JPH0747732B2 - Slow electron beam excited phosphor - Google Patents

Slow electron beam excited phosphor

Info

Publication number
JPH0747732B2
JPH0747732B2 JP62308290A JP30829087A JPH0747732B2 JP H0747732 B2 JPH0747732 B2 JP H0747732B2 JP 62308290 A JP62308290 A JP 62308290A JP 30829087 A JP30829087 A JP 30829087A JP H0747732 B2 JPH0747732 B2 JP H0747732B2
Authority
JP
Japan
Prior art keywords
phosphor
electron beam
fine particles
particles
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62308290A
Other languages
Japanese (ja)
Other versions
JPH01149888A (en
Inventor
和宏 木村
勝典 内村
章夫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP62308290A priority Critical patent/JPH0747732B2/en
Publication of JPH01149888A publication Critical patent/JPH01149888A/en
Publication of JPH0747732B2 publication Critical patent/JPH0747732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上利用分野] 本発明は低速電子線励起螢光表示管等に用いられて数v
〜数百vの低い加速電圧による電子線の励起で発光する
低速電子線励起螢光体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is used in a low-speed electron beam excitation fluorescent display tube or the like for several v.
The present invention relates to a slow electron beam-excited phosphor that emits light by exciting an electron beam with a low acceleration voltage of several hundreds of volts.

[従来の技術及び問題点] 文字、或いはグラフィック等の表示装置として、低電圧
での駆動が可能であって消費電力も少なく、明るく見や
すい表示が得られる等の特徴を有した低速電子線励起螢
光表示管が多く用いられている。
[Prior Art and Problems] As a display device for characters or graphics, a low-speed electron beam excitation spectacle having a feature that it can be driven at a low voltage, consumes less power, and is bright and easy to see. Optical display tubes are often used.

一般に、低速電子線励起螢光表示管では、通電加熱され
たフィラメント状の陰極から放出される低速電子線によ
って、プリント印刷または電着塗装された螢光体層を被
着し選択的に正の陽極電圧を付与される陽極部分が発光
し、この発光によって文字、数字、図形などの表示が得
られている。陽極上に被着された螢光体層は、低速電子
線によって充分な発光輝度を有した低速電子線励起螢光
体から構成されている。
Generally, in a low-speed electron beam excitation fluorescent display tube, a low-speed electron beam emitted from a filament cathode heated by electric current is applied to a fluorescent layer printed or electrodeposited to selectively produce a positive electrode. The anode portion to which the anode voltage is applied emits light, and the emission causes display of characters, numbers, figures and the like. The phosphor layer deposited on the anode is composed of a slow-electron-beam-excited phosphor having sufficient emission brightness by a slow-electron beam.

この種の低速電子線励起螢光体には電気導電性が良くな
ければならないという条件がある。なぜなら、螢光表示
管では螢光体層が陽極にあるので、螢光体表面の電気導
電性が悪いと螢光体粒子表面がマイナスに負荷すること
になり、励起するための電子線による電流が流れなくな
り、遂には発光不能となるからである。
This kind of slow electron beam excited phosphor has the condition that it must have good electrical conductivity. Because, in a fluorescent display tube, the fluorescent material layer is on the anode, so if the electrical conductivity of the fluorescent material surface is poor, the fluorescent particle surface will be negatively loaded, and the current due to the electron beam for excitation will be generated. Is no longer flowing, and finally it becomes impossible to emit light.

電気導電性に優れた低速電子線励起螢光体としては、自
己付活酸化亜鉛螢光体(ZnO/Zn)が知られている。この
ZnO/Zn螢光体は、発光しきい値電圧(デッドボルテー
ジ)が1〜2vと極めて低く、低速電子線励起により良く
輝る唯一の螢光体として螢光表示管用に多く用いられて
いる。
A self-activated zinc oxide phosphor (ZnO / Zn) is known as a slow electron beam excited phosphor having excellent electric conductivity. this
ZnO / Zn phosphors have a very low emission threshold voltage (dead voltage) of 1 to 2v, and are often used for fluorescent display tubes as the only phosphor that shines well due to low-speed electron beam excitation.

