JPH0326940A - Method and instrument for measuring kinematic viscosity of liquid - Google Patents

Method and instrument for measuring kinematic viscosity of liquid

Info

Publication number
JPH0326940A
JPH0326940A JP16091389A JP16091389A JPH0326940A JP H0326940 A JPH0326940 A JP H0326940A JP 16091389 A JP16091389 A JP 16091389A JP 16091389 A JP16091389 A JP 16091389A JP H0326940 A JPH0326940 A JP H0326940A
Authority
JP
Japan
Prior art keywords
sample
measuring
sphere
kinematic viscosity
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16091389A
Other languages
Japanese (ja)
Other versions
JPH061239B2 (en
Inventor
Toshio Saeki
佐伯 敏生
Masato Tanaka
正人 田中
Naoyoshi Mishima
三嶋 直義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP16091389A priority Critical patent/JPH061239B2/en
Publication of JPH0326940A publication Critical patent/JPH0326940A/en
Publication of JPH061239B2 publication Critical patent/JPH061239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To enable a sample to be surely discharged even at a room temperature by measuring a time for which the sample passes a measuring sphere, accommodating the sample in a viscosimeter in a large volume chamber, mixing a washing solvent and the sample in the chamber and discharging a resultant mixture via a discharge tube. CONSTITUTION:After a time required for passing measuring spheres 7 and 8 is measured, the inside of a viscosimeter 1 is washed. That is, after passing the measuring sphere 8 by sucking a sample by a vacuum pump 37, the sample is accommodated in a first blend sphere 9 to stay therein. The sample which has been accumulated in an excess sample sink 4 is accommodated in a second blend sphere 10 to stay therein. Then a washing solvent is fed into the viscosimeter 1. While dissolving the sample attached to the inside of the viscosimeter 1, the solvent reaches the blend spheres 9 and 10 and is mixed with the sample in the blend spheres 9 and 10. A resultant mixture is discharged from discharge tubes 11 and 12. Thus, the sample keeps a fluidity even at a room temperature and can be surely discharged.

