JPH0326781A - Fluorescent substance - Google Patents

Fluorescent substance

Info

Publication number
JPH0326781A
JPH0326781A JP16119989A JP16119989A JPH0326781A JP H0326781 A JPH0326781 A JP H0326781A JP 16119989 A JP16119989 A JP 16119989A JP 16119989 A JP16119989 A JP 16119989A JP H0326781 A JPH0326781 A JP H0326781A
Authority
JP
Japan
Prior art keywords
phosphor
particles
conductive
fine particles
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16119989A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kimura
和宏 木村
Katsunori Uchimura
内村 勝典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP16119989A priority Critical patent/JPH0326781A/en
Publication of JPH0326781A publication Critical patent/JPH0326781A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To obtain a fluorescent substance useful for cathode ray tube, display tube, etc., having excellent electrical conductivity and emission luminance by coating the surface of fluorescent substance with a complex electroconductive substance prepared by sticking electroconductive fine particles to the surface of electroconductive large particles. CONSTITUTION:The surface of fluorescent substance particles is coated with preferably 0.1-15wt.% complex electroconductive particles prepared by sticking (A) electroconductive fine particles 1 having preferably 0.0001-0.1mum average particle diameter and containing one or more of Al, Au, Ag and Cu to (B) the surface of electroconductive large particles 2 having preferably 0.01-2mum average particle diameter and containing one or more of SnO2, Sb2O3 ZnO, In2O3, O3, TiO2, Bi2O3, Nb2O5, CdS and MoO3 to give the aimed fluorescent substance.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、電子線で励起ざれる蛍光体とその製造方法に
関する。特に、本発明は、陰極線管、表示管等に用いら
れる蛍光体とその製造方法に関する。
The present invention relates to a phosphor excited by an electron beam and a method for manufacturing the same. In particular, the present invention relates to a phosphor used in cathode ray tubes, display tubes, etc., and a method for manufacturing the same.

【従来の技術並びに問題点】[Conventional technology and problems]