一方、ZnO/Zn螢光体以外の螢光体、例えば、ZnS/Ag,Cl
螢光体,ZnS/Cu,Al螢光体、(Zn,Cd)S/Ag、Cl螢光体等
の硫化物系螢光体を螢光表示管に用いる場合、導電性酸
化物、即ち、酸化インジウム(In2O3)及び酸化スズ(S
nO2)のうち少なくとも一種を螢光体表面に被覆する方
法が知られている。(特公昭52-23911号公報、特公昭52
-23913号公報、特公昭52-23916号公報) しかしながら、まだ電気導電性の点から十分でなく、低
速電子線励起螢光体として十分な発光輝度が得られない
という問題があった。
On the other hand, phosphors other than ZnO / Zn phosphors, for example, ZnS / Ag, Cl
Fluorescent material, ZnS / Cu, Al fluorescent material, (Zn, Cd) S / Ag, when using a sulfide-based fluorescent material such as Cl fluorescent material in the fluorescent display tube, a conductive oxide, that is, Indium oxide (In 2 O 3 ) and tin oxide (S
A method is known in which at least one of nO 2 ) is coated on the surface of the phosphor. (Japanese Patent Publication No. 52-23911, Japanese Patent Publication No. 52
However, there is a problem in that sufficient emission brightness cannot be obtained as a low-speed electron beam excited phosphor, because the electrical conductivity is still insufficient.

また、硫化物系螢光体にIn2O3及び/又はSnO2の導電性
酸化物の被覆量が螢光体に対して15〜30重量%と多く、
非発光物質である導電性酸化物を螢光体粒子表面に多量
に付着させるので、十分な輝度が得られないという問題
点があった。
Further, the coating amount of the conductive oxide of In 2 O 3 and / or SnO 2 on the sulfide-based phosphor is as large as 15 to 30% by weight with respect to the phosphor,
Since a large amount of conductive oxide, which is a non-luminous substance, is attached to the surface of the phosphor particles, there is a problem that sufficient brightness cannot be obtained.

従って、この発明の目的は、導電性を改善することによ
り、発光特性を改善し、これにより、低速電子線励起螢
光表示管に用いて実用的な低速電子線励起螢光体を提供
することにある。
Therefore, an object of the present invention is to improve the emission characteristics by improving the conductivity, thereby providing a practical slow electron beam excited phosphor for use in a slow electron beam excited fluorescent display tube. It is in.

[問題を解決する為の手段] この発明の目的は、平均粒径をサブミクロンとする導電
性金属の微粒子が螢光体粒子表面に被覆されてなること
により解決される。
[Means for Solving the Problem] The object of the present invention is solved by forming fine particles of a conductive metal having an average particle size of submicron on the surface of fluorescent particles.

即ち、本発明物等は、一般に粉体において、サブミクロ
ンといわれる1μより小さい粒径を有した微粒子を低速
電子線励起螢光体の導電性改善に適用することを検討
し、種々の実験を繰り返した結果、導電性金属の微粒子
を螢光体粒子表面に被覆することにより、低速電子線励
起での発光特性を改善できることを新規に見いだした。
That is, in the present invention, etc., in general, in powder, it is considered that fine particles having a particle size smaller than 1 μm, which is called submicron, are applied to improve conductivity of a slow electron beam excited phosphor, and various experiments are conducted. As a result of repetition, it was newly found that by coating the surface of the fluorescent particles with fine particles of a conductive metal, it is possible to improve the emission characteristics under the slow electron beam excitation.

螢光体粒子表面に被覆される微粒子の導電性金属には、
銅、アルミニウム、銀及び金が好ましい。なぜなら、個
々の電気抵抗は、Al=2.65×10-6Ωcm、Cu=1.67×10-6
Ωcm、Ag=1.59×10-6Ωcm、Au=2.4×10-6Ωcmと著し
く低く、これに対し、従来技術の導電性改善物質はIn2O
3=8.37×10-6Ωcm、SnO2=11.0×10-6Ωcm、ZnO=5.9
×10-6Ωcm、WO3=5.65×10-6Ωcm、TiO2=42×10-6Ωc
m、CdS=6.83×10-6Ωcmと著しく高いからである。
The fine particles of conductive metal coated on the surface of the fluorescent particles include
Copper, aluminum, silver and gold are preferred. Because, the individual electric resistance is Al = 2.65 × 10 -6 Ωcm, Cu = 1.67 × 10 -6
Ωcm, Ag = 1.59 × 10 -6 Ωcm, Au = 2.4 × 10 -6 Ωcm, which are remarkably low. In contrast, the conventional conductivity improving substance is In 2 O.
3 = 8.37 × 10 -6 Ωcm, SnO 2 = 11.0 × 10 -6 Ωcm, ZnO = 5.9
× 10 -6 Ωcm, WO 3 = 5.65 × 10 -6 Ωcm, TiO 2 = 42 × 10 -6 Ωc
This is because m and CdS = 6.83 × 10 −6 Ωcm, which are extremely high.

