JPH0324188A - Phosphor composition - Google Patents

Phosphor composition

Info

Publication number
JPH0324188A
JPH0324188A JP1160074A JP16007489A JPH0324188A JP H0324188 A JPH0324188 A JP H0324188A JP 1160074 A JP1160074 A JP 1160074A JP 16007489 A JP16007489 A JP 16007489A JP H0324188 A JPH0324188 A JP H0324188A
Authority
JP
Japan
Prior art keywords
phosphor
zinc sulfide
activated zinc
oxide
zns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1160074A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kitagishi
信之 北岸
Masatoshi Niihama
新浜 正敏
Yoshinori Takada
吉則 高田
Yoshinori Yoshida
義則 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP1160074A priority Critical patent/JPH0324188A/en
Publication of JPH0324188A publication Critical patent/JPH0324188A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a colored phosphor compsn. with a high luminescence brightness by mixing a phosphor powder with a needlelike conductive powder. CONSTITUTION:100 pts.wt. phosphor powder is mixed with 1-90 pts.wt., pref. 2-60 pts.wt., needlelike conductive powder to give a phosphor compsn. Said conductive powder is one which satisfies the relation of l/m>=2, wherein lis the major axis and m is the minor axis of a particle of the conductive powder. When l/m<2, the properties of the resulting compsn. cannot surpass those of a compsn. produced by conventional technology. Pref., l is 50mum or lower. The word 'needlelike' includes the meaning of 'rodlike', 'pillarlike', 'fibrous', and 'of whisker shape'. Indium oxide, indium oxide contg. tin, tin oxide, and tin oxide contg. antimony are esp. pref. as the conductive powder.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、加速電圧敗百ボルト以下で発光する低速電子
線励起、即ちいわゆる蛍光表示管用の蛍光体組成物、特
に高発光輝度を有するカラー化蛍光体組威物に関する. (従来の技術) 加速電圧数百ボルト以下で発光する低速電子線励起用の
蛍光体組成物は、適当な導電性を有することが不可欠で
ある.これまで種々の発光色を有する蛍光体が知られて
いるが、青緑色の発光を呈する酸化亜鉛系蛍光体を除く
と、殆んどの硫化物系蛍光体及び希土類系蛍光体は導電
性を示さず、絶縁体である.そこで、これらの絶縁体で
ある蛍光体を導電化する方法として、蛍光体粉末に適当
量の導電性粉末を混合する方法があり、導電材として、
例えば特公昭52−’23911号、同52−2391
3号、同52−23916号には酸化インジウム、特公
昭59−33153号、同59−33155号、同60
−8072号には酸化インジウムの他、酸化錫等が記載
されている.しかし乍ら、未だ蛍光体と混合して、発光
輝度及び効率の高い経済的に有利で充分満足できる導電
性粉末が見出されていないのが現状である。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a phosphor composition for low-speed electron beam excitation that emits light at an accelerating voltage of 100 volts or less, that is, for so-called fluorescent display tubes, particularly for color phosphors with high luminance. Concerning fluorescent materials. (Prior Art) It is essential that a phosphor composition for slow electron beam excitation that emits light at an accelerating voltage of several hundred volts or less has appropriate conductivity. Phosphors that emit light in various colors have been known, but with the exception of zinc oxide phosphors that emit blue-green light, most sulfide phosphors and rare earth phosphors exhibit electrical conductivity. First, it is an insulator. Therefore, as a method of making these insulating phosphors conductive, there is a method of mixing an appropriate amount of conductive powder with the phosphor powder, and as a conductive material,
For example, Special Publication No. 52-'23911, No. 52-2391
No. 3, No. 52-23916 contains indium oxide, Japanese Patent Publications No. 59-33153, No. 59-33155, No. 60
In addition to indium oxide, tin oxide and the like are described in No. 8072. However, at present, an economically advantageous and fully satisfactory conductive powder that can be mixed with a phosphor and exhibits high luminance and efficiency has not yet been found.

