter 12 in between, and the beam splitter 12 can split optical input in both directions, and the optical couplers 11 and 14 can Since optical amplification is performed in directions facing each other, optical input in either direction is optically amplified by the optical coupler 11 or 14, AGC amplified by the optical AGC amplification section 15 or 13, and then output from the beam splitter 12. A monitoring system signal can be branched to the monitoring section 10, and the same operation as shown in FIG. 2 can be realized.

この場合、一方の光カプラ及び光AGC増幅部はそのま
ま光入力を通過させることとなる。
In this case, one of the optical couplers and the optical AGC amplification section will pass the optical input as is.

(実 施 例〕 第5図は、第2の本発明に係る光中継器の一実施例を示
したもので、この実施例では、エルビウムドープ光ファ
イバ(又は高分散光ファイバ)1と光カプラ11とレー
ザーダイオード(LD)15とで前置増幅部を構成して
おり、レーザーダイオード15が監視部10によって利
得制御されて光カプラ11から誘導放出を起こして光直
接増幅させるためのポンプ光を発生するようになってい
る。
(Embodiment) FIG. 5 shows an embodiment of an optical repeater according to the second invention. In this embodiment, an erbium-doped optical fiber (or high dispersion optical fiber) 1 and an optical coupler are connected. 11 and a laser diode (LD) 15 constitute a preamplification section, and the gain of the laser diode 15 is controlled by the monitoring section 10 to cause stimulated emission from the optical coupler 11 to generate pump light for direct amplification of light. It's starting to happen.

また、ビーム・スプリッタ12と光−電気変換器16と
バンドパスフィルタ18とで監視系信号抽出部を構成し
ており、ビーム・スプリッタ12で分岐された光信号を
光−電気変換器16で電気信号に変換し、この中から所
望の監視系信号を取り出すため、その周波数帯域のみフ
ィルタ18を通過させて監視部10に与えるようにして
いる。
In addition, the beam splitter 12, the optical-to-electrical converter 16, and the bandpass filter 18 constitute a monitoring system signal extraction section, and the optical signal split by the beam splitter 12 is converted into an electric signal by the optical-to-electrical converter 16. In order to convert the signal into a signal and extract a desired monitoring system signal from this signal, only that frequency band is passed through the filter 18 and provided to the monitoring section 10.

更に光AGC増幅部13の後には、光カプラ14とレー
ザーダイオード17とで構成された後置増幅部が設けら
れており、監視部10からの監視信号はレーザーダイオ
ード17で光信号に変換され光カプラ14で、光AC,
C増幅器13からの光出力を振幅変調すると共に光直接
増幅して光ファイバlに送出している。
Further, after the optical AGC amplification section 13, a post-amplification section composed of an optical coupler 14 and a laser diode 17 is provided, and the monitoring signal from the monitoring section 10 is converted into an optical signal by the laser diode 17, and the optical With coupler 14, optical AC,
The optical output from the C amplifier 13 is amplitude-modulated, directly amplified, and sent to the optical fiber l.

このような光中継器は図示の如く対向回線についても同
様に設けられており、各光中継器の監視部間で監視系信
号の授受が行われる。尚、POWは光ファイバとは別途
設けられた!#線路2(12)を介して端局から電源が
供給されて両光中継器へ与えるための電源装置を示して
いる。
As shown in the figure, such optical repeaters are similarly provided for opposite lines, and monitoring system signals are exchanged between the monitoring sections of each optical repeater. In addition, POW was provided separately from the optical fiber! A power supply device is shown in which power is supplied from the terminal station via line 2 (12) and is supplied to both optical repeaters.

第6図は、第3の本発明の一実施例を示しており、この
実施例では第5図の実施例と比べて光カプラ14の光増
幅方向が逆になっており、また、光AGC増幅部13に
対向して設けた光AGC増幅部15はビーム・スプリッ
タ12を挟んで対称配置されている。
FIG. 6 shows an embodiment of the third invention, in which the optical amplification direction of the optical coupler 14 is reversed compared to the embodiment of FIG. 5, and the optical AGC An optical AGC amplification section 15 provided opposite to the amplification section 13 is arranged symmetrically with the beam splitter 12 in between.

また、ビーム・スプリッタ12で分岐された下り光出力
は光−電気変換器21で電気出力に変換されて受信した
光パワーレベルの監視を監視部10で行うと共にバンド
パスフィルタ23で監視系信号(周波数fsv)を取り
出し監視部10に与えている。一方、上り光出力は光−
電気変換部22で電気出力に変換されて光パワーレベル
の監視を行うと共にバンドパスフィルタ24で上り信号
の監視系信号(周波数fsV・ )を取り出して監視部
10で監視するようにしている。
Further, the downstream optical output branched by the beam splitter 12 is converted into an electrical output by the optical-to-electrical converter 21, and the received optical power level is monitored by the monitoring unit 10, and the monitoring system signal ( The frequency fsv) is taken out and given to the monitoring section 10. On the other hand, the upstream optical output is -
The electrical converter 22 converts it into an electrical output and monitors the optical power level, and the bandpass filter 24 takes out the upstream signal monitoring system signal (frequency fsV·), which is then monitored by the monitoring unit 10.

