JPH03268248A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH03268248A
JPH03268248A JP6595990A JP6595990A JPH03268248A JP H03268248 A JPH03268248 A JP H03268248A JP 6595990 A JP6595990 A JP 6595990A JP 6595990 A JP6595990 A JP 6595990A JP H03268248 A JPH03268248 A JP H03268248A
Authority
JP
Japan
Prior art keywords
film
magneto
recording medium
optical recording
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6595990A
Other languages
Japanese (ja)
Other versions
JPH0828002B2 (en
Inventor
Yoshio Tawara
俵 好夫
Katsushi Tokunaga
徳永 勝志
Yoshimasa Shimizu
清水 佳昌
Tadao Nomura
忠雄 野村
Masateru Takaya
高屋 征輝
Yoshihiro Kubota
芳宏 久保田
Shu Kashida
周 樫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP6595990A priority Critical patent/JPH0828002B2/en
Priority to DE69016171T priority patent/DE69016171T2/en
Priority to EP90120313A priority patent/EP0427982B1/en
Priority to US07/601,659 priority patent/US5118573A/en
Publication of JPH03268248A publication Critical patent/JPH03268248A/en
Publication of JPH0828002B2 publication Critical patent/JPH0828002B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To increase the Kerr rotation angle and to improve C/N and recording density by using an amorphous material comprising B and containing H to form a dielectric layer on a transparent substrate. CONSTITUTION:The magneto-optical recording medium consists of a transparent substrate 1, dielectric film 2, magnetic film 3, dielectric film 4 of the same quality as the film 2, and reflecting film 5 successively laminated. The film 2 and/or film 4 is made of an amorphous material comprising B and containing H. Since the material of this film contains H, an amorphous state can be easily obtained, and the film thus formed has a uniform composition and surface smoothness compared to a material without containing H. Moreover, with H incorporated, the film is hardly peeled and has excellent mechanical strength and durability. The refractive index of the film is >=2.0 which gives large enhancement effect and good transmittance for light.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は光磁気記録媒体、特には化学的安定性にすぐれ
ており、カー回転角が大きく、光透過性がすぐれていて
C/Nもよく、記録密度の向上をはかることができる光
磁気記録媒体に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a magneto-optical recording medium, particularly a magneto-optical recording medium which has excellent chemical stability, a large Kerr rotation angle, excellent optical transparency and a low C/N. This invention generally relates to magneto-optical recording media that can improve recording density.

[従来の技術] 近年、情報化社会の進展に伴なって書換可能な光磁気メ
モリが注目を集めており、この光磁気メモリ用磁性膜と
してはTbFeCoなどの希土類元素−遷移金属元素薄
膜が用いられているが、このものは得られるカー回転角
があまり大きくないためにこれには再生信号のC/Nが
十分でないという欠点がある。
[Prior Art] In recent years, with the advancement of the information society, rewritable magneto-optical memory has attracted attention, and rare earth element-transition metal element thin films such as TbFeCo are used as magnetic films for this magneto-optical memory. However, this method has the disadvantage that the obtained Kerr rotation angle is not very large, so that the C/N of the reproduced signal is not sufficient.

[発明が解決しようとする課題] そのため、この種の光磁気記録媒体については従来公知
の非晶質磁性体膜の表面にSin、 SiN。
[Problems to be Solved by the Invention] Therefore, in this type of magneto-optical recording medium, the surface of a conventionally known amorphous magnetic film is coated with Sin or SiN.

AANなどの誘電体層(膜)を形成し、その膜厚をλ/
4n(λはレーザー波長、nは屈折率)とすることによ
って見かけのカー回転角を増大させ、C/Nを大きくす
る(エンハンス効果)ことが行なわれているが、これに
よる特性向上はまだ不十分であり、この誘電体層につい
てはさらに高屈折率で透明性のよいものが求められてい
る。
A dielectric layer (film) such as AAN is formed, and its thickness is set to λ/
4n (λ is the laser wavelength, n is the refractive index) to increase the apparent Kerr rotation angle and increase the C/N (enhancement effect), but the improvement in characteristics by this is still unresolved. This is sufficient, and this dielectric layer is required to have an even higher refractive index and better transparency.