(発明が解決しようとする問題点) 前記導電性粉末には、蛍光体そのものが有する発光性を
損なわず、且つ蛍光体に高い導電性を付与することが要
求されるが、未だ満足できるものは、知られていない.
特に問題となるのは、前記した従来の方法では、比較的
多量の導電性粉末を必要とするため蛍光体組成物中の蛍
光体含有量が減り、結局はその蛍光体組成物は、導電性
は高くても発光性が低い結果となるため発光輝度および
発光効率の高い蛍光体&Il底物とはなり得ない.(問
題点を解決するための手段) 本発明者らは、低速電子線励起用蛍光体組或物のカラー
化、およびその利用分野の拡大に伴なって、なお一層の
高発光輝度化や高効率化が望まれているのに鑑み、先の
問題点を解決すべく導電材の形状について鋭意研究を行
った結果、針状の形状を有する導電性粉末を用いること
により、前記従来技術の問題点を解決できることを知り
、本発明に到達した. 本発明の蛍光体組成物が従来の蛍光体組或物、即ち球状
或いは少なくとも本発明でいう針状の形状を有しない導
電性粉末と蛍光体とからなる組或物より発光輝度が高い
理由は詳らかではないが、1)針状のものは球状のもの
に比べ蛍光体の媒体中での連続性が得られ易いこと、2
)針状であるため導電性粉末同志が凝集することなく、
分散性が良いため均一に分散した蛍光体紺戒物を与える
こと、3)1),2)の結果として組成物中の導電性粉
末の含有量を少くできるために発光性を有する蛍光体の
含有量を増やせること、4)針状導電性粉末はとくに硫
化物系蛍光体や希土類系蛍光体との適合性が良いこと、
などの理由によるものと考えられる. 本発明でいう針状の形状を有する導電物とは、導電物の
長袖をl1短軸をmとするときIt / m≧2となる
ものをいう。l/mが2未満では、通常の方法により製
造された球状の形状を有する導電性粉末を用いた蛍光体
、即ち従来技術による蛍光体組威物と同程度のものしか
得られない.本発明でいう針状には、棒状、柱状、繊維
状、ウィスカ一と称されるものも含まれる.長軸lの値
については、特に限定されるものではないが、実用的に
は、l≦50−が好ましい. 本発明で用いる導電性粉末は、そのすべてが針状の形状
を有する導電物からなるものが最も好ましいのであるが
、針状の形状を有しない導電物との混合物であってもよ
い。しかし、本発明の目的を達戒するためには、混合物
中の針状の形状を有する導電物の含有率が10重量%以
上であることが必要である.10重量%未満では針状の
形状を有する導電物を使用したことによる効果は現われ
ず、従来技術による蛍光体&ll威物と同程度のものし
か得られない. 本発明の蛍光体&ll戒物の構戒戊分である導電性粉末
としては、各種金属粉末の他、酸化チタン、酸化タング
ステン、酸化ニオブ、酸化亜鉛等の各種金属酸化物粉末
および硫化カドミウム、硫化銅等の各種金属硫化物粉末
等が挙げられるが、特に、酸化インジウム、錫含有酸化
インジウム、酸化錫、アンチモン含有酸化錫を用いた場
合に好ましい結果が得られる. 針状の形状を有する導電物を製造するには、方向にのみ
結晶を威長させることが必要であり、この樺に特に注意
して製造した針状の形状を有する導電物を使用すること
によって、本発明を達戊することができる。
(Problems to be Solved by the Invention) The conductive powder is required to impart high conductivity to the phosphor without impairing the luminescence properties of the phosphor itself, but there are still none that are satisfactory. ,unknown.
A particular problem is that the conventional method described above requires a relatively large amount of conductive powder, which reduces the phosphor content in the phosphor composition, and eventually the phosphor composition becomes conductive. Even if it is high, the luminescence property is low, so it cannot be a phosphor with high luminance and luminous efficiency. (Means for Solving the Problems) The present inventors have developed color phosphor assemblies for excitation with slow electron beams, and with the expansion of the field of use thereof, the present inventors have endeavored to achieve even higher luminance and higher luminance. In view of the desire for increased efficiency, we conducted intensive research on the shape of conductive materials in order to solve the above problems, and found that by using conductive powder with an acicular shape, the problems of the prior art described above can be solved. We found that this problem could be solved and arrived at the present invention. The reason why the phosphor composition of the present invention has higher luminance than conventional phosphor assemblies, that is, assemblies made of conductive powder and phosphor that do not have a spherical or at least acicular shape according to the present invention, is that Although the details are not clear, 1) it is easier to obtain continuity in the phosphor medium with needle-shaped ones than with spherical ones, and 2)
) Since it is acicular, the conductive powder does not aggregate together.
3) As a result of 1) and 2), it is possible to reduce the content of conductive powder in the composition, so it is possible to use a luminescent phosphor. 4) The acicular conductive powder is particularly compatible with sulfide-based phosphors and rare-earth phosphors;
This is thought to be due to the following reasons. In the present invention, a conductive material having a needle-like shape is one for which It/m≧2, where m is the short axis of the long sleeve of the conductive material. When l/m is less than 2, only a phosphor using a spherical conductive powder manufactured by a conventional method, that is, a phosphor composition comparable to that of a conventional phosphor composition can be obtained. In the present invention, the needle-like shape includes what is called a rod-like shape, a column-like shape, a fiber-like shape, and a whisker-like shape. Although the value of the major axis l is not particularly limited, it is practically preferable that l≦50−. The conductive powder used in the present invention is most preferably made entirely of conductive material having an acicular shape, but it may be a mixture with a conductive material that does not have a acicular shape. However, in order to achieve the object of the present invention, it is necessary that the content of the acicular conductive material in the mixture is 10% by weight or more. If it is less than 10% by weight, the effect of using the needle-shaped conductive material will not be apparent, and the results obtained will be comparable to those of the conventional phosphors. The conductive powder that is a part of the phosphor and materials of the present invention includes, in addition to various metal powders, various metal oxide powders such as titanium oxide, tungsten oxide, niobium oxide, and zinc oxide, and cadmium sulfide and sulfide. Examples include various metal sulfide powders such as copper, but particularly favorable results are obtained when indium oxide, tin-containing indium oxide, tin oxide, and antimony-containing tin oxide are used. In order to produce a conductive material with a needle-like shape, it is necessary to grow the crystal only in the direction, and by using a conductive material with a needle-like shape produced with special attention to this birch. , the present invention can be achieved.