菟子線で励起されて発光する蛍光体には、導電性が要求
ざれる。導電性の少ない蛍光体は、励起される電子線の
マイナスの電荷を速やかにアースに逃がすことができな
い。このため、蛍光膜にマイナス電荷が蓄積される。マ
イナスの電荷が蓄積された蛍光膜は、マイナス電荷の電
子線を反発する。すなわち、電子線が効果的に蛍光膜を
励起できず、発光輝度が低下する。 特に、住宅の玄間や、電話機に使われはじめた小型の陰
極線管、あるいは、車、オーディオ、ビデオなどに数多
く使われている表示管は、この現象で輝度が低下し易い
。それは、蛍光膜を励起する電子線の加速電圧が低いこ
とが理由である。加速電圧の低い電子線はエネルギーが
低く、マイナスの電荷で蛍光膜から反発ざれ易い。 蛍光表示管は、線状、針状、面状のフィラメントから放
出される数V〜数十Vの低速電子線で蛍光体を励起して
発光させている。小型の陰極線管は、数百V〜数KVの
中速電子線で蛍光体を励起している。これらの用途に使
用される蛍光体は、通常のカラーブラウン管に比較する
と、加速電圧が著しく低い電子線で励起される。 したがって、これ等の用途に使用される蛍光体には、特
に導電性が大切である。なぜなら、低電圧駆動の電子線
で励起されるので、IOKV以上の高速電子線で励起さ
れる通常のカラーブラウン管に比較して、電流密度を高
くして、蛍光体を明るく発光させるからである。マイナ
スの電荷を持った電子線で、蛍光体層を連続して励起す
るので、導電性が良くない蛍光体層には、マイナスの電
荷が溜って電子線を反発して発光しなくなることが理由
である。 また、民生用カラーテレビはますます大型化の傾向とな
り、現在25〜37インチが主流となっている。大型化
につれて、電子線の加速電圧、電流密度等の駆動条件は
、25〜27KVから31〜35KVへ、0.  0 
5〜0.  1 μmA/cm2から0.  2 〜5
.  0 μmA/cm2へと高圧化、高電流化し、蛍
光体に対しても厳しい条件となってきている。 蛍光体には半導体のものもあるが、ほとんどが絶縁体で
ある。これらが高電流のもとで優れた性能を発揮する為
には、蛍光体結晶表面にマイナスの電子が溜らないよう
に導電性を付与することが必要である。 導電性の優れた蛍光体として、ZnO/Zn自己付活蛍
光体が良く知られている。しかしながら、この蛍光体は
、色調が青白色で、カラー陰極線管用の緑色成分として
好ましい発光色にできない。 好ましい、緑、青、赤色発光の蛍光体として下記のもの
が使用されている ■ 緑色発光蛍光体として、 ZnS/Cu,A9、 Z n S / C u 9  A IJ + k之、
■ 青色発光蛍光体として、 ZnS/Ag,A之、 ZnS/Ag,C之、 ■ 赤色発光蛍光体として、 (Zn−Cd)S/Ag,(Al、 Y2O3、ZnO、In2O2S:Eu等が使用されて
いる。 これらの蛍光体は、導電性が低い欠点がある。 このため、電流密度が高く、低電圧加速の電子線では、
充分高い輝度で発光できない。 これ等の蛍光体に導電性を改善するために、蛍光体に酸
化インジウム(In2O3、ZnO、In2O3>を混
合する方法が開発ざれている(特公昭52−2391 
1号公報、特公昭52−23913号公報、特公昭52
−2391 6号公報)。 しかしながら、蛍光体に酸化インジウムを混合すること
によっては、充分に満足できる導電性を実現できない。 In2O3、ZnO、In2Oaを混合して、蛍光体の
導電性を改善する場合、多量のIn2O3、ZnO、I
n2O3を混合する必要がある。 実際に、In2o3を混合して蛍光体の導電性を改善す
るには、15〜25重量%も混合する必要がある。この
ように多量の非発光性物質を添加すると、In2O3、
ZnO、In2O3によって輝度が低下する。 この発明は、これ等従来の欠点を解決することを目的に
開発されたもので、この発明の重要な目的は、蛍光体の
導電性を改善して、発光輝度を高くできる蛍光体を提供
するにある。
Phosphors that emit light when excited by the irradiation beam are required to have electrical conductivity. Phosphors with low conductivity cannot quickly release the negative charge of the excited electron beam to the ground. Therefore, negative charges are accumulated in the fluorescent film. A fluorescent film with accumulated negative charges repels negatively charged electron beams. That is, the electron beam cannot effectively excite the fluorescent film, resulting in a decrease in luminance. In particular, the brightness of small cathode ray tubes, which are beginning to be used in the hallways of homes and telephones, and display tubes, which are widely used in cars, audio and video devices, is susceptible to a decrease in brightness due to this phenomenon. This is because the acceleration voltage of the electron beam that excites the fluorescent film is low. An electron beam with a low acceleration voltage has low energy and is easily repelled from the fluorescent film due to its negative charge. A fluorescent display tube excites a phosphor to emit light using a low-speed electron beam of several to several tens of volts emitted from a linear, needle-shaped, or planar filament. A small cathode ray tube excites a phosphor with a medium-speed electron beam of several hundred volts to several kilovolts. The phosphors used in these applications are excited by electron beams whose acceleration voltage is significantly lower than that of ordinary color cathode ray tubes. Therefore, electrical conductivity is particularly important for phosphors used in these applications. This is because the phosphor is excited by a low-voltage driven electron beam, so the current density is higher and the phosphor emits brighter light than a normal color cathode ray tube which is excited by a high-speed electron beam of IOKV or higher. The reason is that because the phosphor layer is continuously excited with a negatively charged electron beam, negative charges accumulate in the phosphor layer, which has poor conductivity, repelling the electron beam and causing it to no longer emit light. It is. Furthermore, color televisions for consumer use are becoming increasingly larger, and currently 25 to 37 inches are the mainstream. As the size increases, the driving conditions such as electron beam accelerating voltage and current density have changed from 25 to 27 KV to 31 to 35 KV, and 0. 0
5-0. 1 μmA/cm2 to 0. 2 to 5
.. The voltage and current are increasing to 0 μmA/cm2, and the conditions are becoming stricter for phosphors. Some phosphors are semiconductors, but most are insulators. In order for these to exhibit excellent performance under high current conditions, it is necessary to impart conductivity to the surface of the phosphor crystal to prevent negative electrons from accumulating. ZnO/Zn self-activating phosphors are well known as phosphors with excellent conductivity. However, this phosphor has a bluish-white color tone, and cannot produce an emission color that is preferable as a green component for color cathode ray tubes. The following are preferably used as green, blue, and red emitting phosphors.■ As green emitting phosphors, ZnS/Cu, A9, ZnS/Cu 9 A IJ + k,
■ As blue-emitting phosphors, ZnS/Ag, A, ZnS/Ag, C, ■ As red-emitting phosphors, (Zn-Cd)S/Ag, (Al, Y2O3, ZnO, In2O2S:Eu, etc.) are used. These phosphors have the disadvantage of low conductivity.For this reason, they cannot be used with electron beams with high current density and low voltage acceleration.
Cannot emit light with sufficiently high brightness. In order to improve the conductivity of these phosphors, a method has been developed in which indium oxide (In2O3, ZnO, In2O3) is mixed with the phosphors (Japanese Patent Publication No. 52-2391).
Publication No. 1, Special Publication No. 52-23913, Special Publication No. 52
-2391 No. 6). However, by mixing indium oxide with the phosphor, sufficiently satisfactory conductivity cannot be achieved. When mixing In2O3, ZnO, and In2Oa to improve the conductivity of the phosphor, a large amount of In2O3, ZnO, and I
It is necessary to mix n2O3. In fact, in order to improve the conductivity of the phosphor by mixing In2o3, it is necessary to mix as much as 15 to 25% by weight. When such a large amount of non-luminescent material is added, In2O3,
Brightness decreases due to ZnO and In2O3. This invention was developed with the aim of solving these conventional drawbacks, and an important purpose of this invention is to improve the conductivity of the phosphor and provide a phosphor that can increase luminance. It is in.

【従来の課題を解決する為の手段】[Means to solve conventional problems]