実施例に記載しなかったが、これら以外の金属も超微粒
子になると導電性が増加する場合があり、例えばSc,Ti,
V,Cr,Mn,Ga,Ge,Sr,Y,Zr,Nb,Tc,Ru,Sb,Cs,Ba,Hf,Ta,Re,H
g,Tl,Pb,Bi,Po,ランタニウム族,アクチニウム族等の金
属微粒子も有効である。
Although not described in the examples, the conductivity may increase when the metal other than these becomes ultrafine particles, for example, Sc, Ti,
V, Cr, Mn, Ga, Ge, Sr, Y, Zr, Nb, Tc, Ru, Sb, Cs, Ba, Hf, Ta, Re, H
Fine metal particles such as g, Tl, Pb, Bi, Po, lanthanum group, and actinium group are also effective.

又、この発明は、導電性を付与する総てのタイプの低速
電子線励起螢光体に適用できる。即ち、この発明は、絶
縁性の螢光体に導電物質を混合する混合形螢光体に適用
できると共に、螢光体の母体を導電性物質として使用す
る低い抵抗母体形螢光体と、ドーブ前には絶縁性の螢光
体に不純物をドープして導電性を付与するドープ形螢光
体にも適用できる。例えば、適用できる螢光体としてZn
S、CdS、(Zn・Cd)Sを母体としAg,Au,Cu,Znのうち少
なくとも一種を付活剤とし、Cl,Br,F,I,Alのうち少なく
とも一種を共付活剤とする硫化物系螢光体、ZnO/Zn螢光
体、Y2O3/Eu,SnO2Eu等の酸化物系螢光体、LaPO4/Ce,Tb,
Zn3(PO4)2/Mn,Cd5Cl(PO4)3/Mn等の燐酸塩系螢光体、Y2S
iO5/Tb,Y2SiO5/Ce,Zn2SiO4/Mn等の珪酸塩系螢光体、Y3A
l12O5/Tb,Y3AlO5/Ce等のアルミン酸塩系螢光体、Y2O2S/
Eu、Gd2O2S:Tb、Y2O2S/Tb等の酸硫化物系螢光体を挙げ
ることができる。
The invention is also applicable to all types of slow electron beam excited phosphors that impart conductivity. That is, the present invention can be applied to a mixed-type phosphor in which a conductive material is mixed with an insulating phosphor, and a low-resistance matrix-type phosphor that uses the matrix of the phosphor as a conductive material, and a dove. The former can also be applied to a doped phosphor in which an insulating phosphor is doped with impurities to impart conductivity. For example, Zn as an applicable phosphor
S, CdS, (Zn · Cd) S as a base material, at least one of Ag, Au, Cu, Zn as an activator, and at least one of Cl, Br, F, I, Al as a co-activator Sulfide-based phosphor, ZnO / Zn phosphor, Y 2 O 3 / Eu, oxide-based phosphor such as SnO 2 Eu, LaPO 4 / Ce, Tb,
Zn 3 (PO 4 ) 2 / Mn, Cd 5 Cl (PO 4 ) 3 / Mn and other phosphate-based phosphors, Y 2 S
silicate-based phosphors such as iO 5 / Tb, Y 2 SiO 5 / Ce, Zn 2 SiO 4 / Mn, Y 3 A
l 12 O 5 / Tb, Y 3 AlO 5 / Ce and other aluminate-based phosphors, Y 2 O 2 S /
Examples thereof include oxysulfide-based phosphors such as Eu, Gd 2 O 2 S: Tb, and Y 2 O 2 S / Tb.

好適には、この発明の螢光体は、導電性金属の微粒子の
平均粒径が0.0001〜0.08μであり、また、この導電性金
属の微粒子が螢光体に対して0.05〜20重量%被覆されて
なることが好ましい。
Suitably, the phosphor of the present invention has an average particle diameter of the conductive metal fine particles of 0.0001 to 0.08 μ, and the conductive metal fine particles are coated in an amount of 0.05 to 20% by weight with respect to the fluorescent material. Preferably.

[実施例] 実施例の説明に先立ち、本発明の製造方法について以下
に説明する。
[Examples] Prior to the description of examples, the manufacturing method of the present invention will be described below.