針状の形状を有する導電物の製造方法には、種々の方法
が知られており限定されるものではない.例えば針状の
形状を有する酸化インジウムや錫含有酸化インジウムは
、下記の均一沈澱法により製造できる. 即ち、過当な水溶性インジウム化合物と尿素を水に溶解
、昇温し、尿素を分解させることにより徐々にアンモニ
アを発生させると、中和反応により針状の形状を有する
水酸化インジウムもしくは酸化インジウム水和物を得る
ことができる.これを乾燥、焼戒すると針状の形状を有
する酸化インジウムとなる.又、水溶性インジウム化合
物と共に水溶性錫化合物の適当量を添加しておくことに
より、針状の形状を有する錫含有酸化インジウムを製造
することもできる.そのほか、特公昭62−47811
号には、ノニオン系界面活性剤を含む溶液中で塩化第1
錫と蓚酸第1錫とを反応させて針状の蓚酸錫を製造し、
これを乾燥、加熱分解して針状の酸化錫を製造する方法
が記されている.又、上記針状の蓚酸錫に三塩化アンチ
モンを作用させて加熱分解すると針状の形状を有するア
ンチモン含有酸化錫が製造できる. 一方、特公昭60−21553号には、酸化チタン粉末
の表面にアンチモン含有酸化錫からなる導電層を形威さ
せた導電性粉末の製造方法が記載されている.この場合
、酸化チタン粉末として、例えば特開昭56−3232
6号に記載されたような針状の酸化チタンを使用すると
、酸化チタンにアンチモン含有酸化錫を被覆させた針状
の形状を有する導電物が得られる.酸化チタンの代りに
針状のシリカ、アルミナ、チタン酸塩等を用いると、そ
れぞれ対応する針状の形状を有する導電物が得られる.
このように、針状の但体に酸化インジウム、錫含有酸化
インジウム、酸化錫、アンチモン含有酸化錫からなる群
より選ばれた、少なくt ともW種の化合物を被覆させて得られた導電物も本発明
の範囲に含まれる. 以上、本発明で用いる針状の形状を有する導電物につい
て詳述し、同時に製造方法を例示して説明したが、これ
らの製造方法に限定されるものでなく、既に市販されて
いる針状の形状を有する導電物を採用してもよく、その
効果は全く変らない。
Various methods are known for manufacturing a conductive material having a needle-like shape, and the method is not limited. For example, indium oxide having a needle-like shape or tin-containing indium oxide can be produced by the uniform precipitation method described below. That is, when an excessively water-soluble indium compound and urea are dissolved in water, the temperature is raised, and ammonia is gradually generated by decomposing the urea, a neutralization reaction results in indium hydroxide or indium oxide water having a needle-like shape. You can obtain Japanese products. When this is dried and burned, it becomes indium oxide with a needle-like shape. Furthermore, by adding an appropriate amount of a water-soluble tin compound together with a water-soluble indium compound, tin-containing indium oxide having a needle-like shape can be produced. In addition, special public service No. 62-47811
No. 1, the first chloride solution was prepared in a solution containing a nonionic surfactant.
producing acicular tin oxalate by reacting tin and stannous oxalate;
A method for producing acicular tin oxide by drying and thermally decomposing it is described. Furthermore, when the acicular tin oxalate is reacted with antimony trichloride and thermally decomposed, antimony-containing tin oxide having an acicular shape can be produced. On the other hand, Japanese Patent Publication No. 60-21553 describes a method for producing conductive powder in which a conductive layer made of antimony-containing tin oxide is formed on the surface of titanium oxide powder. In this case, as the titanium oxide powder, for example, JP-A-56-3232
When acicular titanium oxide as described in No. 6 is used, a conductive material having an acicular shape in which titanium oxide is coated with antimony-containing tin oxide can be obtained. When acicular silica, alumina, titanate, etc. are used in place of titanium oxide, conductive materials with corresponding acicular shapes can be obtained.
In this way, a conductive material obtained by coating a needle-shaped body with at least t W compounds selected from the group consisting of indium oxide, tin-containing indium oxide, tin oxide, and antimony-containing tin oxide can also be used. It is included within the scope of the present invention. Above, the needle-shaped conductive material used in the present invention has been described in detail and the manufacturing method has been illustrated and explained, but the manufacturing method is not limited to these, and the needle-shaped conductive material that is already commercially available A conductive material having a shape may be used, and the effect will not change at all.