本発明者等は、蛍光体の表面に、独得の形態の複合導電
性物質を付着することによって、付着量を少なくして、
蛍光体の導電性を改善することに成功した。複合導電性
物質は、導電性大粒子の表面に、これよりも微粒子の導
電性微粒子を付着したものである。複合導電性物質の付
着量は、蛍光体に対して0.1〜15重量%に特定され
る。 第2図と第3図とに、複合導電性物質の付着量に対する
蛍光体の輝度を示している。これ等の図において、実線
は、この発明の蛍光体の特性を示し、鎖線は、従汚の蛍
光体の特性を示している。 これ等の図に示すように、この発明の蛍光体は、複合導
電性物質の付着量を0.  1〜15重量%とすること
によって、優れた発光特性を示す。 ただし、第2図の曲線は、蛍光体にZnS/Ag,AQ
蛍光体を使用し、本発明の蛍光体の表面に付着する複合
導電性物質には、Ag微粒子吸着SnO2を使用し、従
来の蛍光体の表面に付着する導電性大粒子には、SnO
2を使用している。 また、第3図の特性は、蛍光体には、ZnS/Au,A
△蛍光体を使用し、本発明の蛍光体の表面に付着する複
合導電性物質には、Au微粒子吸着■n2O3、ZnO
、In2O3を使用し、従来の蛍光体の表面に付着する
導電性大粒子には、In2O3、ZnO、In2O3を
使用している。 この発明の目的は、導電性微粒子を導電性酸化物粒子又
は化合物粒子表面に吸着させた複合導電性物質を蛍光体
に被覆することにより、導電性を増加させ、蛍光体に対
する被覆量を減少せしめて、蛍光体の効率を充分に引き
出すことにより解決ざれる。 さらに、この発明の蛍光体は、好ましくは、下記の構成
を備えている。 (a>  導電性微粒子には、好ましくは、A△、Au
,Ag,Cuのうち少なくとも一種の金属微粒子を使用
する。ただ、導電性微粒子には、リチウム(L i)、
ベリリウム(B e)、ナトリウム(Na)、マグネシ
ウム(Mg)、カリウム(K)、カルシウム(Ca)、
鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜
鉛(Z n)、ルビジウム(Rb)、モリブデン(Mo
)、ロジウム(Rh)、パラジウム(Pd)、カドミウ
ム(cd)、インジウム(In)、錫(Sn)、タング
ステン(W)、オスミクム(Os)、イリジウム(Ir
)、白金(Pt)、スカンジウム(Sc)、チタン(T
i)、バナジウム(V)、クロム(Cr)、マンガン(
Mn)、ガリウム(Ga)、ゲルマニウム(Ge)、ス
チロンチウム(Sr)、イットリウム(Y)、ジルコニ
ウム(Z r)、ニオブ(Nb)、テクネチウム(Tc
)、ルテニウム(Ru)、アンチモン(Sb)セシウム
(C s)、バリウム(Ba)、ハフニウム(Hf)、
タンタル(Ta)、レニウム(Re)、水銀(リg)、
タリウム(T△)、鉛(Pb)、ビスマス(B i)、
ボロニウム(P o)、ランタニウム族、アクチニウム
族等の金属微粒子も使用できる。 (b)  導電性微粒子の平均粒径を、0.0001〜
0.1−0.171mの範囲に調整する。 (c)  導電性微粒子の付着量を、導電性大粒子に対
して、1〜50重量%の範囲とする。 (d)  導電性微粒子に、導電性酸化物粒子または導
電性化合物粒子を使用する。 (f)  導電性大粒子の平均粒径を、0.01〜2μ
mとする。 (g)  導電性大粒子に、SnO++、Sb2O3、
ZnO、In2O3、Zno,  In2O3、ZnO
、In2O3、Wo3、 Ti○2、 B l2O3、
ZnO、In2O3、 Nb2O3、ZnO、In2O
5、C d S, M o 03のうち少なくとも一種
を含む粒子を使用する。 ところで、この発明は、蛍光体の付着する複合導電性物
質に独得のものを使用することを特徴としている。した
がって、この発明は、複合導電性物質を付着する蛍光体
を特定するものではない。 複合導電性物質を付着する蛍光体には、カラー用蛍光体
、モノクロ用蛍光体等、すべての電子線励起蛍光体に適
用できる。 例えば、蛍光体には下記のものを使用できる。 ■ ZnS,(Zn,Cd)S,CdS,ZnS−Se
1 (Zn−cd)S−Se,CdS,Seを母体とし
、Ag,Cu,Au,Znのうち少なくとも一種を付活
剤とし、C△、Br,F,I、AQ、Ga%In,  
Li,  Pb, As,  Bi,  Eu,Snの
うち少なくとも一種を共付活剤とする硫化物系蛍光体、 ■ ZnO/Zn,Y2O3、ZnO、In2O3/E
n,Zn○2/EU等の酸化物系蛍光体、■ L a 
P Oa/ C e,  T b、(Zn−Ca)3(
PO4) 2Mn, C d SCQ (POa) 3
/Mnなどの燐酸塩蛍光体、 ■ Y2S i Os/ T b, Y2S i Os
/C e,Znsi○4/MnSCaS iO3/Mn
等の珪酸塩蛍光体、 ■ Y3AQ+2O3、ZnO、In2Os/Tb,Y
3AQ+2O3、ZnO、In2O5/Ce等のアルミ
ン酸塩系蛍光体、■ Y2O3、ZnO、In2O2/
Ell、Gd2O3、ZnO、In2O2S/Tb,Y
2O3、ZnO、In2O2S/Tbなどの酸硫化物系
蛍光体等。 また、これ等の蛍光体には、平均粒径が1−12μmの
ものが使用される。
The present inventors have reduced the amount of adhesion by attaching a unique form of composite conductive material to the surface of the phosphor.
We succeeded in improving the conductivity of phosphors. The composite conductive material is made by attaching conductive fine particles, which are finer than the large conductive particles, to the surface of the conductive large particles. The amount of the composite conductive material deposited is specified to be 0.1 to 15% by weight based on the phosphor. FIGS. 2 and 3 show the luminance of the phosphor with respect to the amount of the composite conductive material deposited. In these figures, the solid line shows the characteristics of the phosphor of the present invention, and the chain line shows the characteristics of the non-staining phosphor. As shown in these figures, the phosphor of the present invention has a coating amount of the composite conductive material of 0. When the content is 1 to 15% by weight, excellent light emitting properties are exhibited. However, the curve in Figure 2 shows that the phosphor is ZnS/Ag, AQ.
A phosphor is used, and the composite conductive material adhering to the surface of the phosphor of the present invention uses SnO2 adsorbed with Ag fine particles, while the conductive large particles adhering to the surface of the conventional phosphor include SnO2.