Description

【発明の詳細な説明】 [産業上の利用分野] 木:PIJ1は、ランッ●ツγイトファクス粘度計を使
用した液体の粘度測定方法およびその装置に関し,特に
測定後の洗浄,試料排出工程を改良した液体の勤粘度測
定方法およびその装置に関する.[従来の技術] 石油および石油製品の動粘度測定方法としては、JIS
 K 2283において各種の方法が規格化されている
が、その中でもランッ●ツァイト7ツクス粘度計による
方法は、透明液体に限らず不透明液体の粘度をも測定で
きるという利点があるところから広く利用されている. 従来、ランツ・ツァイトフックス粘度計を使用した液体
動粘度の測定装置には、本願出願人の出願による実公昭
52−35022号公報に開示されたものカアる.この
測定装置は、ランッ・ツァイトフックス粘度計の測定部
に光電変換器を設けるなどして測定の自動化を実現した
ものであり、試料抜出口に吸引ポンプを連結して粘度計
内部の試料を自動的に排出できるようになっていた. [解決すべき問題点] 上述した従来の液体動粘度の測定装置は、測定終了後の
試料排出工程において、恒温槽の外部に導出した排出管
内で試料温度が常温近くまで低下するため、アスファル
トやワックス分の多い重油など常温で流動性の低い試料
の場合,排出管内で流動性を失い排出管を閉塞してしま
うおそれがあった. 本発明はこのような問題を解決するためになされたもの
で,常温においても試料の流動性を保持して確実に排出
することのできる液体の動粘度測定方法およびその装置
の提供を目的とする.[課題の解決手段] 上記目的を達成するために、本発明の液体動粘度の測定
方法は、試料溜から測定球へと試料を送り、続いて当該
試料が前記測定球を通過する時間を測定し、その後粘度
計内部の試料が排出管に至る前に当該試料を大容積の部
屋に収容し、かつ当該部屋に洗浄用溶剤を入れて試料と
混合し、この混合物を排出管を通して排出する方法とし
てある. また、本発明の液体動粘度の測定装置は,試料溜から送
られてきた試料が測定球を通過する時間により液体試料
の動粘度を測定する装置において,前記測定球と排出管
との間に、それぞれ排出試料の容量より大きな容積を有
するブレンド球を設けた構成としてある. [実施例] 以下,本JAIjllの実施例を図面にもとづいて説明
する. 第1図は液体の動粘度測定装置の発明に係る第一実施例
を示す正面断面図、MS2図は同装置の粘度計を拡大し
て示す正面断面図である.本実施例は手動式の動粘度測
定装置を示すもので,図中1.・・・は動粘度測定範囲
の異なる複数の粘度計である.これら粘度計1はガラス
製であり,第2図に拡大′して示すように、注入口2,
試料溜3,余剰試料溜4,逆U字管5,毛細管6,測定
球7,8,第一・第二のブレンド球9,10,排出管1
1.12を有している.注入口2は広口になっており、
ここから液体試料や洗浄液が注入される.試t4溜3は
注入口2の下方に形威されており、一定の高さの位置に
オーバーフロ一部3aを有し、このオーバーフロ一部3
aを介して余剰溜4と運通している.逆U字管5は、一
端が試料溜3の底部と接続しており,サイフォンの原理
により毛細管6内に試料を流下させるために設けてある
.測定球7,8は毛細管6に接続するとともに,その上
部.中央部,下部を測時標線a,b,cとしてあり、毛
細管6を通して流れてきた試料がそれぞれの測時標線を
通過する時間により試料の動粘度を求める.第一のブレ
ンド球9は排出管11の接続部l3と測定球8との間に
形成され、第二のブレンド球lOは排出管l2の接続部
l4と余劇試料溜4との間に形成されている.これらブ
レンド球9.10は試料と洗浄用溶剤とを混合するため
の大容積の部屋を形成する.すなわち、第一のブレンド
球9は測定球8を通過し排出管11を介して排出される
試料の容量より大きな容積を有しており,また第二のブ
レンド球lOは余剰試料溜4に溜る試料の容量より大き
な容積を41している.ここで、各ブレンド球9.10
内で試料が滞留して洗浄用溶剤との混合をするためには
、各ブレンド球9,10の大きさを,排出試料の容量の
1.5〜5倍好ましくは2〜3倍とする.逆に、各ブレ
ンド球9,toが排出試料の1.5倍より小さな容積で
あると、試料がブレンド球9.10内に滞留せずそのま
ま通過するため洗浄用溶剤との混合が不十分になってし
まう.なお、排出管1lを通して排出される試料の容量
は、試料注入時,余剰試料がオーバーフロ一部3aより
余剰試料溜4にオーバーフローするため一定となる.ま
た、余剰試料溜4に溜る試料の容量は、あらかじめビー
カー等に所定量採取するか、もし〈は余剰試料溜4を観
察しながら試料を注入することによりほぼ一定に保つこ
とができる. 上述した粘度計1は,第1図に示すように、恒温槽20
内に各種配置されている.また,30はバキュームコン
トローラであり、本体31からブレンド球9.10と接
続する排出管11.12が延出しているとともに、本体
31内にこれら排出管11.12を開閉するための電磁
弁32,33.34を有している.35は廃液タンクで
、バキュームコントローラ30と配管36により接続さ
れ、かつバキュームポンプ37とも配管38により接続
されている.40は廃液タンク35を大気に開放するた
めの電磁弁である.次に上述の動粘度測定装置を使用し
た液体動粘度測定方法の実施例を説明する. ■ まず、試料の予想粘度にもとづいて適当な粘度計1
を選択し,その接続部l3,14に排出管11.12を
接続する.恒温槽20内は一定温度(例えば.120f
0.03℃)に保つ.■ ビーカーにほぼー゛定量(例
えば,−30mffi程度)の試料を採取し、注入口2
より注入する.注入された試料は、一定量が試料溜3に
溜り、かつ少量がオーバーフローして余剰試料溜4に溜
る.この状態で試料を一定時間(たとえば20分)恒温
に保つ. ■ バキュームボンプ37を作動させ、同時に電磁弁3
3 ,34 .40を閉じるとともに電磁弁32を開く
.これにより試料溜3内の試料が吸収され、逆U字管5
を通って毛細管6内を流下する.試料先端面が上側の測
定球8とほぼ同じ高さにきたときバキュームポンプ37
を停止し、同時に電磁弁33,34.40を開くととも
に電磁弁32を閉じる.すると、試料は大気に開放され
、その後サイフォンの原理で徐々に測定球7,8へと流
れる.この流れを観察して試料先端面が測時標線a,b
,cを通過する時間を測定する.測定した時間は試料の
粘度に比例した数値であり,この数値に特定の係数を乗
じることによって試料の動粘度を求めることができる. ■ 以上の操作により,試料の動粘度を測定した後、粘
度計内部の洗浄,試料排出および乾燥を行なう. (イ)すなわち、バキュームポンプ37を作動させ、同
時に電磁弁33 ,34 .40を閉じるとともに電磁
弁32を開き,粘度計内の試料を吸引する.測定球8を
通過した試料および余剰試料溜4に溜っていた試料は、
しばらくして各ブレンド球9.10に収容されて内部に
滞留する. (a)試料溜3から第一のブレンド球9まで、あるいは
余剰試料溜4から第二のブレンド球10までにあった試
料が、各ブレンド球9,lO内に収容されると、粘度計
内を空気の通過する音が発生する.この空気通過音が聞
こえたら,注入口2から洗浄用溶剤(キシレン,トルエ
ン,またはこれらのアセトンとの等量混合物、塩素系有
機溶剤など)を注入する.洗浄用溶剤は粘度計内部に付
着した試料を溶解しながら各ブレンド球9.10に至る
.その間、ブレンド球9.10内の試料は滞留を続けて
おり、流入してきた洗浄用溶剤と試料との混合物が各ブ
レンド球9,lOを流出して排出管11,l2を通り廃
液タンク35に回収される.(ハ)その後,しばらくバ
キュームポンプ37により粘度計内の吸引を続け、注入
口2から流入した空気と恒温槽20の熱とにより内部を
乾燥させ、乾燥が終了した時点でバキュームボンブ37
を停止する. 上述のように、粘度計内の試料を各ブレンド球9.lO
に回収して洗浄用溶剤を混合することにより、常温で流
動性の失われる試料が、恒温槽20の外にある排出管1
1.12内で固まっていしまうことを防止して、十分な
洗浄を行なうことができる.また、洗浄工程の時間短縮
を図ることができ、およそ三分程度の洗浄で十分に粘度
計内の試料を除去できる.さらに試料採取から測定,洗
浄および乾燥にかけての一連の操作が、粘度計1を恒温
槽20に取り付けたままで行なえるため,これら一連の
操作を容易化できる.次に、液体動粘度測定装置の発明
に係る第二実施例を図面にもとづいて説明する. 第3図は自動的に掖体動粘度の測定を行なえるようにし
た第二実施例を示す正面断面図である.なお、先に示し
た第1図と同一部分には同一符号を付し,その部分の詳
細な説明は省略する.本実施例の装置においては、各測
定球7,8の下部と上部に、測定球7.8を通過する試
料の液面を検知するための光電変換器51,52.53
が設けてあり,これら光電変換器に時間表示部54を連
結して試料通過時を計時できるようになっている. また、注入口2には洗浄液容器55からの注入管56が
挿入されており、注入管途中に設けた注入ボンプ57に
より洗浄液を注入できるようになっている. 液体試料の動粘度を測定する操作はシーケンス制御部5
8の指令にもとづいて行なわれ.る.シーケンス制御部
58には掖体の粘度測定ならびに粘度計の洗浄,乾燥に
それぞれ必要な電磁弁59.60.61やポンプ57 
.62の作動プログラムが入力されている. 上述の勤粘度自動測定装置によれば、動粘度測定方法に
おける測定開始から測定,洗浄,試料排出を経て乾燥に
至るまでの一連の工程を、次のようにして自動的に行な
うことができる.■ すなわち、試料を注入し,試料溜
3内の試料が恒温に達した後、シーケンス制御部58か
らの指令により電磁弁59,60.61およびバキュー
ムボンプ62を制御して,試料を毛細管6内の所定位置
まで吸引する. ■ そして、粘度計1内を大気圧に開放しサイフォンの
原理により試料を徐々に流動させ,測定球7.8を通過