このようにすることにより、上り方向の光信号及び下り
方向の光信号共に一つの光中継器で中継動作を行うこと
ができる。
By doing so, it is possible to perform relay operations for both upstream optical signals and downstream optical signals using one optical repeater.

〔発明の効果〕〔Effect of the invention〕

このように、本発明の光中継器によれば、いずれもエル
ビウムドープ光ファイバ又は高分散光ファイバを用いて
光分岐した信号をAGC増幅させると共にこのAGC増
幅した信号を監視系信号によって振幅変調して光直接増
幅し中継するように構成したので、光直接増幅方式で監
視系信号を中継することができる。
As described above, according to the optical repeater of the present invention, the optically branched signal is AGC-amplified using an erbium-doped optical fiber or a high-dispersion optical fiber, and the AGC-amplified signal is amplitude-modulated by a monitoring system signal. Since the system is configured to directly amplify and relay optical signals, monitoring system signals can be relayed using the optical direct amplification method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、第1の本発明に係る光中継器の基本構成を示
した図、 第2図は、第2の本発明に係る光中継器の基本構成を示
した図、 第3図は、第3の本発明に係る光中継器の基本構成を示
した図、 第4図は、本発明に係る光中継器による光振幅変調を説
明するための波形図、 第5図は、第2の本発明の一実施例を示す回路ブロック
図、 第6図は、第3の本発明の一実施例を示す回路ブロック
図、である。 第1図において、 1・・・エルビウムドープ(高分散)光ファイバ、2.
11.14・・・光カプラ、 3.12・・・ビーム・スプリッタ、 4・・・光−電気変換部、 5・・・AGC増幅器、 6・・・バンドパスフィルタ、 7.10・・・監視部、 8・・・電気−光変換部。 図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a diagram showing the basic configuration of an optical repeater according to the first invention, FIG. 2 is a diagram showing the basic configuration of an optical repeater according to the second invention, and FIG. 3 is a diagram showing the basic configuration of an optical repeater according to the second invention. , FIG. 4 is a waveform diagram for explaining optical amplitude modulation by the optical repeater according to the present invention, and FIG. 5 is a diagram showing the basic configuration of the optical repeater according to the third invention. FIG. 6 is a circuit block diagram showing an embodiment of the third invention. FIG. 6 is a circuit block diagram showing an embodiment of the third invention. In FIG. 1, 1... Erbium-doped (high dispersion) optical fiber, 2.
11.14... Optical coupler, 3.12... Beam splitter, 4... Optical-electrical converter, 5... AGC amplifier, 6... Band pass filter, 7.10... Monitoring section, 8... Electricity-optical conversion section. In the figures, the same reference numerals indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)エルビウムドープ光ファイバ(1)の光入力に対
してポンプ光を与えて光直接増幅するための光カプラ(
2)と、 該光カプラ(2)からの光出力を分岐するビーム・スプ
リッタ(3)と、 該ビーム・スプリッタ(3)からの分岐光を電気信号に
変換する光−電気変換部(4)と、 該電気信号を一定の時定数で増幅するAGC増幅器(5
)と、 該電気信号から監視系信号を抽出するフィルタ(6)と
、 該監視系信号をドロップすると共に別の監視系信号をイ
ンサートする監視部(7)と、 該監視部(7)の出力信号と合成されて振幅変調された
該AGC増幅器(5)の出力信号を該ポンプ光に変換す
る電気−光変換部(8)と、 を備え、該時定数が該監視信号の周期に影響されない程
度に大きいことを特徴とする光中継器。
(1) Optical coupler (for direct amplification of light by applying pump light to the optical input of the erbium-doped optical fiber (1)
2), a beam splitter (3) that splits the optical output from the optical coupler (2), and an optical-to-electrical converter (4) that converts the split light from the beam splitter (3) into an electrical signal. and an AGC amplifier (5) that amplifies the electrical signal with a constant time constant.
