JPH03267311A - Deoxidizing method in steel making stage - Google Patents

Deoxidizing method in steel making stage

Info

Publication number
JPH03267311A
JPH03267311A JP6865590A JP6865590A JPH03267311A JP H03267311 A JPH03267311 A JP H03267311A JP 6865590 A JP6865590 A JP 6865590A JP 6865590 A JP6865590 A JP 6865590A JP H03267311 A JPH03267311 A JP H03267311A
Authority
JP
Japan
Prior art keywords
oxides
steel
molten steel
deoxidation
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6865590A
Other languages
Japanese (ja)
Inventor
Hironori Goto
後藤 裕規
Koichi Yamaguchi
山口 紘一
Shigeaki Ogibayashi
荻林 成章
Kazuaki Tanaka
和明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6865590A priority Critical patent/JPH03267311A/en
Publication of JPH03267311A publication Critical patent/JPH03267311A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit the formation of a cluster and to disperse a large number of fine oxide grains in steel by further adding Ca to molten steel at the time of adding Ti-Zr as a second deoxidizer, refining the molten steel while regulating the amt. of oxygen and controlling the concn. of each component in the steel. CONSTITUTION:An Mn-Si alloy is added to molten steel discharged from a converter into a ladle, a Ti-Zr-Ca alloy is further added and the molten steel is refined while regulating the amt. of oxygen to <=50ppm. At this time, the concn. of each component in the steel is controlled to 0.008-0.018wt.% Ti, 0.005-0.015wt.% Zr, 0.0010-0.0045wt.% Ca and <=0.005wt.% Al. Since the m.p. of oxide is reduced by adding Ca, a larger number of fine oxide grains can be uniformly distributed without forming a cluster. In the case of <0.0010wt.% Ca, it is difficult to reduce the m.p. of a product produced by deoxidation with Ti and Zr and the formation of a cluster cannot be inhibited. In the case of >0.0045wt.% Ca, the grain size of the product is increased and coarse oxide grains causing cracking are formed by an increased amt.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は脱酸材としてM合金をほとんど用いずに処理す
る製鋼工程での脱酸方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a deoxidizing method in a steel manufacturing process that uses almost no M alloy as a deoxidizing agent.

(従来の技術) 綱材の材質を向上させる方法として微小な脱酸生成物(
酸化物)を鋼材内に分散させてこれを変態、析出物の核
として利用する技術がある。この場合酸化物は微小であ
ることが必須で0.5〜5uTn程度であることがのぞ
まれる。特に10μm以上の大きな酸化物の生成は調材
材質、特に割れ感受性に悪影響を与えるために、その生
成を極力低減し、全体として微小な酸化物を多数分散さ
せる必要がある。
(Prior art) As a method of improving the material quality of rope materials, minute deoxidation products (
There is a technology that disperses oxides in steel materials and uses them as nuclei for transformation and precipitates. In this case, it is essential that the oxide be minute, and preferably about 0.5 to 5 uTn. In particular, the formation of large oxides of 10 μm or more has a negative effect on the quality of the prepared material, especially on the cracking sensitivity, so it is necessary to reduce the formation as much as possible and to disperse a large number of small oxides as a whole.

この微小な酸化物を鋼材内に分散させる脱酸方法として
比較的脱酸力が弱いTi脱酸が従来から行われているが
、Ti脱酸鋼の連続鋳造鋳片では下記の理由から鋳片の
厚み方向の中央部近傍(板厚の中心位置から表面へ板厚
の25%程度の幅)で微小酸化物は減少している。すな
わち、Ti脱酸鋼では酸化物が凝固時に晶出成長するが
、冷却速度が遅く凝固時間が長い鋳片の厚み方向の中央
部では生成した酸化物が成長、凝集してその個数は減少
している。
Ti deoxidation, which has a relatively weak deoxidizing power, has traditionally been used as a deoxidation method to disperse these minute oxides within steel materials. Micro oxides are reduced near the center in the thickness direction (a width of about 25% of the thickness from the center of the thickness to the surface). In other words, in Ti-deoxidized steel, oxides crystallize and grow during solidification, but in the center of the thickness of the slab where the cooling rate is slow and the solidification time is long, the generated oxides grow and aggregate, reducing their number. ing.

中央部での酸化物の個数を増加させるためには、凝固前
の溶鋼段階で微小な酸化物を生成し、凝固時の酸化物と
併せて全体の酸化物個数の増加を図る必要がある。従っ
て脱酸力が強く微小な酸化物を生成するZrの添加を組
み合わせたTi十Zrの複合脱酸が有効であり、特1!
l62−316142号(特開平1159356号公報
)に記載されている。
In order to increase the number of oxides in the center, it is necessary to generate minute oxides in the molten steel stage before solidification, and to increase the total number of oxides together with the oxides during solidification. Therefore, composite deoxidation of Ti and Zr combined with the addition of Zr, which has strong deoxidizing power and produces minute oxides, is effective, and especially 1!
It is described in No. 162-316142 (Japanese Unexamined Patent Publication No. 1159356).