する試料の液面を光電変換器51,52.53で検知し
,その検知信号にもとづき試料が測定球7,8を通過す
るのに要する時間を時間表示部54に表示する.試料の
動粘度は、表示された時間にあらかじめ校正して求めた
粘度計定数を乗じることにより算出できる.■ 以上の
操作が終了した後、粘度計1内の洗浄を行なう. (イ)まず、it磁弁61を閉じるとともに, ’t’
ttm弁59.60を開きバキュームボンプ62で試料
を吸引する.試料は測定球8を通過した後、第一のブレ
ンド球9に収容されてその内部で滞留する. 一方、余剰試料溜4に溜っていた試料は、第二のブレン
ド球lOに収容されてその内部で滞留する. (o)次いで,注入ボンブ57を作動して洗浄用溶剤(
キシレン,トルエン,またはこれらのアセトンとの等量
混合物、塩素系力機溶剤など)を粘度計1内に送り込む
.洗浄用溶剤は、粘度計内部に付着していた試料を溶解
しながら各ブレンド球9,lOに到達し,各ブレンド球
9,lO内で試料と激しく混合する.そして、この試料
と洗浄用溶剤との混合物が各ブレンド球9.10を流出
して排出管11.12を通り廃液タンク(第3図には示
さず)に回収される.このようにして試料の排出および
洗浄が終了したら注入ポンプ57を停止する. (ハ)バキュームポンプ62はそのまま作動させておき
、注入日2から粘度計1内に空気を吸い込む.すると、
この流動する空気と恒温槽20内の熱により粘度計1内
が乾燥する.乾燥が終了した時点でバキュームポンプ6
2および電磁弁59.60を停止し、一連の粘度測定操
作が終了する. [発明の効果] 以上説明したように本発明の液体動粘度の測定方法によ
れば、大容積の部屋で試料と洗浄用溶剤とを混合して排
出するので、常温においても流動性を保持して確実に排
出でき、しかも速やかに洗浄を行なうことができる効果
がある. また、本発明の液体勤粘度の測定装置によれば、上記測
定方法を効率的に実施して確実な試料の排出および洗浄
時間の短縮を図ることができる.
[Detailed Description of the Invention] [Field of Industrial Application] Thurs.: PIJ1 relates to a method and device for measuring the viscosity of liquids using a run-tweet fax viscometer, and particularly to cleaning and sample discharging steps after measurement. This article relates to an improved method and device for measuring the viscosity of liquids. [Prior art] As a method for measuring the kinematic viscosity of petroleum and petroleum products, JIS
Various methods have been standardized in K 2283, but among them, the method using a Lantzzeit 7x viscometer is widely used because it has the advantage of being able to measure the viscosity of not only transparent liquids but also opaque liquids. There is. Conventionally, a liquid kinematic viscosity measuring device using a Lanz-Zeitfuchs viscometer has been disclosed in Japanese Utility Model Publication No. 1983-35022 filed by the applicant of the present application. This measuring device realizes automatic measurement by installing a photoelectric converter in the measuring section of a Lant-Zeitfuchs viscometer, and connects a suction pump to the sample extraction port to automatically remove the sample inside the viscometer. It was now possible to discharge the liquid. [Problems to be solved] In the conventional liquid kinematic viscosity measuring device described above, in the sample discharge process after the measurement, the sample temperature drops to near room temperature in the discharge pipe led outside of the thermostatic chamber. In the case of samples with low fluidity at room temperature, such as heavy oil with a high wax content, there was a risk that the fluidity would be lost in the discharge pipe and the discharge pipe would be blocked. The present invention has been made to solve these problems, and its purpose is to provide a method and device for measuring the kinematic viscosity of a liquid, which can maintain the fluidity of a sample even at room temperature and reliably discharge the sample. .. [Means for Solving the Problems] In order to achieve the above object, the method for measuring liquid kinematic viscosity of the present invention includes sending a sample from a sample reservoir to a measuring sphere, and then measuring the time it takes for the sample to pass through the measuring sphere. Then, before the sample inside the viscometer reaches the discharge pipe, the sample is stored in a large volume chamber, and a cleaning solvent is placed in the room and mixed with the sample, and this mixture is discharged through the discharge pipe. It is as follows. Further, the liquid kinematic viscosity measuring device of the present invention is a device for measuring the kinematic viscosity of a liquid sample based on the time it takes for the sample sent from the sample reservoir to pass through the measuring bulb, and in which there is a gap between the measuring bulb and the discharge pipe. , each has a blending sphere with a volume larger than the volume of the discharged sample. [Example] Hereinafter, an example of this JAIjll will be explained based on the drawings. FIG. 1 is a front cross-sectional view showing a first embodiment of the invention of a liquid kinematic viscosity measuring device, and FIG. MS2 is a front cross-sectional view showing an enlarged view of the viscometer of the same device. This example shows a manual kinematic viscosity measuring device. ...are multiple viscometers with different kinematic viscosity measurement ranges. These viscometers 1 are made of glass, and as shown enlarged in FIG.