まず、焼成後の低速電子線励起螢光体と導電性金属の微
粒子と純水に懸濁させる。導電性金属の微粒子を螢光体
粒子表面に水中で被覆させるための珪酸塩コート剤、例
えば、珪酸カリウム(K2SiO3)水溶液と水酸化アルミニ
ウム水溶液とを懸濁液に添加したあと、この懸濁液を数
分〜数時間撹拌して静置する、そして、分離乾燥して螢
光体製品とする。導電製金属の超微粒子の接着剤として
珪酸カリウムの他、リン酸アルミニウム等の無機接着剤
の使用、あるいはアクリル系などの有機接着剤の併用も
可能である。
First, the low-speed electron beam excited phosphor after firing, fine particles of a conductive metal, and the pure water are suspended. A silicate coating agent for coating fine particles of a conductive metal on the surface of phosphor particles in water, for example, a potassium silicate (K 2 SiO 3 ) aqueous solution and an aluminum hydroxide aqueous solution are added to the suspension. The suspension is stirred for a few minutes to a few hours and allowed to stand, then separated and dried to give a fluorescent product. In addition to potassium silicate, an inorganic adhesive such as aluminum phosphate may be used as the adhesive for the ultrafine particles of the conductive metal, or an organic adhesive such as an acrylic adhesive may be used in combination.

尚、好適にはこの螢光体製品に酸化防止剤、例えば、シ
ュウ酸(H2C2O4)、ホウ化水素ナトリウム(NaBH4)を
添加する。酸化防止剤は、螢光表示管製造時の加熱工
程、例えば、封止前のベーキング工程における加熱温度
500〜550℃での導電性金属の酸化を防止するために有効
である。酸化防止剤の添加量は導電性金属に対し1〜20
重量%であることが好ましい。
An antioxidant such as oxalic acid (H 2 C 2 O 4 ) or sodium borohydride (NaBH 4 ) is preferably added to the phosphor product. The antioxidant is a heating temperature in manufacturing the fluorescent display tube, for example, a heating temperature in a baking step before sealing.
It is effective to prevent oxidation of conductive metal at 500-550 ℃. The amount of antioxidant added is 1 to 20 relative to the conductive metal.
It is preferably in the weight%.

(実施例1) 螢光体としてZnS/Ag,Al青色発光螢光体を1kg,0.1μのAl
微粒子を60gを使用し、これらを純水2.5lに懸濁させ
た。この懸濁液に、螢光体に対し0.1重量%となるK2SiO
3水溶液と、螢光体に対し0.05重量%となるAl(OH)3
溶液とを添加した。そして、この懸濁液を30分間撹拌し
て、珪酸アルミニウムによって螢光体粒子表面にAl微粒
子を付着させ、さらに、この螢光体粒子にNaBH410gを混
合して、本発明品を作製した。比較のため、同一のZnS/
Ag、Al青色発光螢光体にIn2O3を15重量%混合した従来
品を作成した。
(Example 1) ZnS / Ag, Al blue light-emitting phosphor was used as a phosphor, 1 kg, and 0.1 μAl.
Using 60 g of fine particles, these were suspended in 2.5 l of pure water. This suspension contained 0.1% by weight of K 2 SiO 2 relative to the phosphor.
3 aqueous solution and an Al (OH) 3 aqueous solution which was 0.05% by weight with respect to the phosphor were added. Then, this suspension was stirred for 30 minutes, Al fine particles were attached to the surface of the phosphor particles by aluminum silicate, and further, 10 g of NaBH 4 was mixed with the phosphor particles to prepare a product of the present invention. . For comparison, identical ZnS /
A conventional product was prepared by mixing 15% by weight of In 2 O 3 with Ag, Al blue light emitting phosphor.

50v、2mAの電子線での比較によれば、従来品の輝度を基
準にして、本発明品の相対発光輝度が111.2%と、著し
く向上した発光輝度の低速電子線刺激螢光体が得られ
た。
According to a comparison with an electron beam of 50v, 2mA, the relative emission brightness of the product of the present invention was 111.2% with reference to the brightness of the conventional product, and a low-speed electron beam stimulable phosphor with significantly improved emission brightness was obtained. It was

尚、本発明者等は、さらに、螢光体に対するAl微粒子の
添加量と相対発光輝度との関係についての実験を行っ
た。その結果が第1図に示されている。
The present inventors further conducted an experiment on the relationship between the amount of Al fine particles added to the phosphor and the relative emission brightness. The result is shown in FIG.

第1図から明らかなように、0.1μのAl微粒子の添加量
が約4%から12%にわたる範囲であると、相対発光輝度
において、本発明品は、In2O3を15重量%混合した従来
品より優れていることがわかる。
As is clear from FIG. 1, when the addition amount of the Al microparticles of 0.1 μ was in the range of about 4% to 12%, the product of the present invention was mixed with 15% by weight of In 2 O 3 in the relative luminance. It can be seen that it is superior to conventional products.