また、ここに使用されている非晶質磁性体膜は希土類金
属を含んでいるが、この希土類金属が極めて酸化され易
いものであるために、これには高温高湿下で簡単に磁気
特性が劣化するという難点があり、上記の誘電体層に保
護膜としての役割を負わせるという提案もあるが、Si
Oなとの酸化物では逆に希土類元素がStで還元されて
しまうためにその効果は十分なものではないし、SiN
、AfNなとの窒化物には、このような反応性が小さい
ので耐蝕性向上という目的には適しているものの、これ
には樹脂基板などに成膜するときにクランクが生し易く
、機械的強度に問題がある。
Additionally, the amorphous magnetic film used here contains rare earth metals, but since these rare earth metals are extremely easily oxidized, their magnetic properties can easily be lost under high temperature and high humidity conditions. There is a problem that it deteriorates, and there is a proposal to give the above dielectric layer the role of a protective film, but Si
On the other hand, with oxides such as O, the rare earth elements are reduced with St, so the effect is not sufficient, and with SiN
Although nitrides such as AfN have low reactivity and are suitable for the purpose of improving corrosion resistance, they tend to produce cranks when deposited on resin substrates and are mechanically unstable. There is a problem with strength.

なお、この誘電体膜についてはBNを使用することも提
案されており[M、 Asano et al、 IE
EETrans、 Magn、 MAG−23,262
0,(1987)参照]、これは屈折率が大きく、透明
であり、誘電体膜としての特性もすぐれているが、これ
にはスパッタリング法で成膜しても完全なアモルファス
状態で形成することが難しく、組成が不均一で表面に凹
凸が生じてしまい、耐久性の点に問題がある。
Note that it has also been proposed to use BN for this dielectric film [M, Asano et al, IE
EETrans, Magn, MAG-23,262
0, (1987)], this film has a high refractive index, is transparent, and has excellent properties as a dielectric film, but even if it is formed by sputtering, it cannot be formed in a completely amorphous state. The composition is non-uniform, causing unevenness on the surface, and there are problems with durability.

[課題を解決するための手段] 本発明はこのような課題を解決することのできる光磁気
記録媒体に関するもので、これは光の入射側に置かれる
透明基板上に、誘電体層、磁性膜、反射膜を設けてなる
光磁気記録媒体において、誘電体層がHを含むBからな
る非晶質材料から作られることを特徴とするものである
[Means for Solving the Problems] The present invention relates to a magneto-optical recording medium that can solve the above problems, and includes a dielectric layer and a magnetic film on a transparent substrate placed on the light incident side. , a magneto-optical recording medium provided with a reflective film, characterized in that the dielectric layer is made of an amorphous material made of B containing H.