Sample reservoir 3, excess sample reservoir 4, inverted U-shaped tube 5, capillary tube 6, measuring bulbs 7, 8, first and second blending bulbs 9, 10, discharge tube 1
1.12. Inlet 2 has a wide mouth,
Liquid samples and cleaning solutions are injected from here. The test T4 reservoir 3 is formed below the injection port 2, and has an overflow part 3a at a certain height.
It communicates with surplus reservoir 4 via a. The inverted U-shaped tube 5 has one end connected to the bottom of the sample reservoir 3, and is provided to cause the sample to flow down into the capillary tube 6 using the siphon principle. The measuring spheres 7 and 8 are connected to the capillary tube 6 and are connected to the upper part of the capillary tube 6. Time markers a, b, and c are placed at the center and bottom, and the kinematic viscosity of the sample is determined by the time taken for the sample flowing through the capillary tube 6 to pass through each of the time markers. The first blending sphere 9 is formed between the connection l3 of the discharge pipe 11 and the measuring sphere 8, and the second blending sphere 1O is formed between the connection l4 of the discharge pipe 12 and the after-effect sample reservoir 4. It has been done. These blending spheres 9,10 form a large volume chamber for mixing the sample and cleaning solvent. That is, the first blending bulb 9 has a larger volume than the volume of the sample that passes through the measuring bulb 8 and is discharged via the discharge pipe 11, and the second blending bulb 1O accumulates in the excess sample reservoir 4. 41 is a volume larger than the sample volume. Here, each blend sphere 9.10
In order for the sample to remain in the chamber and mix with the cleaning solvent, the size of each blending bulb 9, 10 should be 1.5 to 5 times, preferably 2 to 3 times, the volume of the discharged sample. Conversely, if each blending bulb 9,to has a volume smaller than 1.5 times the volume of the discharged sample, the sample will not remain in the blending bulb 9,10 and will pass through as it is, resulting in insufficient mixing with the cleaning solvent. turn into. Incidentally, the volume of the sample discharged through the discharge pipe 1l remains constant because the surplus sample overflows from the overflow part 3a into the surplus sample reservoir 4 during sample injection. Further, the volume of the sample stored in the surplus sample reservoir 4 can be kept approximately constant by collecting a predetermined amount into a beaker or the like in advance, or by injecting the sample while observing the surplus sample reservoir 4. The above-mentioned viscometer 1 has a constant temperature bath 20 as shown in FIG.
There are various arrangements inside. Further, 30 is a vacuum controller, in which a discharge pipe 11.12 extending from the main body 31 connects to the blending ball 9.10, and a solenoid valve 32 inside the main body 31 for opening and closing these discharge pipes 11.12. , 33.34. 35 is a waste liquid tank, which is connected to the vacuum controller 30 through piping 36 and also to the vacuum pump 37 through piping 38. 40 is a solenoid valve for opening the waste liquid tank 35 to the atmosphere. Next, an example of a liquid kinematic viscosity measuring method using the above-mentioned kinematic viscosity measuring device will be explained. ■ First, use an appropriate viscometer 1 based on the expected viscosity of the sample.
, and connect the discharge pipes 11 and 12 to the connections l3 and 14. The temperature inside the constant temperature bath 20 is constant (for example, 120f).
0.03℃). ■ Collect an almost constant amount (for example, about -30mffi) of the sample into a beaker and insert it into the injection port 2.
Inject more. A certain amount of the injected sample accumulates in the sample reservoir 3, and a small amount overflows and accumulates in the surplus sample reservoir 4. In this state, keep the sample at a constant temperature for a certain period of time (for example, 20 minutes). ■ Activate the vacuum pump 37 and at the same time operate the solenoid valve 3.
3,34. 40 and open the solenoid valve 32. As a result, the sample in the sample reservoir 3 is absorbed, and the inverted U-shaped tube 5