一方、本発明の他の構*戒分てある蛍光体粉末には種々
の発光色を有する硫化物系蛍光体、希土類系蛍光体があ
る.即ち、硫化物系蛍光体としては、例えば、銅付活硫
化亜鉛蛍光体(ZnS:Cu、緑色発光)、銅付活硫化
亜鉛カドミウム蛍光体(Zn+−aCdaS:Cu,但
しOva≦0.5 緑〜赤色発光)、銅、アルミニウム
付活硫化亜鉛蛍光体(ZnS:Cu,AI!.、緑色発
光)、銅、アルミニウム付活硫化亜鉛カドミウム蛍光体
(Zn+−bcdbs ’Cu,A/!、但しo<b≦
0.5緑〜赤色発光)、銀付活硫化亜鉛蛍光体(ZnS
:Ag、青色発光)、根付活硫化亜鉛カドミウム蛍光体
(Zn+−ccdcs :Ag、但しO<c≦0.9 
青〜赤色発光)、銀、アルミニウム付活硫化亜鉛蛍光体
(ZnS :Ag,Al、青色発光)、銀、アルもニウ
ム付活硫化亜鉛カドミウム蛍光体(Zn+−acd4s
:Ag.Aj2、但し0〈d≦0.9 青〜赤色発光)
、金付活硫化亜鉛蛍光体(ZnS :Au、黄色発光)
、金付活硫化亜鉛カドミウム蛍光体( Z n+−Cd
− S : Au,但しO<e≦0.4  黄〜赤色発
光)、金、アルミニウム付活硫化亜鉛蛍光体(ZnS 
:Au,Al、黄色発光)、金、アルミニウム付活硫化
亜鉛カドミウム蛍光体(Zn+−,Cd,S : Au
,A I、但し0<f≦0.4黄〜赤色発光)、または
マンガン付活硫化亜鉛蛍光体(ZnS:Mn、橙色発光
)等がある.また、希土類系蛍光体としては、例えばラ
ンタン、セリウム、プラセオジウム、サマリウム、ユー
ロピューム、テルビウム、エルビウム、ツリウム等で付
活した蛍光体、又イットリウム、カドリニウム、ルテニ
ウム等の酸硫化物、酸化物、バナジン酸化合物、硼酸化
合物、リン酸化合物等を母体とした蛍光体等がある.特
に本発明の構Tfg或分として好ましいものに、ユーロ
ピューム付活酸硫化イットリウム蛍光体(Y,O,S 
: Eu、赤色発光)、ユーロピューム付活酸化イ7}
リウム蛍光体(Y.03:Eu..赤色発光)、ユーロ
ピューム付活バナジン酸イットリウム蛍光体( Y V
 O a : E u、赤色発光)等がある.導電性粉
末の混合割合は、上記蛍光体粉末の群から選ばれた少な
くともl種の蛍光体粉末100重量部に対して1〜90
重量部が適当であり、好ましくは2〜60重量部である
.導電性粉末の混合割合が1重量部未満では、良好な導
電性を有する蛍光体組威物が得られず発光輝度は低くな
る.一方90重量部を越えると良好な導電性を示すが、
&ll戒物中の蛍光体含有量が減少するので、結局は発
光輝度は低くなる. 又、蛍光体粉末と導電性粉末とはできるだけ均一に混合
することが望ましい.混合の方法には、両者の粉末をV
型混合機等を用いて混合する乾式法、水或いはアルコー
ルなどの媒体を利用して撹拌混合する湿式法があり、い
ずれも採用できる.特に、湿式法の場合は超音波で分散
するとより効果的であり、分散後は蛍光体組成物を炉過
又は媒体の留去によって媒体から分離する. この様にして得られた本発明の蛍光体組成物は低速電子
線励起装置によって発光させることができる.低速電子
線励起装置は、真空内にセットされた陰極であるフィラ
メント、グリッド、及び陽極からなり、陰極からの電子
線をグリッドを通して陽極仮上に塗布した蛍光体組或物
に照射すると発光がみられる. (実施例) 以下実施例により本発明を更に詳細に説明するが、本発
明はこれに限定されるものではない.製造例l (導電性粉末の製造) 硝酸インジウム100gと尿素230gを水1lに溶解
し、90゜C以上に加温すると、尿素の熱分解により生
戒したアンモニアと硝酸インジウムが反応し、いわゆる
均一沈澱法による針状の形状を有する水酸化インジウム
が析出する.これを濾過、洗浄、乾燥の後、850゜C
で焼威し、針状の形状を有する酸化インジウムを製造し
たmu微鏡写真から長軸i)はl〜34、短軸(m)は
0.5一以下であることが観察され、l / m≧2で
あった.(第1図参照) 実施例1〜4 高純度硫化亜鉛に、硫化亜鉛1モル当り銅およびアルミ
ニウムがいずれもIXI(1’g原子となるように硫酸
銅と硫酸アルミニウムを加えて、硫黄および硫化水素か
らなる還元雰囲気中1000℃で2時間焼威してZnS
 : Cu,Al蛍光体を製造した.上記蛍光体100
重量部と製造例1で得られた針状の形状を有する酸化イ
ンジウム、各々2、10、30、60重量部をエタノー
ルを媒体として充分撹拌混合し、速やかに固形物を濾過
した後、減圧下乾燥して、本発明の蛍光体組成物を製造
した. 上述の方法で得られた蛍光体IJI7ii物の輝度を低
速電子線励起装置において、フィラメント電流90mA
,加速電圧40Vの設定にて測定し、後記比較例1で得
られた蛍光体組底物の最大輝度を100とした場合の相
対輝度を求めた.結果をj!−1に示す. 表−1 “蛍光体 ZnS:Cu,AI!100重量部に対して
比較例1 球状の酸化インジウムを得るための通常の製造方法とし
て以下に示す方法を用いた.即ち、硝酸インジウム30
0gを水11!.に溶解し、5%アンモニア水を滴下し
て不均一沈澱法により球状の水酸化インジウムを析出さ
せ、濾過、洗浄、乾燥の後、850゜Cで焼戒すること
により中央M O. 6 mの粒子径分布を有する球状
酸化インジウムを得た.(第2図参照) ついで実施例
lで用いたZnS :Cu,Al蛍光体100重量部に
対し、上記の方法で得た球状酸化インジウムの添加量を
変えて、実施例1と同様の方法により種々の蛍光体&[
I或物を製造し、その最大輝度を比較した。その結果、
ZnS : Cu,AI!蛍光体に対する球状酸化イン
ジウムの添加量は30重量部で最も高い輝度が得られた
。この輝度を100として、実施例1〜7で得られた輝
度の比較を行った。
On the other hand, other phosphor powders of the present invention include sulfide phosphors and rare earth phosphors that emit light of various colors. That is, examples of sulfide-based phosphors include copper-activated zinc sulfide phosphor (ZnS:Cu, green light emitting), copper-activated zinc cadmium sulfide phosphor (Zn+-aCdaS:Cu, provided that Ova≦0.5 green) ~red emission), copper, aluminum activated zinc sulfide phosphor (ZnS:Cu,AI!., green emission), copper, aluminum activated zinc sulfide cadmium phosphor (Zn+-bcdbs 'Cu, A/!, but o <b≦
0.5 green to red luminescence), silver-activated zinc sulfide phosphor (ZnS
:Ag, blue luminescence), root-activated zinc sulfide cadmium phosphor (Zn+-ccdcs:Ag, provided that O<c≦0.9
(blue to red luminescence), silver, aluminum activated zinc sulfide phosphor (ZnS: Ag, Al, blue luminescence), silver, aluminum activated zinc sulfide cadmium phosphor (Zn+-acd4s)
:Ag. Aj2, but 0〈d≦0.9 blue to red light emission)
, gold-activated zinc sulfide phosphor (ZnS:Au, yellow luminescence)
, gold-activated zinc sulfide cadmium phosphor (Zn+-Cd
- S: Au, but O<e≦0.4 (yellow to red luminescence), gold, aluminum activated zinc sulfide phosphor (ZnS
: Au, Al, yellow luminescence), gold, aluminum-activated zinc sulfide cadmium phosphor (Zn+-, Cd, S: Au
, AI, but 0<f≦0.4 (yellow to red light emission), or manganese-activated zinc sulfide phosphor (ZnS:Mn, orange light emission). Examples of rare earth phosphors include phosphors activated with lanthanum, cerium, praseodymium, samarium, europium, terbium, erbium, thulium, etc., and oxysulfides, oxides, and vanadate of yttrium, cadrinium, ruthenium, etc. There are phosphors based on chemical compounds, boric acid compounds, phosphoric acid compounds, etc. Particularly preferred as a structure Tfg of the present invention is a europium-activated yttrium oxysulfide phosphor (Y, O, S
: Eu, red luminescence), europium activated oxide 7}