すなわち、本発明者らはカー回転角が大きく、光透過性
がすぐれていてC/Nもよく、記録密度も向上した光磁
気記録媒体を開発すべく種々検討した結果、基体上に設
けられるお電体層をHを含むBからなる非晶質材料(以
下アモルファスBAH膜材料と略記する)で作ると、l
)この膜材料がHを含んでいるので、Hを含まないB膜
にくらべてアモルファスになり易く、組成が均一で表面
の平滑な膜を得ることができる、2)膜材料がHを含ん
でいるので従来の保護膜にくらべて剥離し難く、この膜
は機械的強度、耐久性にすぐれている、3)従来用いら
れてきたSin、 SiN、 八i’Nなどが屈折率1
.4〜1.8であるのに比べて、このアモルファスBA
H膜は屈折率が2.0以上であるために、大きなエンハ
ンス効果をもっており、これはまた光透過性がよく、特
に可視〜赤外領域で極めて高い透過性を有するので、C
/Nの大きな光磁気記録媒体を与える、4)アモルファ
スB・H[は熱伝導性が小さいために照射するレーザー
の熱拡散が小さく、記録ビット径の広がりを抑えること
ができるので、記録密度の向上をはかることができる、
という効果の得られることを見出し、このアモルファス
BAH膜の形成方法などについての研究を行なって本発
明を完成させた。
That is, as a result of various studies aimed at developing a magneto-optical recording medium that has a large Kerr rotation angle, excellent optical transparency, good C/N ratio, and improved recording density, the present inventors have developed a magneto-optical recording medium that can be provided on a substrate. When the electric layer is made of an amorphous material made of B containing H (hereinafter abbreviated as amorphous BAH film material), l
2) Since this film material contains H, it is easier to become amorphous than the B film which does not contain H, and a film with a uniform composition and a smooth surface can be obtained.2) This film material contains H. 3) Traditionally used materials such as Sin, SiN, and 8i'N have a refractive index of 1.
.. 4 to 1.8, this amorphous BA
Since the H film has a refractive index of 2.0 or more, it has a great enhancement effect, and it also has good light transmittance, especially in the visible to infrared region, so it
4) Amorphous BH[ has low thermal conductivity, so the thermal diffusion of the irradiated laser is small, and the expansion of the recording bit diameter can be suppressed, so the recording density can be reduced. can improve,
They discovered that the above effect can be obtained, and conducted research on the method of forming this amorphous BAH film, and completed the present invention.

以下にこれをさらに詳述する。This will be explained in further detail below.

[作 用コ 本発明の光磁気記録媒体は透明基板上に誘電体層、磁性
膜、反射膜を設けてなる光磁気記録媒体における誘電体
層をアモルファスBAH膜としたものである。
[Function] The magneto-optical recording medium of the present invention is a magneto-optical recording medium in which a dielectric layer, a magnetic film, and a reflective film are provided on a transparent substrate, in which the dielectric layer is an amorphous BAH film.

この光磁気記録媒体の構成は公知のものであり、これは
例えば第1図に示したように、トラッキング用ガイドグ
ループが形成されたガラス、石英ガラス、ポリカーボネ
ート樹脂、ポリメチルメタクリレート樹脂などからなる
透明基板1の上に誘電体[2、磁性膜3、誘電体膜2と
同質の誘電体膜4および反射膜5を順次積層されたもの
であり、これは第2図に示したように透明基板7の上に
誘電体膜8、磁性膜9、誘電体膜10を順次積層した3
層構造のものであってもよく、これらにおいてはこの透
明基板1.7の光の入射側から光6.11が入射すると
光6は反射膜5で反射され、磁性膜の膜厚を厚くした第
2図のものでは入射光11は磁性II! 9で反射され
る。
The structure of this magneto-optical recording medium is known, and as shown in FIG. A dielectric film 2, a magnetic film 3, a dielectric film 4 of the same quality as the dielectric film 2, and a reflective film 5 are sequentially laminated on a substrate 1, and as shown in FIG. A dielectric film 8, a magnetic film 9, and a dielectric film 10 are sequentially laminated on 7.
It may also have a layered structure, and in these, when light 6.11 enters from the light incident side of the transparent substrate 1.7, the light 6 is reflected by the reflective film 5, and the thickness of the magnetic film is increased. In the one in FIG. 2, the incident light 11 is magnetic II! It is reflected at 9.