しかしながら、Ti+Zr脱酸では、溶鋼段階で生成し
た酸化物は溶鋼内で衝突し時間の経過とともに合体凝集
し巨大な塊状あるいは群落状の酸化物、すなわち、クラ
スターを形成し溶鋼から浮上離脱しやすくなる。通常、
取鍋で脱酸材添加から鋳造凝固するまでには約20分程
度の時間がかかり、酸化物がクラスター化し微小な酸化
物が減少するので、脱酸材添加から凝固まで時間が異な
る鋳片長さ方向で酸化物個数は減少し、クラスターは増
加し、その結果鋼材の材質が鋳造長さ方向で不均質なも
のとなっている可能性がある。
However, in Ti+Zr deoxidation, the oxides generated during the molten steel collide within the molten steel, coalesce and agglomerate over time, forming huge lumps or clusters of oxides, or clusters, which tend to float away from the molten steel. . usually,
It takes about 20 minutes from adding deoxidizing agent to casting solidification in a ladle, and the oxides cluster and the minute oxides decrease, so the length of the slab varies from the time from adding deoxidizing agent to solidifying. In this direction, the number of oxides decreases and the number of clusters increases, and as a result, the material quality of the steel material may be non-uniform in the casting length direction.

(発明が解決しようとする課題) 本発明は上記クラスターの生成を抑制し、鋼材内に微小
な酸化物を多数分散させることを目的とした脱酸方法で
ある。
(Problems to be Solved by the Invention) The present invention is a deoxidizing method aimed at suppressing the formation of the above-mentioned clusters and dispersing a large number of minute oxides in a steel material.

(課題を解決するための手段) 本発明は、Ti+Zr脱酸で生成したクラスターの生成
を抑制するために、さらにCaを添加して酸化物の融点
を下げ溶融状態とし、この低融点化によりクラスターを
生成することなく多数の微小な酸化物を均一に分布させ
ようとするもので、その要旨とするところは下記のとお
りである。
(Means for Solving the Problems) In order to suppress the formation of clusters generated by Ti+Zr deoxidation, the present invention further adds Ca to lower the melting point of the oxide to a molten state, and by lowering the melting point, the clusters The aim is to uniformly distribute a large number of minute oxides without producing any oxides, and the gist is as follows.

(1)転炉から出鋼された取鍋固溶鋼に、第一脱酸材と
してMn 、 Si合金を投入し、その後第二脱酸材と
してTi 、 Zr 、 Ca合金を溶鋼中に投入して
酸素を50ppm以下として溶製し、その際鋼中成分の
重量濃度を以下に示す範囲に制御することを特徴とする
製鋼工程での脱酸方法。
(1) Mn and Si alloys are added as first deoxidizers to the ladle solid solution steel tapped from the converter, and then Ti, Zr, and Ca alloys are added to the molten steel as second deoxidizers. A deoxidizing method in a steel manufacturing process, which comprises melting with oxygen at 50 ppm or less, and controlling the weight concentration of components in the steel within the range shown below.

Ti : 0.008〜0.018% Zr : 0.005〜0.015% Ca : 0.0010−0.0045%u : o、
oos%以下 (2)転炉から出鋼された取鍋固溶鋼に、第一脱酸材と
してMn 、 Si合金を投入した後に真空脱ガス精錬
工程で溶鋼中の酸素を60〜150ppmとし、その後
第二脱酸材としてTi 、 Zr 、 Ca合金を溶鋼
中に投入して酸素を50ppm以下として溶製し、その
際鋼中成分の重量濃度を以下に示す範囲に制御すること
を特徴とする製鋼工程での脱酸方法。
Ti: 0.008-0.018% Zr: 0.005-0.015% Ca: 0.0010-0.0045% U: o,
oos% or less (2) After adding Mn and Si alloy as the first deoxidizing agent to the ladle solid solution steel tapped from the converter, the oxygen in the molten steel is reduced to 60 to 150 ppm in a vacuum degassing refining process, and then Steel manufacturing characterized by adding Ti, Zr, Ca alloy as a second deoxidizing material into molten steel to reduce oxygen to 50 ppm or less, and controlling the weight concentration of the components in the steel within the range shown below. Deoxidation method in process.

Ti : 0.008 〜0.018  %Zr : 
0.005 〜0.015  %Ca : 0.001
0〜0.0045%Al 70.005%以下 以下、本発明の詳細な説明する。
Ti: 0.008 to 0.018% Zr:
0.005 to 0.015%Ca: 0.001
0 to 0.0045% Al 70.005% or less The present invention will be described in detail below.