lium phosphor (Y.03:Eu..red light emitting), europium-activated yttrium vanadate phosphor (YV
Oa: Eu, red light emission), etc. The mixing ratio of the conductive powder is 1 to 90 parts by weight based on 100 parts by weight of at least l types of phosphor powder selected from the above group of phosphor powders.
Parts by weight are appropriate, preferably 2 to 60 parts by weight. If the mixing ratio of the conductive powder is less than 1 part by weight, a phosphor composition with good conductivity cannot be obtained and the luminance will be low. On the other hand, if it exceeds 90 parts by weight, it shows good conductivity, but
&ll As the phosphor content in the precepts decreases, the luminance will eventually decrease. Furthermore, it is desirable that the phosphor powder and conductive powder be mixed as uniformly as possible. The mixing method involves mixing both powders with V
There is a dry method of mixing using a mold mixer, etc., and a wet method of stirring and mixing using a medium such as water or alcohol, both of which can be used. In particular, in the case of a wet method, dispersion using ultrasonic waves is more effective, and after dispersion, the phosphor composition is separated from the medium by filtration or distillation of the medium. The phosphor composition of the present invention thus obtained can be made to emit light using a slow electron beam excitation device. A low-speed electron beam excitation device consists of a filament, which is a cathode set in a vacuum, a grid, and an anode. When the electron beam from the cathode passes through the grid and is irradiated onto a phosphor composition coated on the anode, light is emitted. It will be done. (Example) The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto. Production example l (Production of conductive powder) When 100 g of indium nitrate and 230 g of urea are dissolved in 1 liter of water and heated to 90°C or higher, the ammonia released by thermal decomposition of urea reacts with indium nitrate, resulting in a so-called homogeneous solution. Indium hydroxide with a needle-like shape is precipitated by the precipitation method. After filtering, washing and drying, heat at 850°C.
From the MU microscopic photograph of indium oxide having a needle-like shape produced by burning it with m≧2. (See Figure 1) Examples 1 to 4 Copper sulfate and aluminum sulfate were added to high-purity zinc sulfide so that copper and aluminum were both IXI (1'g atom) per 1 mole of zinc sulfide. ZnS was burned at 1000℃ for 2 hours in a reducing atmosphere consisting of hydrogen.
: Cu, Al phosphor was manufactured. The above phosphor 100
Parts by weight and 2, 10, 30, and 60 parts by weight of the needle-shaped indium oxide obtained in Production Example 1 were sufficiently stirred and mixed using ethanol as a medium, and after quickly filtering the solid matter, the mixture was heated under reduced pressure. This was dried to produce a phosphor composition of the present invention. The brightness of the phosphor IJI7ii obtained by the above method was measured using a filament current of 90 mA in a slow electron beam excitation device.
, the relative brightness was determined with the maximum brightness of the phosphor composite sole obtained in Comparative Example 1 described later taken as 100. The result! -1 shows. Table 1 “Phosphor ZnS:Cu,AI! Comparative Example 1 for 100 parts by weight The following method was used as a normal manufacturing method to obtain spherical indium oxide. Namely, 30 parts by weight of indium nitrate
0g to 11 parts water! .. 5% aqueous ammonia was added dropwise to precipitate spherical indium hydroxide by a heterogeneous precipitation method, and after filtration, washing, and drying, the central MO. Spherical indium oxide with a particle size distribution of 6 m was obtained. (See Figure 2) Next, 100 parts by weight of the ZnS:Cu,Al phosphor used in Example 1 was treated in the same manner as in Example 1, with varying amounts of the spherical indium oxide obtained by the above method. Various phosphors & [
I manufactured some products and compared their maximum brightness. the result,
ZnS: Cu, AI! The highest brightness was obtained when the amount of spherical indium oxide added to the phosphor was 30 parts by weight. This brightness was set as 100, and the brightness obtained in Examples 1 to 7 was compared.