本発明の光磁気記録媒体ではこの誘電体膜2゜8および
/または4.lOが前記したアモルファスBAH膜で形
成されるのであるが、この誘電体層の形成は三塩化はう
素(BCA’3)、三フッ化はう素(BF3)のような
ハロゲン化はう素やジボラン(32H8)のような水素
化はう素からなるほう素源を反応装置中に導入し、化学
気相蒸着法(以下CVD法と略記する。)で行えばよい
が、このCVD法については真空装置内に反応ガスを導
入し、プラズマ励起してこれを分解させ、基板上に膜を
形成させるプラズマCVD法とすれば400℃以下の低
温下でも成膜が可能となるので、耐熱性で問題となる樹
脂基板の場合に有利性が与えられる。なお、この場合上
記したほう素源が水素原子を有しないものである場合に
はN2ガスまたは含水素ガスを第4成分として併用する
必要があるが、原料ガスの人手性および取扱いの容易さ
からこの原料ガスはBJaとすることが好ましい。
In the magneto-optical recording medium of the present invention, the dielectric film 2.8 and/or 4.8. The dielectric layer is formed using boron halides such as boron trichloride (BCA'3) and boron trifluoride (BF3). A boron source consisting of hydrogenated boron, such as diborane (32H8) or diborane (32H8), may be introduced into the reactor and the chemical vapor deposition method (hereinafter abbreviated as CVD method) may be used. If we use the plasma CVD method, which introduces a reactive gas into a vacuum device and excites the plasma to decompose it and form a film on the substrate, it is possible to form a film even at a low temperature of 400°C or less, so it is heat resistant. This provides an advantage in the case of resin substrates, which are problematic in the case of plastic substrates. In this case, if the above-mentioned boron source does not have hydrogen atoms, it is necessary to use N2 gas or hydrogen-containing gas as the fourth component, but from the viewpoint of manpower and ease of handling of the raw material gas. This source gas is preferably BJa.

また、この誘電体膜の形成はスパッタリング法で行なう
こともでき、この場合にはBをターゲットとし、真空装
置内をAr−82の混合ガス雰囲気とし、これに高周波
を印加して反応スパッタリングによって基板に誘電体膜
を形成させればよい。
The dielectric film can also be formed by a sputtering method. In this case, B is used as a target, a mixed gas atmosphere of Ar-82 is created in the vacuum apparatus, and a high frequency is applied to the substrate by reactive sputtering. A dielectric film may be formed on the substrate.

このようにして得た誘電体膜はアモルファスBAHから
なる厚さ500〜1,000人のものとされるが、この
ものは屈折率が1.75未溝では媒体表面での光の多重
反射によるθにの見かけ上の増大(エンハンス効果)が
期待できず、逆に2.30より大きくしようとすると膜
質が低下し、機械的強度や耐久性に悪影響が及ぼされる
ので、屈折率(n)が1.75〜2.30のものとする
ことが望ましい。この組成は重量比でほう素元素100
に対して水素原子が2〜30の範囲のものとすることが
好ましく、これは成膜条件によって各元素の組成比を調
節して成膜させればよい。
The dielectric film thus obtained is made of amorphous BAH and is said to be 500 to 1,000 thick, but this film has a refractive index of 1.75 and is due to multiple reflections of light on the surface of the medium. An apparent increase in θ (enhancement effect) cannot be expected, and on the other hand, if you try to make it larger than 2.30, the film quality will deteriorate and mechanical strength and durability will be adversely affected. It is desirable to set it as 1.75-2.30. This composition has a weight ratio of 100 boron elements.
It is preferable that the number of hydrogen atoms is in the range of 2 to 30, and this can be done by adjusting the composition ratio of each element depending on the film forming conditions.

なお、本発明の光磁気記録媒体は基体上に成膜されたこ
の誘電体層の上に磁性膜と反射膜を形成するのであるが
、これらはいずれも公知のものでよく、この磁性膜は希
土類元素−遷移金属元素膜からなるもの、したがってT
b、 Dy、 Gd、 Ndなどの希土類元素とFa、
 Co、 Niなどの遷移金属元素からなる、例えばT
bFe、 TbFeCo、 GdTbFe、 GdDy
FeCoなどからなる非晶質金属膜を第1図の構造のも
のでは200〜500人、第2図の構造のものでは80
0〜1.000人程度の厚さでスパッタリング法で形成
すればよく、この反射層はAJ、 Cu、 Au、 A
gなどの金属膜を厚さ200〜1,000人程度で設け
ればよい。
In addition, in the magneto-optical recording medium of the present invention, a magnetic film and a reflective film are formed on the dielectric layer formed on the substrate, and both of these may be of known type. consisting of a rare earth element-transition metal element film, therefore T
b, rare earth elements such as Dy, Gd, and Nd and Fa,
Made of transition metal elements such as Co and Ni, for example T
bFe, TbFeCo, GdTbFe, GdDy
An amorphous metal film made of FeCo or the like with the structure shown in Figure 1 requires 200 to 500 people, and with the structure shown in Figure 2 it requires 80 people.
It may be formed by sputtering to a thickness of about 0 to 1,000 mm, and this reflective layer can be made of AJ, Cu, Au, A.
It is sufficient to provide a metal film such as G with a thickness of about 200 to 1,000.