), a filter (6) that extracts a monitoring signal from the electrical signal, a monitoring section (7) that drops the monitoring signal and inserts another monitoring signal, and an output of the monitoring section (7). an electro-optical converter (8) that converts the output signal of the AGC amplifier (5), which is synthesized with the signal and amplitude-modulated, into the pump light, and the time constant is not affected by the period of the monitoring signal. An optical repeater characterized by being relatively large.
(2)エルビウムドープ光ファイバ(1)の光入力を監
視部(10)で制御されたポンプ光により前置増幅する
第1の光カプラ(11)と、 該第1の光カプラ(11)の光出力から監視系信号を分
岐して該監視部(10)に与える第1のビーム・スプリ
ッタ(12)と、 該第1のビーム・スプリッタ(12)からの光入力に対
してポンプ光を与えて光直接増幅するための第2の光カ
プラ(2)と、該第2の光カプラ(2)からの光出力を
分岐する第2のビーム・スプリッタ(3)と、該第2の
ビーム・スプリッタ(3)からの分岐光を電気信号に変
換する光−電気変換部(4)と、該電気信号を一定の時
定数で増幅するAGC増幅器(5)と、該AGC増幅器
(5)の出力信号を該第2の光カプラ(2)へのポンプ
光に変換する電気−光変換部(8)とで構成された光A
GC増幅部(13)と、 該光AGC増幅部(13)の出力を該監視部(10)か
らのポンプ光により後置増幅する第3の光カプラ(14
)と、を備えたことを特徴とする光中搬器。
(2) a first optical coupler (11) that pre-amplifies the optical input of the erbium-doped optical fiber (1) with pump light controlled by the monitoring unit (10); a first beam splitter (12) that branches a monitoring system signal from the optical output and provides it to the monitoring section (10); and a pump light that provides pump light to the optical input from the first beam splitter (12). a second optical coupler (2) for directly amplifying light; a second beam splitter (3) for splitting the optical output from the second optical coupler (2); An optical-to-electrical converter (4) that converts the branched light from the splitter (3) into an electrical signal, an AGC amplifier (5) that amplifies the electrical signal with a constant time constant, and an output of the AGC amplifier (5). and an electric-optical converter (8) that converts the signal into pump light for the second optical coupler (2).
a GC amplification section (13); and a third optical coupler (14) that post-amplifies the output of the optical AGC amplification section (13) using pump light from the monitoring section (10).
), and an optical carrier.
(3)該第1のビーム・スプリッタ(12)を挟んで該
光AGC増幅部(13)と同一構成の別の光AGC増幅
部(15)を逆増幅方向に設け、両光AGC増幅部(1
3)(15)が互いに一方の光入力に対して光AGC増
幅を行い、該ビーム・スプリッタ(12)が両方向の光
入力に対して分岐を行い、更に該第1及び第3の光カプ
ラ(11)(14)が対向した方向に光増幅を行うこと
を特徴とした請求項2記載の光中搬器。
(3) Another optical AGC amplifier (15) having the same configuration as the optical AGC amplifier (13) is provided in the reverse amplification direction across the first beam splitter (12), and both optical AGC amplifiers ( 1
3) (15) performs optical AGC amplification for one optical input, the beam splitter (12) performs branching for optical input in both directions, and furthermore, the first and third optical couplers ( 11) The optical carrier according to claim 2, wherein the optical carriers (14) perform optical amplification in opposite directions.
(4)該エルビウムドープ光ファイバ(1)の代わりに
光ファイバラマン増幅を行う高分散型光ファイバを用い
ることを特徴とした請求項1乃至3のいずれかに記載の
光中継器。
(4) The optical repeater according to any one of claims 1 to 3, characterized in that a high dispersion optical fiber that performs optical fiber Raman amplification is used in place of the erbium-doped optical fiber (1).
JP2071564A 1990-03-20 1990-03-20 Optical repeater Pending JPH03270520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2071564A JPH03270520A (en) 1990-03-20 1990-03-20 Optical repeater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2071564A JPH03270520A (en) 1990-03-20 1990-03-20 Optical repeater