実施例5 前記ZnS : Cu,A/!蛍光体100重量部に製
造例1記載の針状の形状を有する酸化インジウム5重1
部、比較例1記載の球状の酸化インジウム15重量部(
合計20重量部)を添加し、実施例1と同様にして混合
、濾過、乾燥して本発明の蛍光体&l或物を製造した.
得られた該組成物の相対輝度は120%であった. 実施例6 硝酸インジウム1 0 0 g,塩化第一錫0.5gと
尿素230gを水1lに溶解し、製造例lと同様に加熱
後、濾過、洗浄、乾燥、焼威して針状の形状を有する錫
含有酸化インジウムを製造した。形状は製造例1の場合
と同じ、Il=1〜3μ、m;0.54以下でl/m≧
2であった. 以下実施例lと同様にZnS : Cu. Al蛍光体
100重量部に対し、ここで得られた錫含有酸化インジ
ウム10重量部を混合し、蛍光体組成物を製造した.得
られた該組或物の輝度は140%であった. 実施例7 ZnS : Cu,Al蛍光体100重量部に対し、針
状の酸化チタンに、アンチモンを含有した酸化錫より或
る導電層を被覆させた針状導電性酸化チタン(FT−1
000:石原産業■製)5重量部を混合し、蛍光体&l
I戒物を製造した。顕@鏡写真よりQ:2〜5u、m 
: 0. 0 5 〜0. 1 pm, I! / m
≧20であった.得られた該組成物の相対輝度は、13
0%であった. 実施例8〜20 各種硫化物系蛍光体および希土類系蛍光体に、製造例1
で製造した針状の形状を有する酸化インジウムを混合し
て、各種の本発明の蛍光体&ll底物を製造した。尚、
硫化物蛍光体は、実施例1のZ n S : C u 
+ A I!蛍光体に準じて製造した。例えば、母体が
硫化亜鉛カドミウムの場合には高純度硫化亜鉛と硫化カ
ドミウムとを用い、付活剤が銀、金、マンガンの場合は
それぞれ硝酸銀、塩化金、塩化マンガンを用いた.又、
ユーロピューム付活酸化イットリウム蛍光体は、酸化イ
ットリウムと適当量の酸化ユーロピュームを硝酸に溶解
し、蓚酸を加えて蓚酸塩を製造し、この蓚酸塩を空気中
iooo℃で2時間焼威して製造した.又、ユーロピュ
ーム付活バナジン酸イットリウム蛍光体も同様にして製
造した.又、ユーロピューム付活酸硫化イットリウム蛍
光体は上記ユーロピューム付活酸化イットリウム蛍光体
に適当量の炭酸ソーダと硫黄とを加え、窒素中1000
℃で5時間反応させて製造した. 一方、実施例8〜20の各種蛍光体に比較例1で得た球
状酸化インジウムを添加し、その量を変えて実施例lと
同様な方法で種々の蛍光体組成物を製造した.そのヴで
最大輝度が得られた時の輝度を100として実施例8〜
20各々について輝度の比較を行った.得られた結果を
表−2に示す。
Example 5 The ZnS: Cu, A/! 100 parts by weight of the phosphor and 5 parts of indium oxide having the needle-like shape described in Production Example 1
parts, 15 parts by weight of spherical indium oxide described in Comparative Example 1 (
A total of 20 parts by weight) was added, mixed, filtered and dried in the same manner as in Example 1 to produce a phosphor of the present invention.
The relative brightness of the resulting composition was 120%. Example 6 100 g of indium nitrate, 0.5 g of stannous chloride, and 230 g of urea were dissolved in 1 liter of water, heated in the same manner as in Production Example 1, filtered, washed, dried, and burned to obtain a needle-like shape. A tin-containing indium oxide was produced. The shape is the same as in Production Example 1, Il = 1 to 3μ, m; 0.54 or less, l/m≧
It was 2. Hereinafter, as in Example 1, ZnS:Cu. 10 parts by weight of the tin-containing indium oxide obtained here was mixed with 100 parts by weight of the Al phosphor to produce a phosphor composition. The brightness of the resulting assembly was 140%. Example 7 ZnS: For 100 parts by weight of Cu, Al phosphor, acicular conductive titanium oxide (FT-1) was prepared by coating acicular titanium oxide with a conductive layer made of tin oxide containing antimony.
000: manufactured by Ishihara Sangyo ■) was mixed with 5 parts by weight of phosphor &l.
I produced a precept. Q: 2~5u, m from microscope @ mirror photo
: 0. 0 5 ~ 0. 1 pm, I! / m
It was ≧20. The relative brightness of the resulting composition was 13
It was 0%. Examples 8 to 20 Production Example 1 was applied to various sulfide-based phosphors and rare-earth phosphors.
Various types of phosphors of the present invention were manufactured by mixing indium oxide having a needle-like shape manufactured in . still,
The sulfide phosphor is Z n S : Cu of Example 1.
+ AI! Manufactured in the same manner as the phosphor. For example, when the base material was zinc cadmium sulfide, high-purity zinc sulfide and cadmium sulfide were used, and when the activator was silver, gold, or manganese, silver nitrate, gold chloride, and manganese chloride were used, respectively. or,
The europium-activated yttrium oxide phosphor was produced by dissolving yttrium oxide and an appropriate amount of europium oxide in nitric acid, adding oxalic acid to produce oxalate, and burning the oxalate in air at iooo°C for 2 hours. .. A europium-activated yttrium vanadate phosphor was also produced in the same manner. Further, the europium-activated yttrium oxysulfide phosphor is prepared by adding an appropriate amount of soda carbonate and sulfur to the europium-activated yttrium oxide phosphor, and then adding an appropriate amount of sodium carbonate and sulfur to the europium-activated yttrium oxide phosphor.
It was produced by reacting at ℃ for 5 hours. On the other hand, various phosphor compositions were produced in the same manner as in Example 1 by adding the spherical indium oxide obtained in Comparative Example 1 to the various phosphors of Examples 8 to 20 and varying the amount. Example 8~ with the brightness when the maximum brightness is obtained as 100
We compared the brightness of each of the 20 images. The results obtained are shown in Table-2.