2 is used. Furthermore, the characteristics shown in Fig. 3 indicate that the phosphor contains ZnS/Au, A
△ A phosphor is used, and the composite conductive material attached to the surface of the phosphor of the present invention includes adsorption of Au fine particles ■n2O3, ZnO
, In2O3 are used, and In2O3, ZnO, and In2O3 are used as conductive large particles that adhere to the surface of conventional phosphors. The purpose of the present invention is to increase conductivity and reduce the amount of coating on the phosphor by coating the phosphor with a composite conductive material in which conductive fine particles are adsorbed onto the surface of conductive oxide particles or compound particles. This problem can be solved by fully utilizing the efficiency of the phosphor. Further, the phosphor of the present invention preferably has the following configuration. (a> The conductive fine particles preferably include A△, Au
, Ag, and Cu. However, conductive fine particles include lithium (Li),
Beryllium (Be), sodium (Na), magnesium (Mg), potassium (K), calcium (Ca),
Iron (Fe), cobalt (Co), nickel (Ni), zinc (Zn), rubidium (Rb), molybdenum (Mo
), rhodium (Rh), palladium (Pd), cadmium (cd), indium (In), tin (Sn), tungsten (W), osmicum (Os), iridium (Ir
), platinum (Pt), scandium (Sc), titanium (T
i), vanadium (V), chromium (Cr), manganese (
Mn), gallium (Ga), germanium (Ge), styrontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), technetium (Tc)
), ruthenium (Ru), antimony (Sb), cesium (Cs), barium (Ba), hafnium (Hf),
tantalum (Ta), rhenium (Re), mercury (lig),
Thallium (T△), lead (Pb), bismuth (B i),
Fine particles of metals such as boronium (P o), lanthanium group, actinium group, etc. can also be used. (b) The average particle size of the conductive fine particles is 0.0001 to 0.0001.
Adjust to a range of 0.1-0.171m. (c) The amount of adhered conductive fine particles is in the range of 1 to 50% by weight based on the conductive large particles. (d) Conductive oxide particles or conductive compound particles are used as the conductive fine particles. (f) The average particle size of the conductive large particles is 0.01 to 2μ.
Let it be m. (g) SnO++, Sb2O3, conductive large particles,
ZnO, In2O3, Zno, In2O3, ZnO
, In2O3, Wo3, Ti○2, B l2O3,
ZnO, In2O3, Nb2O3, ZnO, In2O
5. Particles containing at least one of C d S and M o 03 are used. By the way, this invention is characterized by using a unique composite conductive material to which the phosphor is attached. Therefore, this invention does not specify the phosphor to which the composite conductive material is attached. The phosphor to which the composite conductive substance is attached can be applied to all electron beam-excited phosphors, such as color phosphors and monochrome phosphors. For example, the following phosphors can be used: ■ ZnS, (Zn, Cd)S, CdS, ZnS-Se
1 (Zn-cd)S-Se, CdS, Se as a matrix, at least one of Ag, Cu, Au, Zn as an activator, C△, Br, F, I, AQ, Ga%In,
Sulfide-based phosphor containing at least one of Li, Pb, As, Bi, Eu, and Sn as a coactivator, ■ ZnO/Zn, Y2O3, ZnO, In2O3/E
Oxide-based phosphor such as n, Zn○2/EU, ■ La
P Oa/ C e, T b, (Zn-Ca)3(
PO4) 2Mn, C d SCQ (POa) 3
/Mn and other phosphate phosphors, ■ Y2S i Os/ T b, Y2S i Os
/C e, Znsi○4/MnSCaS iO3/Mn
Silicate phosphors such as ■ Y3AQ+2O3, ZnO, In2Os/Tb, Y
Aluminate-based phosphors such as 3AQ+2O3, ZnO, In2O5/Ce, ■ Y2O3, ZnO, In2O2/
Ell, Gd2O3, ZnO, In2O2S/Tb, Y
Oxysulfide phosphors such as 2O3, ZnO, In2O2S/Tb, etc. Furthermore, these phosphors have an average particle size of 1 to 12 μm.