(実施例2) 以下の原料を用いて実施例1と同様にして、導電性金属
の微粒子を螢光体表面に被覆した。
(Example 2) In the same manner as in Example 1, the following raw materials were used to coat the surface of the phosphor with fine particles of a conductive metal.

(Zn・Cd)S/Ag,Cl橙色発光螢光体 ・・・1Kg 純水 ・・・2.5l 0.2μのAgの微粒子 ・・・90g MgSiO3 ・・・0.1重量% また、比較のため、同一の(Zn・Cd)S/AgCl橙色発光螢
光体にIn2O3を18重量%混合した従来品を作製した。
(Zn ・ Cd) S / Ag, Cl Orange light-emitting phosphor ・ ・ ・ 1Kg Pure water ・ ・ ・ 2.5l 0.2μ Ag fine particles ・ ・ ・ 90g MgSiO 3・ ・ ・ 0.1wt% For comparison, A conventional product was prepared by mixing the same (Zn · Cd) S / AgCl orange-emitting phosphor with 18% by weight of In 2 O 3 .

50v、2mAの電子線での比較によれば、従来品の輝度を基
準にして、本発明品の相対発光輝度が118.0%と、著し
く向上した発光輝度の低速電子線刺激螢光体が得られ
た。
According to a comparison with an electron beam of 50 V and 2 mA, the relative emission luminance of the product of the present invention was 118.0% based on the luminance of the conventional product, and a low-speed electron beam stimulable phosphor with significantly improved emission luminance was obtained. It was

尚、実施例1と同様に、本発明者等は、さらに、螢光体
に対するAg微粒子の添加量と相対発光輝度との関係につ
いての実験を行った。その結果が第2図に示されてい
る。
As in the case of Example 1, the present inventors further conducted an experiment on the relationship between the amount of Ag particles added to the phosphor and the relative emission brightness. The result is shown in FIG.

第2図から明らかなように、0.2μのAg微粒子の添加量
が約6%から14%にわたる範囲であると、相対発光輝度
において、本発明品は、In2O3を18重量%混合した従来
品を優れていることがわかる。
As is clear from FIG. 2, when the addition amount of 0.2 μg of Ag fine particles was in the range of about 6% to 14%, the product of the present invention was mixed with 18% by weight of In 2 O 3 in relative emission luminance. It turns out that the conventional product is superior.

(実施例3) 以下の原料を用いて実施例1と同様にして、導電性金属
の微粒子を螢光体表面に被覆した。
(Example 3) In the same manner as in Example 1, the following raw materials were used to coat the surface of the phosphor with fine particles of a conductive metal.

Zn・S/Cu,Al緑色発光螢光体 ・・・1Kg 0.5μのCu微粒子 ・・・120g 純水 ・・・2.5l CaSiO3螢光体に対し ・・・0.1重量% また、比較のため、同一のZnS/Cu・Al緑色発光螢光体に
In2O3を18重量%混合した従来品を作成した。
Zn ・ S / Cu, Al Green light-emitting phosphor ・ ・ ・ 1Kg 0.5μ Cu fine particle ・ ・ ・ 120g Pure water ・ ・ ・ 2.5l CaSiO 3 Fluorescent material ・ ・ ・ 0.1wt% Also for comparison , The same ZnS / Cu / Al green-emitting phosphor
A conventional product was prepared by mixing 18% by weight of In 2 O 3 .

50v、2mAの電子線での比較によれば、従来品の輝度を基
準にして、本発明品の相対発光輝度が119.0%と、著し
く向上した発光輝度の低速電子線刺激螢光体が得られ
た。
According to a comparison with an electron beam of 50v, 2mA, the relative emission brightness of the product of the present invention was 119.0% based on the brightness of the conventional product, and a low-speed electron beam stimulable phosphor with significantly improved emission brightness was obtained. It was

尚、実施例1と同様に、本発明者等は、更に、螢光体に
対するCu微粒子の添加量と相対発光輝度との関係につい
ての実験を行った。その結果が第3図に示されている。
As in Example 1, the present inventors further conducted an experiment on the relationship between the amount of Cu fine particles added to the phosphor and the relative emission brightness. The result is shown in FIG.

第3図から明らかなように、0.5μのCu微粒子の添加量
が約8.5%から17%にわたる範囲であると、相対発光輝
度において、本発明品は、In2O3を18重量%混合した従
来品よりすぐれていることがわかる。
As is clear from FIG. 3, when the addition amount of the Cu fine particles of 0.5 μ is in the range of about 8.5% to 17%, the product of the present invention was mixed with 18% by weight of In 2 O 3 in the relative luminance. It can be seen that it is superior to conventional products.