(発明の効果) 木発明(よ、新規な低速電子線励起蛍光体視戒物、即ち
蛍光表示管用蛍光体組成物を提供するものである.本発
明の蛍光体組或物は、従来のものより高い発光輝度及び
効率を有し、、しかも安価であり、これによ,っ゛て実
用的な蛍光表示管のカラー化が−段と加速され、そのf
業的利用価値は非常に大きい.
(Effects of the Invention) This invention provides a novel low-speed electron beam-excited phosphor viewing material, that is, a phosphor composition for a fluorescent display tube.The phosphor composition of the present invention is different from the conventional one. It has higher luminance and efficiency, and is also inexpensive, which will greatly accelerate the colorization of practical fluorescent display tubes and increase its f
It has great commercial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、製造例1に記載した針状の形状を有する酸化
インジウム、第2図は、比較例1に記載し2た球状酸化
インジウムの形状を示すいずれも5000倍の顕微鏡写
真である.
FIG. 1 is a micrograph showing the shape of acicular indium oxide described in Production Example 1, and FIG. 2 is a micrograph showing the shape of spherical indium oxide described in Comparative Example 1, both magnified at 5000 times.

Claims (9)

【特許請求の範囲】[Claims] (1)蛍光体粉末と、針状の形状を有する導電物を少な
くとも10重量%以上含む導電性粉末とを混合してなる
蛍光体組成物。
(1) A phosphor composition obtained by mixing a phosphor powder and a conductive powder containing at least 10% by weight of a needle-shaped conductor.
(2)針状の形状を有する導電物がその長軸をl、短軸
をmとするとき、l/m≧2である特許請求の範囲(1
)記載の蛍光体組成物。
(2) The scope of claims (1
) The phosphor composition described.
(3)長軸lが50μm以下である特許請求の範囲(2
)記載の蛍光体組成物。
(3) Claims in which the long axis l is 50 μm or less (2
) The phosphor composition described.
(4)導電性粉末が、酸化インジウム、錫含有酸化イン
ジウム、酸化錫、アンチモン含有酸化錫よりなる群から
選ばれた少なくとも1種である特許請求の範囲(1)記
載の蛍光体組成物。
(4) The phosphor composition according to claim (1), wherein the conductive powder is at least one selected from the group consisting of indium oxide, tin-containing indium oxide, tin oxide, and antimony-containing tin oxide.
(5)針状の形状を有する導電物が針状の酸化チタン、
シリカ、アルミナ、チタン酸塩を担体とし酸化インジウ
ム、錫含有酸化インジウム、酸化錫、アンチモン含有酸
化錫よりなる群から選ばれた少なくとも1種を被覆した
ものである特許請求の範囲(1)記載の蛍光体組成物。
(5) titanium oxide in which the electrical conductor has a needle-like shape;
Claim (1) wherein the carrier is silica, alumina, or titanate and is coated with at least one member selected from the group consisting of indium oxide, tin-containing indium oxide, tin oxide, and antimony-containing tin oxide. Phosphor composition.
(6)導電性粉末の混合割合が、蛍光体粉末100重量
部に対して1〜90重量部である特許請求の範囲(1)
記載の蛍光体組成物。
(6) Claim (1) in which the mixing ratio of the conductive powder is 1 to 90 parts by weight per 100 parts by weight of the phosphor powder.
The described phosphor composition.
(7)蛍光体粉末が、硫化物系蛍光体又は希土類系蛍光
体である特許請求の範囲(1)記載の蛍光体組成物。
(7) The phosphor composition according to claim (1), wherein the phosphor powder is a sulfide phosphor or a rare earth phosphor.
(8)硫化物系蛍光体が、銅付活硫化亜鉛蛍光体(Zn
S:Cu)、銅付活硫化亜鉛カドミウム蛍光体(Zn_
1_−_aCd_aS:Cu、但し0<a≦0.5)、
銅、アルミニウム付活硫化亜鉛蛍光体(ZnS:Cu,
Al)、銅、アルミニウム付活硫化亜鉛カドミウム蛍光
体(Zn_1_−_bCd_bS:Cu,Al、但し0
<b≦0.5)、銀付活硫化亜鉛蛍光体(ZnS:Ag
)、銀付活硫化亜鉛カドミウム蛍光体(Zn_1_−_
cCd_cS:Ag、但し0<c≦0.9)、銀、アル
ミニウム付活硫化亜鉛蛍光体(ZnS:Ag,Al)、
銀、アルミニウム付活硫化亜鉛カドミウム蛍光体(Zn
_1_−_dCd_dS:Ag,Al、但し0<d≦0
.9)、金付活硫化亜鉛蛍光体(ZnS:Au)、金付
活硫化亜鉛カドミウム蛍光体(Zn_1_−_eCd_
eS:Au、但し0<e≦0.4)、金、アルミニウム
付活硫化亜鉛蛍光体(ZnS:Au,Al)、金、アル
ミニウム付活硫化亜鉛カドミウム蛍光体(Zn_1_−
_fCd_fS:Au,Al、但し0<f≦0.4)、
またはマンガン付活硫化亜鉛蛍光体(ZnS:Mn)よ
りなる群から選ばれた少なくとも1種である特許請求の
範囲(6)記載の蛍光体組成物。
(8) The sulfide-based phosphor is a copper-activated zinc sulfide phosphor (Zn
S: Cu), copper-activated zinc sulfide cadmium phosphor (Zn_
1_-_aCd_aS: Cu, however, 0<a≦0.5),
Copper, aluminum activated zinc sulfide phosphor (ZnS:Cu,
Al), copper, aluminum-activated zinc sulfide cadmium phosphor (Zn_1_-_bCd_bS: Cu, Al, but 0
<b≦0.5), silver-activated zinc sulfide phosphor (ZnS:Ag
), silver-activated zinc sulfide cadmium phosphor (Zn_1_-_
cCd_cS: Ag, but 0<c≦0.9), silver, aluminum activated zinc sulfide phosphor (ZnS:Ag, Al),
Silver, aluminum activated zinc cadmium sulfide phosphor (Zn
_1_-_dCd_dS: Ag, Al, however, 0<d≦0
.. 9), gold-activated zinc sulfide phosphor (ZnS:Au), gold-activated zinc sulfide cadmium phosphor (Zn_1_-_eCd_
eS: Au, but 0<e≦0.4), gold, aluminum-activated zinc sulfide phosphor (ZnS: Au, Al), gold, aluminum-activated zinc sulfide cadmium phosphor (Zn_1_-
_fCd_fS: Au, Al, 0<f≦0.4),
or a manganese-activated zinc sulfide phosphor (ZnS:Mn).
(9)希土類系蛍光体がユーロピューム付活酸硫化イッ
トリウム蛍光体(Y_2O_2S:Eu)、ユーロピュ
ーム付活酸化イットリウム蛍光体(Y_2O_3:Eu
)、またはユーロピューム付活バナジン酸イットリウム
蛍光体(YVO_4:Eu)よりなる群から選ばれた少
なくとも1種である特許請求の範囲(6)記載の蛍光体
組成物。
(9) The rare earth phosphors are europium-activated yttrium oxysulfide phosphor (Y_2O_2S:Eu) and europum-activated yttrium oxide phosphor (Y_2O_3:Eu).
), or a europium-activated yttrium vanadate phosphor (YVO_4:Eu).
JP1160074A 1989-06-21 1989-06-21 Phosphor composition Pending JPH0324188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1160074A JPH0324188A (en) 1989-06-21 1989-06-21 Phosphor composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1160074A JPH0324188A (en) 1989-06-21 1989-06-21 Phosphor composition