【この発明の効果】[Effects of this invention]

この発明は、独得の複合導電性物質を蛍光体粒子表面に
付着して、蛍光体の導電性を改善している。複合導電性
物質には、導電性大粒子の表面に導電性微粒子を付着し
た独得のものを使用している。 この複合導電性物質は、蛍光体表面に付着する従来の導
電性物質に比較して、導電性を数倍に増加できる。この
ため、蛍光体に対する被覆量を、従来の数分の1と少な
くして、同一の導電性にできる。 導電性大粒子の表面に付着する導電性微粒子に、例えば
、アルミニウム(AM)、金(Au)、銀(Ag)、m
(Cu)等を使用する場合、これ等の導電率は、Amが
2.. 6 5 X 1 0−6S/cm, A uが
2. 4X 1 0−6S/cm, Agが1.59X
10−”S/cm,Cuが1、6 7 X 1 0−6
S/cm、と著しく低い。 これに対して、蛍光体の表面に、導電性を改善する目的
で付着されていた従来の導電性酸化物粒子の導電率は、
In2O3、ZnO、In2O3が8.  3 7 X
 I O−’S/cm、Sna2が1 1.  OX 
1 0−6S/c+n,  ZnOが5.9X 1 0
−65/CIll, WO3が5.  6 5 X l
 O−6S/cm、TIO2が42X10−8S/cm
,CdSが6.83X10−65/amと高い。 従来の導電性物質に代わって、導電率が低い導電性金属
微粒子を付着して、蛍光体の導電性な改善することも考
えられる。しかしながら、実際には、蛍光体の表面に導
電性金属微粒子を付着するにはかなり高度の技術を要す
る。導電性金属微粒子は、サブミクロン微粒子のために
非常に反応性が高く、例えば、ZnSの結晶の表面にS
分があれば、急速に反応し、硫化物になるからである。 金属酸化物粒子は、導電性は劣るが反応性の低い化学的
に安定な物質である。この発明は、安定な導電性大粒子
と、導電性に優れた導電性金属微粒子の両方の長所を同
時に満足させて、優れた蛍光体を実現している。 すなわち、第1図に示すように、この発明の蛍光体は、
表面に導電性微粒子lが付着された導電性大粒子2て蛍
光体を被覆している。導電性微粒子1は、直接蛍光体に
接触されることが少なく、導電性大粒子2を介して、蛍
光体表面に付着されている。このため、導電性微粒子1
のほとんどは、直接蛍光体に接触しない。蛍光体粒子に
接触しない導電性微粒子lは、蛍光体の導電性を改善す
るが、蛍光体成分と反応することが少なくなる。 ちなみに、平均粒径が0.08μmであるAgの微粒子
を、1.2BmのSn02粒子に、25重量%吸着させ
た複合導電性物質は、Ag微粒子を付着しないSnO+
粒子に比較して、導電率が6×1 0−6S/cmと半
減した。 したがって、この発明の蛍光体は、複合導電性物質の付
着量を、従来のSnO2の半分に減少して、蛍光体の導
電性を同一にできる。蛍光体の表面に付着する複合導電
性物質は、非発光物質であるため、少量とすることが望
ましい。少量の複合導電性物質で導電性を改善できこの
発明の蛍光体は、輝度を高くできる特長がある。
This invention improves the conductivity of the phosphor by attaching a unique composite conductive material to the surface of the phosphor particles. The composite conductive material used is a unique material in which conductive fine particles are attached to the surface of conductive large particles. This composite conductive material can increase the conductivity several times compared to conventional conductive materials attached to the phosphor surface. Therefore, the amount of coating on the phosphor can be reduced to a fraction of that of the conventional method, and the same conductivity can be achieved. For example, aluminum (AM), gold (Au), silver (Ag), m
(Cu) etc., the conductivity of these is 2. .. 6 5 X 10-6S/cm, A u is 2. 4X 10-6S/cm, Ag is 1.59X
10-”S/cm, Cu is 1, 6 7 X 1 0-6
S/cm, which is extremely low. On the other hand, the conductivity of conventional conductive oxide particles attached to the surface of the phosphor for the purpose of improving conductivity is
In2O3, ZnO, In2O3 is 8. 3 7 X
IO-'S/cm, Sna2 is 1 1. OX
1 0-6S/c+n, ZnO is 5.9X 1 0
-65/CIll, WO3 is 5. 6 5 X l
O-6S/cm, TIO2 is 42X10-8S/cm
, CdS is as high as 6.83X10-65/am. It is also conceivable to improve the conductivity of the phosphor by attaching conductive metal fine particles having low conductivity instead of conventional conductive substances. However, in reality, attaching conductive metal fine particles to the surface of a phosphor requires a fairly sophisticated technique. Conductive metal particles have very high reactivity because they are submicron particles, and for example, S on the surface of a ZnS crystal.
This is because if there is enough water, it will react rapidly and become sulfide. Metal oxide particles are chemically stable substances with poor conductivity but low reactivity. This invention realizes an excellent phosphor by simultaneously satisfying the advantages of both stable conductive large particles and conductive metal fine particles with excellent conductivity. That is, as shown in FIG. 1, the phosphor of the present invention is
The phosphor is coated with conductive large particles 2 having conductive fine particles 1 attached to their surfaces. The conductive fine particles 1 rarely come into direct contact with the phosphor, but are attached to the surface of the phosphor via the conductive large particles 2. For this reason, conductive fine particles 1
Most of them do not come into direct contact with the phosphor. The conductive fine particles l that do not come into contact with the phosphor particles improve the conductivity of the phosphor, but are less likely to react with the phosphor component. By the way, a composite conductive material in which 25% by weight of Ag fine particles with an average particle size of 0.08 μm are adsorbed onto 1.2 Bm Sn02 particles is SnO+, which does not have Ag fine particles attached.
Compared to particles, the electrical conductivity was reduced by half to 6 x 10-6 S/cm. Therefore, in the phosphor of the present invention, the amount of the composite conductive material deposited can be reduced to half that of the conventional SnO2, and the conductivity of the phosphor can be kept the same. Since the composite conductive material attached to the surface of the phosphor is a non-luminescent material, it is desirable to keep the amount of the composite conductive material in a small amount. The phosphor of the present invention, which can improve conductivity with a small amount of composite conductive material, has the advantage of increasing brightness.

【このましい実施例】[Preferred example]