and flows down inside the capillary tube 6. When the tip of the sample is at approximately the same height as the upper measuring sphere 8, the vacuum pump 37
At the same time, the solenoid valves 33, 34, and 40 are opened and the solenoid valve 32 is closed. The sample is then exposed to the atmosphere, and then gradually flows to the measuring spheres 7 and 8 using the siphon principle. Observing this flow, the tip of the sample is aligned with the time markers a and b.
, measure the time it takes to pass through c. The measured time is a value proportional to the viscosity of the sample, and by multiplying this value by a specific coefficient, the kinematic viscosity of the sample can be determined. ■ After measuring the kinematic viscosity of the sample using the above steps, clean the inside of the viscometer, drain the sample, and dry it. (a) That is, the vacuum pump 37 is operated and the solenoid valves 33, 34 . 40 and open the solenoid valve 32 to aspirate the sample inside the viscometer. The sample that has passed through the measurement sphere 8 and the sample that has accumulated in the surplus sample reservoir 4 is
After a while, it is accommodated in each blend sphere 9 and 10 and remains inside. (a) When the sample from the sample reservoir 3 to the first blending bulb 9 or from the excess sample reservoir 4 to the second blending bulb 10 is accommodated in each blending bulb 9, 10, the viscometer The sound of air passing through is generated. When you hear this sound of air passing, inject a cleaning solvent (xylene, toluene, or a mixture of these with acetone in equal amounts, a chlorinated organic solvent, etc.) from the injection port 2. The cleaning solvent reaches each blend sphere 9.10 while dissolving the sample adhering to the inside of the viscometer. Meanwhile, the sample in the blending bulbs 9 and 10 continues to stagnate, and the mixture of cleaning solvent and sample that has flowed in flows out of each blending bulb 9 and 10, passes through the discharge pipes 11 and 12, and enters the waste liquid tank 35. It will be collected. (c) After that, the vacuum pump 37 continues to suction the inside of the viscometer for a while, and the inside is dried by the air flowing in from the injection port 2 and the heat of the constant temperature bath 20. When the drying is completed, the vacuum bomb 37
Stop. As described above, place the sample in the viscometer into each blend sphere 9. lO
The sample, which loses its fluidity at room temperature, is removed from the discharge pipe 1 outside the thermostatic chamber 20 by collecting the sample and mixing it with a cleaning solvent.
1.12 It is possible to prevent it from clumping inside and to perform sufficient cleaning. Additionally, the time required for the cleaning process can be shortened, and the sample inside the viscometer can be sufficiently removed with approximately three minutes of cleaning. Furthermore, since the series of operations from sample collection to measurement, washing, and drying can be performed with the viscometer 1 attached to the thermostatic bath 20, these series of operations can be facilitated. Next, a second embodiment of the invention of a liquid kinematic viscosity measuring device will be described based on the drawings. Figure 3 is a front cross-sectional view showing a second embodiment in which the kinematic viscosity of the vessel can be measured automatically. Note that the same parts as in FIG. 1 shown above are given the same reference numerals, and detailed explanations of those parts will be omitted. In the apparatus of this embodiment, photoelectric converters 51, 52, 53 are provided at the bottom and top of each measuring bulb 7, 8 for detecting the liquid level of the sample passing through the measuring bulb 7.8.
A time display unit 54 is connected to these photoelectric converters so that the time of passage of the sample can be measured. Further, an injection pipe 56 from a cleaning liquid container 55 is inserted into the injection port 2, and the cleaning liquid can be injected through an injection pump 57 provided in the middle of the injection pipe. The operation for measuring the kinematic viscosity of a liquid sample is performed by the sequence control unit 5.
This was carried out in accordance with the instructions of No. 8. Ru. The sequence control unit 58 includes electromagnetic valves 59, 60, 61 and a pump 57 necessary for measuring the viscosity of the vessel and cleaning and drying the viscometer.