(実施例4) 以下の原料を用いて実施例1と同様にして、導電性金属
の微粒子を螢光体表面に被覆した。
(Example 4) In the same manner as in Example 1, the following raw materials were used to coat the surface of the phosphor with fine particles of a conductive metal.

Y2O3/Eu赤色発光螢光体 ・・・1Kg 0.01μのAu微粒子 ・・・150g 純水 ・・・2.5l Al2SiO5螢光体に対し ・・・0.1重量% また、比較のため、同一のY2O3/Eu赤色発光螢光体にSnO
2を18重量%混合した従来品を作製した。
Y 2 O 3 / Eu Red light-emitting phosphor ・ ・ ・ 1Kg 0.01μ Au fine particles ・ ・ ・ 150g Pure water ・ ・ ・ 2.5l Al 2 SiO 5 Fluorescent substance ・ ・ ・ 0.1wt% Therefore, the same Y 2 O 3 / Eu red-emitting phosphor is SnO
A conventional product containing 18% by weight of 2 was prepared.

50v、2mAの電子線での比較によれば、従来品の輝度を基
準にして、本発明品の相対発光輝度が121.0%と著しく
向上した発光輝度の低速電子線刺激螢光体が得られた。
According to a comparison with an electron beam of 50 V and 2 mA, a low-speed electron beam stimulable phosphor having an emission brightness in which the relative emission brightness of the present invention product was remarkably improved to 121.0% was obtained based on the brightness of the conventional product. .

尚、実施例1と同様に、本発明者等は、さらに、螢光体
に対するAu微粒子の添加量と相対発光輝度との関係につ
いての実験を行った。その結果が第4図に示されてい
る。
As in Example 1, the present inventors further conducted an experiment on the relationship between the amount of Au particles added to the phosphor and the relative emission brightness. The result is shown in FIG.

第4図から明らかなように、0.01μのAu微粒子の添加量
が約10%から20%にわたる範囲であると、相対発光輝度
において、本発明品は、SnO2を18重量%混合した従来品
より優れていることがわかる。
As is clear from FIG. 4, when the amount of addition of 0.01 μAu fine particles is in the range of about 10% to 20%, the product of the present invention has a relative emission brightness of 18% by weight of SnO 2 in the conventional product. It turns out to be better.

(実施例5) 実施例1と同様にして、Zn3(PO4)2/Mn赤色発光螢光体に
0.1μのAl微粒子を8重量%被覆させた。
Example 5 A Zn 3 (PO 4 ) 2 / Mn red light-emitting phosphor was prepared in the same manner as in Example 1.
8% by weight of 0.1 μ Al fine particles were coated.

この螢光体は、In2O3を20重量%混合したZn(PO4)2/Mn
赤色発光螢光体に比較して、相対発光輝度が約10%向上
した。
This phosphor is Zn (PO 4 ) 2 / Mn containing 20% by weight of In 2 O 3.
Relative emission brightness was improved by about 10% compared to the red-emitting phosphor.

(実施例6) 実施例1と同様にして、Y2SiO5/Ce青色発光螢光体に0.1
μのAl微粒子を10重量%被覆させた。
(Example 6) In the same manner as in Example 1, the Y 2 SiO 5 / Ce blue light-emitting phosphor was converted to 0.1%.
The microparticles of Al were coated with 10% by weight.

この螢光体は、SnO2を10重量%混合したY2SiO5/Ce青色
発光螢光体に比較して、相対発光輝度が約13%向上し
た。
This phosphor has improved relative emission brightness by about 13% compared to the Y 2 SiO 5 / Ce blue-emitting phosphor containing 10% by weight of SnO 2 .

(実施例7) 実施例1と同様にして、Y3Al12O5/Tb緑色発光螢光体に
0.1μのAl微粒子を12重量%被覆させた。
(Example 7) In the same manner as in Example 1, a Y 3 Al 12 O 5 / Tb green light emitting phosphor was obtained.
12% by weight of 0.1 μ Al fine particles were coated.

この螢光体は、In2O3を17重量%混合したY3Al12O5/Tb緑
色発光螢光体に比較して、相対発光輝度が約18%向上し
た。
This phosphor has a relative emission luminance improved by about 18% as compared with the Y 3 Al 12 O 5 / Tb green-emitting phosphor containing 17% by weight of In 2 O 3 .

(実施例8) 実施例1と同様にして、Y2O2S/Eu赤色発光螢光体に0.1
μのAl微粒子を14重量%被覆させた。
(Example 8) In the same manner as in Example 1, the Y 2 O 2 S / Eu red-emitting phosphor was added with 0.1.
14% by weight of Al fine particles was coated.