以下、実施例について説明する。 [実施例lコ 下記の工程で、表面に複合導電性物質が付着された蛍光
体を製造する。 ■ 導電性大粒子として、平均粒径が1.27zmのS
n02粒子(30gを使用し、これを、水300ccの
は入っているビーカーに入れて攪拌する。 ■ 導電性大粒子が混合され水に、導電性微粒子を混合
して攪拌する。導電性微粒子には、平均粒径が0.08
μmであるAg微粒子2O3、ZnO、In2Ogを使
用する。Ag微粒子は、Ag溶湯を噴霧冷却して製造す
る。 導電性微粒子と導電性大粒子とが混合ざれた水は、マグ
ネットスターラーで30分間撹拌する。 この工程で、導電性大粒子であるSno2粒子に、Ag
粒子が吸着された複合導電性物質を得る。 この工程で得られた複合導電性物質は、水から分離して
導電率を測定したところ、6 X 1 0−6S/cm
であった● ■ Z n S/Ag−All蛍光体1 k gを、2
.2△の水に添加して攪拌し、この中へ、■で得られた
スラリーを投入する。 ■ ざらに、接着剤としてA Q 2 S i O 3
を1g加え、複合導電性物質を蛍光体粒子表面に付着す
る。 ■ 蛍光体を分離、乾燥し、300メッシュフルイを通
して仕上げた。 得られた蛍光体を、蛍光体輝度測定ディマンタプル装置
にて、加速電圧50V、電流密度1mA/CITl2で
輝度測定をしたところ、従来のSnO2を蛍光体に対し
て16重量%混合したものに比較して、2O3、ZnO
、In2O%も輝度が高くなった。 [実施例2] ■ 導電性大粒子を300ccの水に添加して攪拌する
。導電性大粒子には、平均粒径が0.  5JimのI
n2O3、ZnO、In2O3粒子50gを使用する。 ■ ■の水に、導電性微粒子を添加して攪拌する。導電
性微粒子には、平均粒径が0.003μmのA u−2
c2イド微粒子30gを使用する。この導電性微粒子は
、HAuC△3を、ホルムアルデビド存在水溶液中で攪
拌して製造する。 導電性微粒子と導電性大粒子とが添加された水は、マグ
ネットスターラーで30分間攪拌する。 この工程で、In2O3、ZnO、In2O3粒子に、
A.uコロイド微粒子を吸着した複合導電性物質得る。 この工程で得られた複合導電性物質の導電率は、5X1
0−6S/cmであった。 ■ ZnS/Au−AQ蛍光体lkgを、262△の水
に入れて攪拌し、この中に、■で得られた複合導電性物
質分散スラリーを投入する。ざらに、接着剤としてZn
2SiO3を1g加え、複合導電性物質を蛍光体表面に
付着する。 ■ 表面に複合導電性物質が付着ざれた蛍光体を、分離
乾燥し、300メッシュフルイをして仕上げる。 この工程で得られた蛍光体を、輝度測定ディマンタプル
装置を使用して、加速電圧50V、電流畜度1 m A
 / cm2で輝度測定をしたところ、In2O3、Z
nO、In2O3を蛍光体に対して18重量%混合した
従来の蛍光体に比較して、輝度が25%も高くなった。 [実施例3] 導電性微粒子に、平均粒径が0.037zmのA誌微粒
子15gを使用し、導電性大粒子に0.  8μmのI
 n2snos  (Snドーブmo−  iモル)6
0gを使用し、実施例1と同様の工程で、複合導電性物
質を得る。導電性微粒子には、AQ溶湯を噴霧冷却して
製造したA△微粒子を使用する。 得られた複合導電性物質は、導電率が4.5×1 0−
’S/cmであった。 この複合導電性物質を、(Zn−cd)S/Ag−CM
蛍光体1kgに、実施例lと同様の工程で付着させる。 この工程で得られた蛍光体の輝度を前述の実施例と同様
の方法で測定した結果、導電性金属粒子として[n2S
n0512重量%を蛍光体表面に付着したものに比較し
て、輝度が23%も高くなった。 [実施例4コ 導電性微粒子に、Cu溶渇を噴霧冷却して製造1ノた、
平均粒径が0.005μmのCu微粒子25gを使用し
、導電性大粒子に、平均粒径が1μmであるS n S
 b2O3、ZnO、In2Os3 0 gを使用する
以外、実施例1と同様にして複合導電性物質を得た。こ
の複合導電性物質の導電率は、6 X 1 0−6S/
cmであった。 この複合導電性物質を、実施例lと同様の工程で、Z 
n S/C u−AQ蛍光体1kgに付着させて蛍光体
を製造する。得られた蛍光体の輝度を、前述の実施例と
同様にして測定したところ、SnSb2O3、ZnO、
In2O5を10重量%付着した従来の蛍光体に比較し
て、輝度が18%高くなった。
Examples will be described below. [Example 1] A phosphor having a composite conductive material attached to its surface is manufactured in the following steps. ■ As conductive large particles, S with an average particle size of 1.27zm
n02 particles (use 30g, add them to a beaker containing 300cc of water and stir. ■ Conductive large particles are mixed into the water, and conductive fine particles are mixed and stirred. has an average particle size of 0.08
Ag fine particles 2O3, ZnO, and In2Og having a diameter of μm are used. Ag fine particles are produced by spray cooling molten Ag. The water containing the conductive fine particles and the conductive large particles is stirred for 30 minutes using a magnetic stirrer. In this process, Ag
A composite conductive material with particles adsorbed thereon is obtained. When the composite conductive material obtained in this step was separated from water and the conductivity was measured, it was found to be 6 x 10-6S/cm.
It was ● ■ Z n S/Ag-All phosphor 1 kg, 2
.. Add to 2△ water and stir, and pour the slurry obtained in ① into this. ■ Roughly, as an adhesive A Q 2 S i O 3
1 g of the composite conductive material is added to the surface of the phosphor particles. ■ The phosphor was separated, dried, and finished through a 300 mesh sieve. When the brightness of the obtained phosphor was measured using a phosphor brightness measurement demantaple device at an accelerating voltage of 50 V and a current density of 1 mA/CITl2, the brightness was compared to that of a conventional mixture of SnO2 at 16% by weight based on the phosphor. , 2O3, ZnO
, In2O% also had higher brightness. [Example 2] (2) Add conductive large particles to 300 cc of water and stir. The conductive large particles have an average particle size of 0. 5Jim's I
50 g of n2O3, ZnO, In2O3 particles are used. (2) Add conductive fine particles to the water in (2) and stir. The conductive fine particles include A u-2 with an average particle size of 0.003 μm.
30 g of c2oid fine particles are used. These conductive fine particles are produced by stirring HAuCΔ3 in an aqueous solution containing formaldebit. The water to which the conductive fine particles and conductive large particles have been added is stirred for 30 minutes using a magnetic stirrer. In this process, In2O3, ZnO, In2O3 particles,
A. A composite conductive material adsorbed with u colloid fine particles is obtained. The conductivity of the composite conductive material obtained in this step is 5X1
It was 0-6S/cm. (2) 1 kg of ZnS/Au-AQ phosphor is added to 262△ water and stirred, and the composite conductive material dispersion slurry obtained in (2) is poured into the water. Zn as an adhesive
Add 1 g of 2SiO3 to attach the composite conductive material to the surface of the phosphor. ■ The phosphor with the composite conductive material attached to its surface is separated, dried, and finished using a 300 mesh sieve. The phosphor obtained in this step was measured using a brightness measurement demantaple device at an acceleration voltage of 50 V and a current density of 1 mA.
When I measured the brightness at / cm2, In2O3, Z
Compared to a conventional phosphor containing nO and In2O3 in an amount of 18% by weight based on the phosphor, the brightness was 25% higher. [Example 3] 15 g of A magazine fine particles with an average particle size of 0.037 zm were used as the conductive fine particles, and 0.03 g of A magazine fine particles with an average particle size of 0.037 zm were used as the conductive large particles. 8 μm I
n2snos (Sn dove mo-i mole) 6
A composite conductive material was obtained in the same manner as in Example 1 using 0 g. As the conductive fine particles, A△ fine particles produced by spray cooling AQ molten metal are used. The obtained composite conductive material has a conductivity of 4.5×10−
'S/cm. This composite conductive material is (Zn-cd)S/Ag-CM
It is applied to 1 kg of phosphor using the same process as in Example 1. The brightness of the phosphor obtained in this step was measured in the same manner as in the previous example, and it was found that [n2S
Compared to the case where 12% by weight of n05 was attached to the surface of the phosphor, the brightness was 23% higher. [Example 4] Conductive fine particles were produced by spraying and cooling Cu melt,
25 g of Cu fine particles with an average particle size of 0.005 μm were used, and S n S with an average particle size of 1 μm was added to the conductive large particles.
A composite conductive material was obtained in the same manner as in Example 1 except that 0 g of b2O3, ZnO, and In2Os3 were used. The conductivity of this composite conductive material is 6×10-6S/
It was cm. This composite conductive material was processed into Z
A phosphor is produced by adhering it to 1 kg of n S/Cu u-AQ phosphor. The brightness of the obtained phosphors was measured in the same manner as in the previous example, and it was found that SnSb2O3, ZnO,
Compared to a conventional phosphor with 10% by weight of In2O5 attached, the brightness was 18% higher.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の蛍光体粒子を示す拡大平面図、第2
図および第3図は複合導電性物質の付着量に対する蛍光
体の輝度を示すグラフである。 1・・・・・・導電性微粒子、2・・・・・・導電性大
粒子。
Figure 1 is an enlarged plan view showing the phosphor particles of the present invention, Figure 2 is an enlarged plan view showing the phosphor particles of the present invention.
The figure and FIG. 3 are graphs showing the brightness of the phosphor with respect to the amount of the composite conductive material deposited. 1... Conductive fine particles, 2... Conductive large particles.