[実施例コ つぎに本発明の実施例、比較例をあげる。[Example code] Next, examples of the present invention and comparative examples will be given.

実施例1〜3.比較例1〜2 プラズマCVD装置にガラス基板をセットして100℃
に加熱し、装置内に原料ガスとしての82H,とキャリ
アガスとしてのN2を導入し、装置内の圧力を2.5ト
ールに保持し200Wの高周波を印加してプラズマCV
D法で基板上にアモルファスBH膜を成膜させ、この膜
の組成をRBS−NFSで測定すると共に、この膜の屈
折率、透過率を測定したところ第1表に示したとおりの
結果が得られた(実施例1)。
Examples 1-3. Comparative Examples 1-2 A glass substrate was set in a plasma CVD device and heated to 100°C.
82H as a source gas and N2 as a carrier gas are introduced into the device, the pressure inside the device is maintained at 2.5 Torr, and a high frequency of 200 W is applied to generate plasma CV.
An amorphous BH film was formed on a substrate using the D method, and the composition of this film was measured using RBS-NFS, and the refractive index and transmittance of this film were measured, and the results shown in Table 1 were obtained. (Example 1).

また、このアモルファスBAH膜の形成をスパッタリン
グ法で行なうこととし、真空装置内にガラス基板とター
ゲットとしてのBを入れ、装置内をArガス80%、N
2ガス20%からなるガス雰囲気とし、圧力を10トー
ルとしてここに出力300 Wの高周波を印加してスパ
ッタリングによフて基板上にアモルファスBAH膜を形
成させ、この膜の組成、屈折率および透過率をしらべた
ところ、第1表に併記したとおりの結果が得られた(実
施例2.3)。比較のためにスパッタリング法における
ターゲットをBNまたはSiOとし、導入ガスをA「−
N2/15%または計としたところ、得られた誘電膜の
屈折率、透過率は第1表に併記したように実施例のもの
にくらべて劣るものであった。
In addition, we decided to form this amorphous BAH film by the sputtering method, and put a glass substrate and B as a target in a vacuum device, and the inside of the device was filled with 80% Ar gas and N gas.
A gas atmosphere consisting of 20% of two gases was created, the pressure was set to 10 torr, and a high frequency wave with an output of 300 W was applied to form an amorphous BAH film on the substrate by sputtering.The composition, refractive index, and transmission of this film were determined. When the ratio was examined, the results shown in Table 1 were obtained (Example 2.3). For comparison, the target in the sputtering method was BN or SiO, and the introduced gas was A'-
When calculated as N2/15% or total, the refractive index and transmittance of the obtained dielectric film were inferior to those of the examples as shown in Table 1.

第1表 つぎにガラス基板上にアルゴンガス圧7mトール、高周
波出力200Wという条件でアモルファスB:H誘電体
膜、TbFe磁性膜、アモルファスB;H誘電体膜、ア
ルミニウム反射膜をスパッタリング法で形成して光磁気
記録媒体を作り、この誘電体膜の膜厚を変化させたとぎ
の波長B33nmのレーザーに対するカー回転角の変化
をしらべたところ、第3図に示したとおりの結果が得ら
れ、このものは膜厚dがd=λ/ 4 nとなる80n
m付近でθkが最大値2.01となり、十分なエンハン
ス効果を示した。またこのものの耐久性をしらべるため
に85℃、85%RHの条件下での保持時間と保磁力と
の関係をしらべたところ、第4図に示したとおりの結果
が得られた。
Table 1 Next, an amorphous B:H dielectric film, a TbFe magnetic film, an amorphous B;H dielectric film, and an aluminum reflective film were formed on a glass substrate by sputtering under the conditions of an argon gas pressure of 7 m Torr and a high frequency output of 200 W. When we created a magneto-optical recording medium using the above dielectric film and examined the changes in the Kerr rotation angle for a laser beam with a wavelength of B33 nm when the thickness of this dielectric film was changed, we obtained the results shown in Figure 3. The film thickness d is 80n, where d=λ/4n.
θk reached a maximum value of 2.01 near m, indicating a sufficient enhancement effect. In order to examine the durability of this product, we examined the relationship between the holding time and coercive force under conditions of 85° C. and 85% RH, and the results shown in FIG. 4 were obtained.