Publications (1)

Publication Number Publication Date
JPH0324188A true JPH0324188A (en) 1991-02-01

Family

ID=15707323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1160074A Pending JPH0324188A (en) 1989-06-21 1989-06-21 Phosphor composition

Country Status (1)

Country Link
JP (1) JPH0324188A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293517A (en) * 1993-04-05 1994-10-21 Sumitomo Metal Mining Co Ltd Production of indium-tin oxide aciculate powder
US6511614B1 (en) * 1993-04-05 2003-01-28 Sumitomo Metal Mining Co., Ltd. Raw material for producing powder of indium-tin oxide aciculae and method of producing the raw material, powder of indium-tin oxide aciculae and method of producing the powder, electroconductive paste and light-transmitting electroconductive film
WO2005087892A1 (en) * 2004-03-12 2005-09-22 Kabushiki Kaisha Toshiba Field-emission phosphor, its manufacturing method, and field-emission device
US7537714B2 (en) 2004-12-24 2009-05-26 Samsung Sdi Co., Ltd. Yttrium based phosphors comprising conducting material, process for preparing the yttrium based phosphors and display device using the yttrium based phosphors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293517A (en) * 1993-04-05 1994-10-21 Sumitomo Metal Mining Co Ltd Production of indium-tin oxide aciculate powder
US6511614B1 (en) * 1993-04-05 2003-01-28 Sumitomo Metal Mining Co., Ltd. Raw material for producing powder of indium-tin oxide aciculae and method of producing the raw material, powder of indium-tin oxide aciculae and method of producing the powder, electroconductive paste and light-transmitting electroconductive film
WO2005087892A1 (en) * 2004-03-12 2005-09-22 Kabushiki Kaisha Toshiba Field-emission phosphor, its manufacturing method, and field-emission device
US7537714B2 (en) 2004-12-24 2009-05-26 Samsung Sdi Co., Ltd. Yttrium based phosphors comprising conducting material, process for preparing the yttrium based phosphors and display device using the yttrium based phosphors

Similar Documents

Publication Publication Date Title
JP2784255B2 (en) Phosphor and discharge lamp using the same
US5032316A (en) Fluorescent composition
JPH0747732B2 (en) Slow electron beam excited phosphor
US5611961A (en) Method of preparing manganese activated zinc orthosilicate phosphor
JPH0324188A (en) Phosphor composition
JP2782962B2 (en) Phosphor surface treatment method
US5932140A (en) Phosphor having improved luminescense efficiency and a process for preparing the same
KR950009041B1 (en) Luminous compositions and process for their preparation and fluorescent lamp
US6544437B2 (en) Yttrium silicate based phosphor having effective emission at low voltages and method for synthesizing the same
JPH11172244A (en) Phosphor, manufacture thereof and fluorescent lamp
JPH0228218B2 (en)
US4336313A (en) Luminescent material, method of making, and screens employing same
CN1183221C (en) Illuminating material and producing process and display substrate and display device containing the same illuminating material
JPS6039310B2 (en) Red luminescent composition and slow electron beam excitation fluorescent display tube
JP2519890B2 (en) Method for producing luminescent composition
KR20020072868A (en) Phosphors adhered by nano-sized phosphors, preparing process thereof and Cathode Ray Tube using the same
JP3379973B2 (en) Red light emitting composition
JP2807527B2 (en) Fluorescent lamp
JPH0549719B2 (en)
JPH07110942B2 (en) Luminescent composition
JP3556325B2 (en) Phosphors for electron tubes and electroluminescent phosphors
JPS5933155B2 (en) Green luminescent composition and slow electron beam excitation fluorescent display tube
KR930005685B1 (en) Low-velocity electron excited phosphor
JPS6295377A (en) Green light emitting fluorescent substance for cathode ray tube and production thereof
JPH01229092A (en) Phosphor composition