Claims (2)

【特許請求の範囲】[Claims] (1)下記の構成を有する蛍光体。 (a)蛍光体の表面に、複合導電性物質が付着されてい
る。 (b)複合導電性物質は、導電性大粒子の表面に、導電
性微粒子を付着させたものである。 (c)導電性微粒子の平均粒子径は、導電性大粒子の平
均粒子径よりも小さい。 (d)複合導電性物質の付着量は、蛍光体に対して0.
1〜15重量%である。
(1) A phosphor having the following configuration. (a) A composite conductive material is attached to the surface of the phosphor. (b) A composite conductive material is one in which conductive fine particles are attached to the surface of conductive large particles. (c) The average particle diameter of the conductive fine particles is smaller than the average particle diameter of the conductive large particles. (d) The amount of adhesion of the composite conductive material is 0.0% relative to the phosphor.
It is 1 to 15% by weight.
(2)下記の構成を有する請求項1記載の蛍光体。 (a)導電性微粒子は、Al、Au、Ag、Cuのうち
少なくとも一種を含んでいる。 (b)導電性微粒子の平均粒径は、0.0001〜0.
1μmである。 (c)導電性微粒子の付着量は、導電性大粒子に対して
、1〜50重量%である。 (d)導電性微粒子は、導電性酸化物粒子または導電性
化合物粒子である。 (e)導電性大粒子の平均粒径は、0.01〜2μmで
ある。 (f)導電性大粒子が、SnO_2、Sb_2O_3、
ZnO、In_2O_3、WO_3、TiO_2、Bi
_2O_3、Nb_2O_5、CdS、MoO_3のう
ち少なくとも一種を含んでいる。
(2) The phosphor according to claim 1, having the following configuration. (a) The conductive fine particles contain at least one of Al, Au, Ag, and Cu. (b) The average particle diameter of the conductive fine particles is 0.0001 to 0.000.
It is 1 μm. (c) The adhesion amount of the conductive fine particles is 1 to 50% by weight based on the conductive large particles. (d) The conductive fine particles are conductive oxide particles or conductive compound particles. (e) The average particle size of the conductive large particles is 0.01 to 2 μm. (f) The conductive large particles are SnO_2, Sb_2O_3,
ZnO, In_2O_3, WO_3, TiO_2, Bi
Contains at least one of _2O_3, Nb_2O_5, CdS, and MoO_3.
JP16119989A 1989-06-23 1989-06-23 Fluorescent substance Pending JPH0326781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16119989A JPH0326781A (en) 1989-06-23 1989-06-23 Fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16119989A JPH0326781A (en) 1989-06-23 1989-06-23 Fluorescent substance

Publications (1)

Publication Number Publication Date
JPH0326781A true JPH0326781A (en) 1991-02-05

Family

ID=15730473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16119989A Pending JPH0326781A (en) 1989-06-23 1989-06-23 Fluorescent substance

Country Status (1)