この螢光体は、In2O3を15重量%混合したY2O2S/Eu赤色
発光螢光体に比較して、相対発光輝度が約26%向上し
た。
This phosphor has an improved relative emission brightness of about 26% compared to the Y 2 O 2 S / Eu red emitting phosphor containing 15% by weight of In 2 O 3 .

[発明の効果] 以上説明したように、この発明によれば、低速電子線励
起螢光体粒子表面に導電性金属の微粒子を被覆させるこ
とにより、低速電子線励起螢光表示管に用いられて実用
性の高い低速電子線励起螢光体を得ることができる。
[Effects of the Invention] As described above, according to the present invention, by coating the surface of slow-electron-beam-excited phosphor particles with fine particles of a conductive metal, it can be used in a slow-electron-beam-excited fluorescent display tube. It is possible to obtain a low-electron-beam-excited phosphor that is highly practical.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例に係る低速電子線励起螢光
体におけるAl微粒子の添加量と相対発光輝度との関係を
示すグラフ図、第2図は、第1図と同様にAg微粒子の添
加量と相対発光輝度との関係を示すグラフ図、第3図
は、第1図と同様にCu超微粒子の添加量と相対発光輝度
との関係を示すグラフ図、第4図は、第1図と同様にAu
微粒子の添加量と相対発光輝度との関係を示すグラフ図
である。
FIG. 1 is a graph showing the relationship between the amount of Al fine particles added and the relative emission brightness in a slow electron beam excited phosphor according to one embodiment of the present invention, and FIG. 2 is similar to FIG. A graph showing the relationship between the added amount of fine particles and relative emission brightness, FIG. 3 is a graph showing the relationship between the added amount of Cu ultrafine particles and relative emission brightness, as in FIG. 1, and FIG. Au as in Fig. 1
It is a graph which shows the relationship between the amount of addition of fine particles and relative luminescence brightness.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−135589(JP,A) 特開 昭59−149981(JP,A) 特開 昭61−268789(JP,A) 特公 昭42−940(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-56-135589 (JP, A) JP-A-59-149981 (JP, A) JP-A-61-268789 (JP, A) JP-B-42- 940 (JP, B1)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】銅(Cu)、アルミニウム(Al)、銀(A
g)、及び金(Au)よりなる群から選択された少なくと
も一種の金属微粒子が接着剤を介して螢光体粒子表面に
被覆されて、螢光体に導電性が付与されてなることを特
徴とする低速電子線励起螢光体。
1. Copper (Cu), aluminum (Al), silver (A)
g) and at least one kind of metal fine particles selected from the group consisting of gold (Au) are coated on the surface of the phosphor particles through an adhesive to give conductivity to the phosphor. Slow electron beam excited phosphor.
【請求項2】前記金属微粒子の平均粒子径が0.0001〜0.
08μであり、この金属微粒子が螢光体に対して0.05〜20
重量%被覆されてなることを特徴とする請求項1に記載
の低速電子線励起螢光体。
2. The average particle size of the fine metal particles is 0.0001 to 0.
08 μ, and the metal fine particles are 0.05 to 20
2. The slow electron beam excited phosphor according to claim 1, wherein the phosphor is excited by a weight percentage.
JP62308290A 1987-12-05 1987-12-05 Slow electron beam excited phosphor Expired - Lifetime JPH0747732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62308290A JPH0747732B2 (en) 1987-12-05 1987-12-05 Slow electron beam excited phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62308290A JPH0747732B2 (en) 1987-12-05 1987-12-05 Slow electron beam excited phosphor

Publications (2)

Publication Number Publication Date
JPH01149888A JPH01149888A (en) 1989-06-12
JPH0747732B2 true JPH0747732B2 (en) 1995-05-24

Family

ID=17979256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62308290A Expired - Lifetime JPH0747732B2 (en) 1987-12-05 1987-12-05 Slow electron beam excited phosphor

Country Status (1)