Publications (1)

Publication Number Publication Date
JPH03270520A true JPH03270520A (en) 1991-12-02

Family

ID=13464336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2071564A Pending JPH03270520A (en) 1990-03-20 1990-03-20 Optical repeater

Country Status (1)

Country Link
JP (1) JPH03270520A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04223246A (en) * 1990-03-26 1992-08-13 American Teleph & Telegr Co <Att> Remote measuring system for optical fiber transmitting system
US5274496A (en) * 1992-01-20 1993-12-28 Fujitsu Limited Optical amplifying repeater with monitor and control function
JPH06202176A (en) * 1992-09-15 1994-07-22 American Teleph & Telegr Co <Att> Balanced optical amplifier
JPH0730486A (en) * 1993-07-09 1995-01-31 Nec Corp Optical repeater system
JPH07143070A (en) * 1993-11-15 1995-06-02 Nec Corp Direct light amplifier
JPH07154339A (en) * 1993-12-01 1995-06-16 Nec Corp Optical repeater
JPH07154330A (en) * 1993-11-25 1995-06-16 Nec Corp Optical repeater
JPH0897776A (en) * 1994-09-27 1996-04-12 Nec Corp Optical repeater
US6266169B1 (en) 1992-04-08 2001-07-24 Hitachi, Ltd. Optical transmission equipment which transmits an amplified optical data signal and an optical surveillance signal
WO2001080466A1 (en) * 2000-04-14 2001-10-25 Fujitsu Limited Wavelength division multiplexing transmitter and optical output control method for optical wavelength division multiplexing transmitter
JP2003032193A (en) * 2001-07-16 2003-01-31 Fujitsu Ltd Optical transmission method and optical transmission system for adopting raman amplification
US6909853B1 (en) 1999-05-07 2005-06-21 Nec Corporation Apparatus for transferring monitor signals in photo-transfer system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04223246A (en) * 1990-03-26 1992-08-13 American Teleph & Telegr Co <Att> Remote measuring system for optical fiber transmitting system
US5274496A (en) * 1992-01-20 1993-12-28 Fujitsu Limited Optical amplifying repeater with monitor and control function
US6266169B1 (en) 1992-04-08 2001-07-24 Hitachi, Ltd. Optical transmission equipment which transmits an amplified optical data signal and an optical surveillance signal
US7292785B2 (en) 1992-04-08 2007-11-06 Hitachi, Ltd. Optical transmission system constructing method and system
US7167652B2 (en) 1992-04-08 2007-01-23 Hitachi, Ltd Optical transmission system constructing method and system
US6728489B2 (en) 1992-04-08 2004-04-27 Hitachi, Ltd. Optical transmission system constructing method and system
JPH06202176A (en) * 1992-09-15 1994-07-22 American Teleph & Telegr Co <Att> Balanced optical amplifier
JPH0730486A (en) * 1993-07-09 1995-01-31 Nec Corp Optical repeater system
JPH07143070A (en) * 1993-11-15 1995-06-02 Nec Corp Direct light amplifier
JPH07154330A (en) * 1993-11-25 1995-06-16 Nec Corp Optical repeater
JPH07154339A (en) * 1993-12-01 1995-06-16 Nec Corp Optical repeater
JPH0897776A (en) * 1994-09-27 1996-04-12 Nec Corp Optical repeater
US6909853B1 (en) 1999-05-07 2005-06-21 Nec Corporation Apparatus for transferring monitor signals in photo-transfer system
WO2001080466A1 (en) * 2000-04-14 2001-10-25 Fujitsu Limited Wavelength division multiplexing transmitter and optical output control method for optical wavelength division multiplexing transmitter
US6819875B2 (en) 2000-04-14 2004-11-16 Fujitsu Limited Optical wavelength multiplexing transmission apparatus and optical output control method for optical wavelength multiplexing transmission apparatus
US7099595B2 (en) 2000-04-14 2006-08-29 Fujitsu Limited Optical wavelength multiplexing transmission apparatus and optical output control method for optical wavelength multiplexing transmission apparatus
JP2003032193A (en) * 2001-07-16 2003-01-31 Fujitsu Ltd Optical transmission method and optical transmission system for adopting raman amplification
JP4647147B2 (en) * 2001-07-16 2011-03-09 富士通株式会社 Optical transmission method and optical transmission system using Raman amplification

Similar Documents

Publication Publication Date Title
EP1675284A2 (en) Optical amplifier and optical communication system employing the same
JPH03270520A (en) Optical repeater
US7768698B2 (en) Raman amplifier and optical communication system
US5563731A (en) Monitor control signal receiving apparatus for optical fiber amplifier
JPH0514282A (en) Light relaying system
JP2809132B2 (en) Optical amplification monitoring device
US20030011874A1 (en) Optical transmission method and optical transmission system utilizing raman amplification
JP3068500B2 (en) Optical signal amplification transmission system
US5995276A (en) Wavelength-division-multiplexing optical amplifier device and wavelength-division-multiplexing optical transmission system
JP3232625B2 (en) Optical repeater and monitoring information transfer method
JP2910667B2 (en) Linear repeater optical amplification transmission equipment
JPH10242939A (en) Wavelength multiplex optical communication system
JP2826457B2 (en) Optical repeater
JP3010897B2 (en) Optical repeater
US6097534A (en) Optical amplifier system generating high optical output level
JP2904101B2 (en) Optical amplifier with noise elimination function
JP3129455B2 (en) Optical amplifier
JP2000047274A (en) In-line reproducing device of soliton optical signal by synchronous modulation, and transmission system including the same
JPH0236581A (en) Optical waveform reforming method and device thereof
CN116667933A (en) Bidirectional optical amplifying device
JP2674557B2 (en) Optical amplifier repeater
JPH06164515A (en) Optical amplifying repeater
JP3221431B2 (en) Optical transmitting apparatus and monitoring information transmitting method
JPH03242053A (en) Optical repeater using optical direct amplifier for processing monitor signal
JP2500621B2 (en) Optical amplifier