.. 62 operating programs are input. According to the automatic dynamic viscosity measurement device described above, a series of steps in the dynamic viscosity measurement method, from the start of measurement to measurement, washing, sample discharge, and drying, can be automatically performed as follows. In other words, after the sample is injected and the sample in the sample reservoir 3 reaches a constant temperature, the solenoid valves 59, 60, 61 and the vacuum pump 62 are controlled by commands from the sequence control unit 58 to inject the sample into the capillary tube 6. suction to the specified position. ■ Then, the inside of the viscometer 1 is opened to atmospheric pressure and the sample is made to flow gradually using the siphon principle, and the liquid level of the sample passing through the measuring ball 7.8 is detected by photoelectric converters 51, 52, Based on the detection signal, the time required for the sample to pass through the measuring spheres 7 and 8 is displayed on the time display section 54. The kinematic viscosity of the sample can be calculated by multiplying the displayed time by the viscometer constant calibrated in advance. ■ After completing the above operations, clean the inside of viscometer 1. (B) First, close the IT magnetic valve 61 and 't'
Open the ttm valves 59 and 60 and aspirate the sample with the vacuum pump 62. After passing through the measuring sphere 8, the sample is accommodated in the first blending sphere 9 and remains therein. On the other hand, the sample accumulated in the surplus sample reservoir 4 is accommodated in the second blending sphere IO and remains therein. (o) Next, operate the injection bomb 57 to remove the cleaning solvent (
xylene, toluene, or a mixture of these with acetone in equal amounts, a chlorinated mechanical solvent, etc.) is fed into the viscometer 1. The cleaning solvent reaches each blending bulb 9, 10 while dissolving the sample adhering to the inside of the viscometer, and mixes vigorously with the sample within each blending bulb 9, 10. This mixture of sample and cleaning solvent then exits each blending bulb 9.10 and is collected through a discharge pipe 11.12 into a waste tank (not shown in Figure 3). When the sample is discharged and washed in this manner, the injection pump 57 is stopped. (c) Leave the vacuum pump 62 in operation and suck air into the viscometer 1 from injection day 2. Then,
The inside of the viscometer 1 is dried by this flowing air and the heat inside the constant temperature bath 20. When drying is completed, vacuum pump 6
2 and the solenoid valves 59 and 60 are stopped, and the series of viscosity measurement operations is completed. [Effects of the Invention] As explained above, according to the method for measuring liquid kinematic viscosity of the present invention, the sample and cleaning solvent are mixed and discharged in a large-volume room, so fluidity is maintained even at room temperature. This has the effect of ensuring reliable discharge and rapid cleaning. Further, according to the liquid viscosity measuring device of the present invention, the above-mentioned measuring method can be carried out efficiently, and the sample can be reliably discharged and the cleaning time can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は液体の動粘度測定装置の発明に係る第一実施例
を示す正面断面図,第2図は同装置の粘度計を拡大して
示す正面断面図、第3図は同発明に係る第二実施例を示
す正面図である.l:粘度計     2:注入口 3:試料溜     4:余剰試料溜 5:逆U字管    6:毛細管 7.8:測定球 9:第一のブレンド球 lO:第二のブレンド球 11.12+排出管 20:恒温槽 30:バキュームコントローラ 35:廃液タンク37:バキュームポンプ51.52,
53:光電変換器 54:時間表示部 58:シーケンス制御部
Fig. 1 is a front cross-sectional view showing a first embodiment of the invention of a liquid kinematic viscosity measuring device, Fig. 2 is a front cross-sectional view showing an enlarged viscometer of the same device, and Fig. 3 is a front cross-sectional view showing a viscometer of the device according to the invention. FIG. 7 is a front view showing a second embodiment. 1: Viscometer 2: Inlet 3: Sample reservoir 4: Surplus sample reservoir 5: Inverted U-shaped tube 6: Capillary tube 7.8: Measuring bulb 9: First blending bulb 10: Second blending bulb 11.12 + discharge Pipe 20: Constant temperature bath 30: Vacuum controller 35: Waste liquid tank 37: Vacuum pump 51.52,
53: Photoelectric converter 54: Time display section 58: Sequence control section