Country Link
JP (1) JPH0747732B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102577611A (en) * 2009-08-26 2012-07-11 海洋王照明科技股份有限公司 Light emitting element, manufacturing method and light emitting method thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03212483A (en) * 1990-01-17 1991-09-18 Samsung Display Devices Co Ltd Manufacture of phosphor excitable with low-velocity electron beam
KR100315106B1 (en) * 1994-07-26 2002-02-19 김순택 Display device
EP2447982A4 (en) * 2009-06-23 2016-11-30 Ocean S King Lighting Science&Technology Co Ltd Method for raising luminous efficiency of field emissive luminescent material, luminescent glass element and the preparing method thereof
JP5619032B2 (en) * 2009-06-26 2014-11-05 ▲海▼洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
JP5619031B2 (en) * 2009-06-26 2014-11-05 ▲海▼洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
CN102439113B (en) * 2009-06-26 2014-04-30 海洋王照明科技股份有限公司 Luminescent glass element, manufacturing method and luminescence method thereof
EP2386526B1 (en) * 2009-06-26 2013-11-27 Ocean's King Lighting Science&Technology Co., Ltd. Luminescent glass element, producing method thereof and luminescing method
JP5619036B2 (en) * 2009-06-26 2014-11-05 ▲海▼洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
EP2472563B1 (en) 2009-08-26 2017-07-12 Ocean's King Lighting Science & Technology Co., Ltd. Luminescent element, producing method thereof and luminescence method using the same
JP5612687B2 (en) * 2009-08-26 2014-10-22 海洋王照明科技股▲ふん▼有限公司 LIGHT EMITTING DEVICE, METHOD FOR PRODUCING THEM, AND LIGHT EMITTING METHOD
US9096792B2 (en) 2009-08-26 2015-08-04 Ocean's King Lighting Science & Technology Co., Ltd. Luminescent element including nitride, preparation method thereof and luminescence method
EP2472564B1 (en) * 2009-08-26 2016-07-13 Ocean's King Lighting Science&Technology Co., Ltd. Luminescent element, producing method thereof and luminescence method using the same
CN102395538B (en) 2009-08-26 2013-08-21 海洋王照明科技股份有限公司 Luminescent element, producing method thereof and luminescence method using the same
EP2472562B1 (en) * 2009-08-26 2016-08-10 Ocean's King Lighting Science&Technology Co., Ltd. Luminescent element, producing method thereof and luminescence method using the same
JP5379724B2 (en) * 2010-03-03 2013-12-25 ノリタケ伊勢電子株式会社 Low-speed electron beam phosphor and fluorescent display device
JP5548279B2 (en) * 2010-03-19 2014-07-16 ▲海▼洋王照明科技股▲ふん▼有限公司 GLASS BASED LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING METHOD
WO2011153715A1 (en) * 2010-06-12 2011-12-15 海洋王照明科技股份有限公司 Yttrium oxide fluorescent powder and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135589A (en) * 1980-03-25 1981-10-23 Matsushita Electric Ind Co Ltd Phosphor for low-speed electron beam and fluorescent display tube
JPS59149981A (en) * 1983-01-31 1984-08-28 Toshiba Corp Fluorescent substance
JPS61268789A (en) * 1986-02-21 1986-11-28 Kasei Optonix Co Ltd Method for treating surface of fluorescent substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102577611A (en) * 2009-08-26 2012-07-11 海洋王照明科技股份有限公司 Light emitting element, manufacturing method and light emitting method thereof

Also Published As

Publication number Publication date
JPH01149888A (en) 1989-06-12

Similar Documents

Publication Publication Date Title
JPH0747732B2 (en) Slow electron beam excited phosphor
US4275333A (en) Fluorescent compositions and low-velocity electron excited fluorescent display devices utilizing the same
JPH07110941B2 (en) Luminescent composition
KR20060114387A (en) Field-emission phosphor, its manufacturing method, and field-emission device
US20050189518A1 (en) Method of producing a fluorescent particle
JPH0241389A (en) Luminescent composition
KR900001743B1 (en) Display cathode ray tube
JP2532586B2 (en) Slow electron beam excited phosphor and method for producing the same
EP0087476B1 (en) Display device
US3767459A (en) Method for making electron energy sensitive phosphors for multi-color cathode ray tubes
JPS6253554B2 (en)
JP2000319651A (en) White phosphor for use at low voltage
JP2001303042A (en) Fluorescent substance for rapid starting type fluorescent lamp and rapid starting type fluorescent lamp using the same
JP2000319652A (en) Pink phosphor for use at low voltage
JPS6244035B2 (en)
JP3514836B2 (en) Green light emitting phosphor
JPS59133284A (en) Phosphor excited by low-speed electron beam
JPH0324188A (en) Phosphor composition
JPH07110942B2 (en) Luminescent composition
JPS5933155B2 (en) Green luminescent composition and slow electron beam excitation fluorescent display tube
KR820001593B1 (en) Blue fluorescent compositions
JPS6243474B2 (en)
JPH0145508B2 (en)
JP3783543B2 (en) Fluorescent display tube
JPH0456073B2 (en)