なお、この実験については比較のためにこの誘導体層を
BNまたはSiOで形成したものについても行なったと
ころ、第3図、第4図に併記したとおりの結果が得られ
、実施例1のものは上記したように十分なエンハンス効
果のあることが示されているが、BN、 SiOではこ
れに劣り、さらに実施例1のものは500時間経過後も
保磁力が殆んど低下しないのに対し、BN、 SiOで
はこれがかなり低下することが確認された。
For comparison, this experiment was also conducted using a dielectric layer made of BN or SiO, and the results shown in FIGS. 3 and 4 were obtained. As mentioned above, it has been shown that there is a sufficient enhancement effect, but BN and SiO are inferior to this, and furthermore, the coercive force of Example 1 hardly decreases even after 500 hours have passed. It was confirmed that this decreases considerably for BN and SiO.

[発明の効果] 本発明は光磁気記録媒体に関するもので、これは前記し
たように基板に誘電体膜、磁性膜、反射1 2 膜を設けた光磁気記録媒体において、この誘電体をHを
含むBとからなる非晶質材料とするというものであり、
これによればこの誘電体膜が屈折率1.75〜2.30
のものとなるので大きなエンハンス効果をもつものとな
り、カー回転角の増大がはかれるし、これはまた光透過
性がすぐれているのでC/Nが増大されるほか、この非
晶質膜はHを含んでいるので膜面が平滑なものとなるし
、これはまた機械的強度、耐久性がすぐれたものとなり
、熱伝導度が小さいのでレーザーの熱拡散が小さくなっ
て記録ビットの径の広がりが抑えられるので記録密度が
向上されるという有利性が与えられる。
[Effects of the Invention] The present invention relates to a magneto-optical recording medium in which a dielectric film, a magnetic film, and a reflective 1 2 film are provided on a substrate as described above. It is an amorphous material consisting of B containing
According to this, this dielectric film has a refractive index of 1.75 to 2.30.
This amorphous film has a large enhancement effect, increasing the Kerr rotation angle, and has excellent light transmittance, which increases C/N. This makes the film surface smooth, and it also has excellent mechanical strength and durability, and its low thermal conductivity reduces the thermal diffusion of the laser and increases the diameter of the recording bit. This provides an advantage in that the recording density is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は光磁気記録媒体の構成図、第3図は実
施例、比較例における誘電体膜の膜厚とカー回転角との
関係グラフ、′i44図は実施例、比較例における保持
時間と保磁力との関係グラフを示したものである。 図中の符号: 1.7・・・透明基板 2.4,8.10・・・誘電体膜(層)9・・・磁性膜 5・・・反射膜
Figures 1 and 2 are configuration diagrams of magneto-optical recording media, Figure 3 is a graph of the relationship between dielectric film thickness and Kerr rotation angle in Examples and Comparative Examples, and Figure 'i44 is a diagram of Examples and Comparative Examples. This is a graph showing the relationship between retention time and coercive force. Codes in the figure: 1.7...Transparent substrate 2.4, 8.10...Dielectric film (layer) 9...Magnetic film 5...Reflection film

Claims (1)