Claims (2)

【特許請求の範囲】[Claims] (1)試料溜から測定球へと試料を送り、続いて当該試
料が前記測定球を通過する時間を測定し、その後粘度計
内部の試料が排出管に至る前に当該試料を大容積の部屋
に収容し、かつ当該部屋に洗浄用溶剤を入れて試料と混
合し、この混合物を排出管を通して排出することを特徴
とした液体の動粘度測定方法。
(1) Send the sample from the sample reservoir to the measurement bulb, then measure the time it takes for the sample to pass through the measurement bulb, and then transfer the sample inside the viscometer to a large-volume chamber before it reaches the discharge pipe. 1. A method for measuring the kinematic viscosity of a liquid, the method comprising: storing a cleaning solvent in the chamber, mixing it with a sample, and discharging this mixture through a discharge pipe.
(2)試料溜から送られてきた試料が測定球を通過する
時間により液体試料の動粘度を測定する装置において、
前記測定球と排出管との間に、それぞれ排出試料の容量
より大きな容積を有するブレンド球を設けたことを特徴
とする液体の動粘度測定装置。
(2) In a device that measures the kinematic viscosity of a liquid sample based on the time it takes for the sample sent from the sample reservoir to pass through a measuring sphere,
A kinematic viscosity measuring device for a liquid, characterized in that blending bulbs each having a volume larger than the capacity of the discharged sample are provided between the measurement bulb and the discharge pipe.
JP16091389A 1989-06-26 1989-06-26 Method and apparatus for measuring kinematic viscosity of liquid Expired - Lifetime JPH061239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16091389A JPH061239B2 (en) 1989-06-26 1989-06-26 Method and apparatus for measuring kinematic viscosity of liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16091389A JPH061239B2 (en) 1989-06-26 1989-06-26 Method and apparatus for measuring kinematic viscosity of liquid