Country Link
JP (1) JPH0326781A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0717092A1 (en) 1994-12-16 1996-06-19 Philips Patentverwaltung GmbH Luminescent screen with a luminescent composition
WO2001077233A1 (en) * 2000-04-06 2001-10-18 Kabushiki Kaisha Toshiba Oxide composite particle and method for its production, phosphor and method for its production, color filter and method for its manufacture, and color display
JP2005040630A (en) * 2004-10-22 2005-02-17 Nipro Corp Liquid storing bag
EP2578663A1 (en) * 2010-05-25 2013-04-10 Ocean's King Lighting Science&Technology Co., Ltd. Aluminate-based fluorescent powder coated by metal nanoparticle and production method thereof
EP2584021A1 (en) * 2010-06-17 2013-04-24 Ocean's King Lighting Science&Technology Co., Ltd. Strontium cerate luminous materials, preparation methods and use thereof
JP2013530268A (en) * 2010-05-25 2013-07-25 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Fluorescent material for field emission and preparation method thereof
JP2013532203A (en) * 2010-05-31 2013-08-15 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Rare earth element doped yttrium oxide light-emitting film containing conductive oxide and method for preparing the same
CN104169393A (en) * 2012-07-31 2014-11-26 海洋王照明科技股份有限公司 Stannate fluorescent material and method for preparing same
EP2607447A4 (en) * 2010-08-19 2015-01-14 Oceans King Lighting Science Borate luminescent materials, preparation methods and uses thereof
JP2015519437A (en) * 2012-05-08 2015-07-09 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Manganese-doped magnesium stannate luminescent material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523106A (en) * 1978-03-22 1980-02-19 Dainippon Toryo Co Ltd Blue luminescent composition and low speed electron beam-exciting fluorescent display tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523106A (en) * 1978-03-22 1980-02-19 Dainippon Toryo Co Ltd Blue luminescent composition and low speed electron beam-exciting fluorescent display tube

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0717092A1 (en) 1994-12-16 1996-06-19 Philips Patentverwaltung GmbH Luminescent screen with a luminescent composition
US5879795A (en) * 1994-12-16 1999-03-09 U.S. Philips Corporation Luminescent screen containing phosphor particles coated with MoO3
WO2001077233A1 (en) * 2000-04-06 2001-10-18 Kabushiki Kaisha Toshiba Oxide composite particle and method for its production, phosphor and method for its production, color filter and method for its manufacture, and color display
US6946785B2 (en) 2000-04-06 2005-09-20 Kabushiki Kaisha Toshiba Oxide composite particle and method for its production, phosphor and method for its production, color filter and method for its manufacture, and color display
JP2005040630A (en) * 2004-10-22 2005-02-17 Nipro Corp Liquid storing bag
JP2013530267A (en) * 2010-05-25 2013-07-25 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Aluminate-based fluorescent powder covering metal nanoparticles and preparation method thereof
JP2013530268A (en) * 2010-05-25 2013-07-25 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Fluorescent material for field emission and preparation method thereof
EP2578663A1 (en) * 2010-05-25 2013-04-10 Ocean's King Lighting Science&Technology Co., Ltd. Aluminate-based fluorescent powder coated by metal nanoparticle and production method thereof
EP2578663A4 (en) * 2010-05-25 2013-12-04 Oceans King Lighting Science Aluminate-based fluorescent powder coated by metal nanoparticle and production method thereof
JP2013532203A (en) * 2010-05-31 2013-08-15 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Rare earth element doped yttrium oxide light-emitting film containing conductive oxide and method for preparing the same
EP2584021A4 (en) * 2010-06-17 2014-02-26 Oceans King Lighting Science Strontium cerate luminous materials, preparation methods and use thereof
EP2584021A1 (en) * 2010-06-17 2013-04-24 Ocean's King Lighting Science&Technology Co., Ltd. Strontium cerate luminous materials, preparation methods and use thereof
EP2607447A4 (en) * 2010-08-19 2015-01-14 Oceans King Lighting Science Borate luminescent materials, preparation methods and uses thereof
US9518216B2 (en) 2012-05-08 2016-12-13 Ocean's King Lighting Science & Technology Co., Ltd Manganese-doped magnesium stannate luminescent material and preparation method therefor
JP2015519437A (en) * 2012-05-08 2015-07-09 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Manganese-doped magnesium stannate luminescent material and preparation method thereof
CN104169393A (en) * 2012-07-31 2014-11-26 海洋王照明科技股份有限公司 Stannate fluorescent material and method for preparing same
CN104169393B (en) * 2012-07-31 2016-01-13 海洋王照明科技股份有限公司 Stannate fluorescent material and preparation method thereof
US9447317B2 (en) 2012-07-31 2016-09-20 Ocean's King Lighting Science & Technology Co., Ltd. Stannate fluorescent material and method for preparing same
JP2015522105A (en) * 2012-07-31 2015-08-03 オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー Succinate fluorescent material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4275333A (en) Fluorescent compositions and low-velocity electron excited fluorescent display devices utilizing the same
JPH07110941B2 (en) Luminescent composition
JPH0326781A (en) Fluorescent substance
JPH0747732B2 (en) Slow electron beam excited phosphor
US5006277A (en) Fluorescent composition
JP2532586B2 (en) Slow electron beam excited phosphor and method for producing the same
JPH0333185A (en) Phosphor and its manufacture
JP3874508B2 (en) Phosphor composite
EP0087476B1 (en) Display device
JPS5933153B2 (en) Luminescent composition and slow electron beam excitation fluorescent display tube
JP3425470B2 (en) Red light emitting composition
WO2002061014A1 (en) Image display device
JPH0717899B2 (en) Luminescent composition
JP2959817B2 (en) Phosphor with pigment
JPS6039310B2 (en) Red luminescent composition and slow electron beam excitation fluorescent display tube
JPH07110942B2 (en) Luminescent composition
JPH0841454A (en) Luminescence composition of rare earth oxide-sulfide fluorescence body
JPS6243474B2 (en)
JPH0324188A (en) Phosphor composition
JPS6244035B2 (en)
JPS6318635B2 (en)
JPH0145508B2 (en)
KR100428621B1 (en) High luminance green phosphor containing chrome compound selected from group composed of chromium phosphate and chromium fluoride, and method for producing the same
JPS5933155B2 (en) Green luminescent composition and slow electron beam excitation fluorescent display tube
JPH07110943B2 (en) Luminescent composition