【特許請求の範囲】 1、光の入射側に置かれる透明基板上に、誘電体層、磁
性膜、反射膜を設けて成る光磁気記録媒体において、誘
電体層がHを含むBからなる非晶質材料からなることを
特徴とする光磁気記録媒体。 2、非晶質材料が重量組成比でB:Hが100:2〜3
0からなるものとされる請求項1に記載の光磁気記録媒
体。 3、非晶質材料が屈折率(n)=1.75〜2.30の
ものとされる請求項1に記載の光磁気記録媒体。 4、誘電体層がプラズマCVD法またはスパッタリング
法によって形成される請求項1に記載の光磁気記録媒体
。 5、誘電体層がB_2H_6を原料とし、H_2をキャ
リアガスとするプラズマCVD法で形成される請求項1
に記載の光磁気記録媒体。 6、誘電体層がBをターゲットとし、Ar−H_2混合
ガス雰囲気下でのスパッタリング法によって形成される
請求項1に記載の光磁気記録媒体。
[Claims] 1. A magneto-optical recording medium comprising a dielectric layer, a magnetic film, and a reflective film on a transparent substrate placed on the light incident side, in which the dielectric layer is made of B containing H. A magneto-optical recording medium characterized by being made of a crystalline material. 2. The amorphous material has a weight composition ratio of B:H of 100:2 to 3.
2. The magneto-optical recording medium according to claim 1, wherein the magneto-optical recording medium consists of 0. 3. The magneto-optical recording medium according to claim 1, wherein the amorphous material has a refractive index (n) of 1.75 to 2.30. 4. The magneto-optical recording medium according to claim 1, wherein the dielectric layer is formed by a plasma CVD method or a sputtering method. 5. Claim 1, wherein the dielectric layer is formed by a plasma CVD method using B_2H_6 as a raw material and H_2 as a carrier gas.
The magneto-optical recording medium described in . 6. The magneto-optical recording medium according to claim 1, wherein the dielectric layer is formed by sputtering using B as a target in an Ar-H_2 mixed gas atmosphere.
JP6595990A 1989-10-26 1990-03-16 Magneto-optical recording medium Expired - Lifetime JPH0828002B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6595990A JPH0828002B2 (en) 1990-03-16 1990-03-16 Magneto-optical recording medium
DE69016171T DE69016171T2 (en) 1989-10-26 1990-10-23 Magneto-optical recording medium.
EP90120313A EP0427982B1 (en) 1989-10-26 1990-10-23 Magneto-optical recording medium
US07/601,659 US5118573A (en) 1989-10-26 1990-10-25 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6595990A JPH0828002B2 (en) 1990-03-16 1990-03-16 Magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPH03268248A true JPH03268248A (en) 1991-11-28
JPH0828002B2 JPH0828002B2 (en) 1996-03-21

Family

ID=13302034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6595990A Expired - Lifetime JPH0828002B2 (en) 1989-10-26 1990-03-16 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH0828002B2 (en)

Also Published As

Publication number Publication date
JPH0828002B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
US5118573A (en) Magneto-optical recording medium
JPH03268248A (en) Magneto-optical recording medium
JPH01173455A (en) Magneto-optical recording medium
JPH03187039A (en) Magneto-optical recording medium
US5091267A (en) Magneto-optical recording medium and process for production of the same
JPH0469833A (en) Magneto-optical recording medium
JPS62279542A (en) Magneto-optical recording medium
JPH03141057A (en) Magneto-optical recording medium
JPH03141058A (en) Magneto-optical recording medium
JP2527762B2 (en) Magneto-optical recording medium
JPH0469834A (en) Magneto-optical recording medium
JPS60246041A (en) Photo thermomagnetic recording medium
JPH03141059A (en) Magneto-optical recording medium
JPH0461045A (en) Magneto-optical recording medium
JPH0469835A (en) Magneto-optical recording medium
JPH01204243A (en) Magneto-optical recording medium
JPS6371959A (en) Production of magneto-optical recording medium
JPH01171142A (en) Magneto-optical recording medium
JPH04113533A (en) Magneto-optical recording medium
JPH0476841A (en) Magneto-optical recording medium
JP2528184B2 (en) Magneto-optical recording medium
JPH0469832A (en) Magneto-optical recording medium
JPH04178940A (en) Optical recording medium
JPH02128346A (en) Magneto-optical disk
JPS60125950A (en) Optical information recording medium and its production