Publications (2)

Publication Number Publication Date
JPH0326940A true JPH0326940A (en) 1991-02-05
JPH061239B2 JPH061239B2 (en) 1994-01-05

Family

ID=15725029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16091389A Expired - Lifetime JPH061239B2 (en) 1989-06-26 1989-06-26 Method and apparatus for measuring kinematic viscosity of liquid

Country Status (1)

Country Link
JP (1) JPH061239B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107173A (en) * 1991-05-07 1993-04-27 Skc Ltd Automatic viscosity measurement device
WO2013180245A1 (en) * 2012-05-31 2013-12-05 天竜精機株式会社 Viscometer
CN108645753A (en) * 2018-06-23 2018-10-12 华电电力科学研究院有限公司 A kind of device and assay method that power equipment is automatically measured with oily kinematic viscosity and viscosity index (VI)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107173A (en) * 1991-05-07 1993-04-27 Skc Ltd Automatic viscosity measurement device
WO2013180245A1 (en) * 2012-05-31 2013-12-05 天竜精機株式会社 Viscometer
JPWO2013180245A1 (en) * 2012-05-31 2016-01-21 天竜精機株式会社 Viscometer
CN108645753A (en) * 2018-06-23 2018-10-12 华电电力科学研究院有限公司 A kind of device and assay method that power equipment is automatically measured with oily kinematic viscosity and viscosity index (VI)
CN108645753B (en) * 2018-06-23 2024-03-22 华电电力科学研究院有限公司 Device and method for fully automatically measuring kinematic viscosity and viscosity index of oil for power equipment

Also Published As

Publication number Publication date
JPH061239B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
JPH0718785B2 (en) Flow cell device
CN107271707A (en) The sampling device of a kind of sampler and the use device, detecting system
CN109342268B (en) Quick full-automatic kinematic viscosity measuring device
WO2013004024A1 (en) Automated platelet analyser and analytical method thereof
SE8001913L (en) DEVICE FOR TRANSFER OF DOSED QUANTITIES OF REAGENT LIQUID TO TESTS BY AN ANALYZER
JPH0326940A (en) Method and instrument for measuring kinematic viscosity of liquid
JPS589050A (en) Method and apparatus for measuring content of endotoxin
CN208313682U (en) A kind of volume fixing device for automatic dilution
CN206638641U (en) A kind of titration system
US4206650A (en) Device for introducing samples into fluid analyzer
JPS61500928A (en) Device for measuring blood sedimentation rate
CN201133904Y (en) Negative-pressure liquid phase chromatograph
US3163699A (en) Sampling apparatus for flame photometer
CN107449930A (en) A kind of liquid keeps sample sampler
CN207742210U (en) A kind of sampler and the sampling device using the device, detecting system
CN209098240U (en) Oils auto extractive system and analysis system in a kind of water
CN206057012U (en) A kind of automatic liquid-sampling device
CN203376332U (en) Full-automatic in vitro detection equipment for measuring HCY (Homocysteine) by using colorimetric method
CN220986427U (en) White sugar sulfur dioxide remains detection device
CN201917553U (en) Online automatic detection device for sulphitation strength in sugarhouse
JP3837350B2 (en) Sampling device
CN206671205U (en) A kind of chemicals dosing plant of online water analysis instrument
US3926526A (en) Flow cell
CA1043128A (en) Liquid proportioning system in a liquid sample analyzer
CN103336137B (en) A kind of full-automatic vitro detection Apparatus and method for adopting colourimetry to measure HCY