(作 用) Ti+Zr脱酸ではZr添加後に生成した一次脱酸生成
物は、凝固までの時間内に酸化物同士が衝突すると、高
融点酸化物であるために球状化しにくく、塊状あるいは
群落状生成物、すなわち、クラスターを生成する。この
クラスターは酸化物と鉄の両者が混合したものである。
(Function) In Ti + Zr deoxidation, if the oxides collide with each other during the time until solidification, the primary deoxidation products generated after Zr addition will not easily become spheroidal because they are high melting point oxides, and will form lumps or clusters. generate objects, i.e. clusters. This cluster is a mixture of both oxide and iron.

このクラスターの見かけの比重は鉄を含有しているため
球状酸化物より大きいが、見かけの大きさが大きいため
に全体としてクラスター化すると酸化物は浮上しやすい
。従って時間経過に伴って微小な酸化物の減少を抑制す
るためには、このクラスター生成を抑制することが必須
である。そのためには酸化物の融点を下げ、溶融段階で
酸化物自身が溶融していることが必要である。この方法
として、Ca添加により酸化物の低融点化を図り、微小
な酸化物を均一分散させて、鋳造長さ方向の酸化物分布
を均一化するものである。
The apparent specific gravity of this cluster is larger than that of the spherical oxide because it contains iron, but because of its large apparent size, the oxide tends to float when clustered as a whole. Therefore, in order to suppress the reduction of minute oxides over time, it is essential to suppress this cluster formation. For this purpose, it is necessary to lower the melting point of the oxide and to melt the oxide itself at the melting stage. This method involves lowering the melting point of the oxide by adding Ca, uniformly dispersing minute oxides, and making the oxide distribution uniform in the casting length direction.

Ti+Zr脱酸とTt+Zr+Ca脱酸の微小な酸化物
とクラスター生成実績について第1図に示す。Ti+Z
r 十Ca脱酸では微小な脱酸生成物の個数が多く、か
つクラスターが観察されないことが分る。
Figure 1 shows the results of minute oxide and cluster formation in Ti+Zr deoxidation and Tt+Zr+Ca deoxidation. Ti+Z
It can be seen that in the r10Ca deoxidation, the number of minute deoxidation products is large and no clusters are observed.

Ti+Zr+Ca脱酸による酸化物個数増加について実
験結果を調査解析すると、基本的には、Tiは凝固時の
酸化物の晶出、Zrは脱酸材添加時の微小な酸化物の生
成(−成膜酸生成物) 、Caは脱酸力が強く、酸化物
の形態制御によりクラスター化を抑制することが判明し
た。
When examining and analyzing the experimental results regarding the increase in the number of oxides due to Ti+Zr+Ca deoxidation, we find that Ti is basically caused by the crystallization of oxides during solidification, and Zr is caused by the formation of minute oxides (-film formation) when the deoxidizer is added. It was found that Ca has a strong deoxidizing power and that clustering can be suppressed by controlling the form of oxides.

Ti、 Zr、 Ca、 AIの成分範囲について第2
図(a)〜(d)を用いて説明する。
Regarding the component ranges of Ti, Zr, Ca, and AI,
This will be explained using Figures (a) to (d).

Ti<0.008%では凝固時に晶出する酸化物の生成
能力が小さく、酸化物の個数が全体に低い。
When Ti<0.008%, the ability to generate oxides that crystallize during solidification is small, and the number of oxides is low overall.

方Ti>0.018%では酸化物中のチタン酸化物の組
成が高く高融点化し、その酸化物はクラスター化し微小
な酸化物は減少する(第2図(a))。
On the other hand, when Ti>0.018%, the composition of titanium oxide in the oxide becomes high and the melting point increases, the oxide becomes clustered, and the number of minute oxides decreases (FIG. 2(a)).

Ca<0.0010%ではTiとZrの脱酸生成物の低
融点化が困難でクラスター発生を抑止できない。また、
Ca>0.0045%ではクラスター化を抑制し球状化
生成物となるが、充分低融点化したため脱酸生成物同士
の凝集合体が容易であり、その結果脱酸生成物の粗大化
が進行し、割れの主要な要因となる10n以上の大きな
酸化物の生成が増加し、材質上悪影響を与える(第2図
(b))。
When Ca<0.0010%, it is difficult to lower the melting point of the deoxidized product of Ti and Zr, and cluster generation cannot be suppressed. Also,
When Ca>0.0045%, clustering is suppressed and a spheroidized product is formed, but since the melting point is sufficiently low, the deoxidized products easily aggregate and coalesce, and as a result, the deoxidized products become coarser. , the formation of large oxides of 10n or more, which are the main cause of cracks, increases, which has an adverse effect on the material quality (Fig. 2(b)).

Zr < 0 、005%では脱酸付添加に伴なう一次
脱酸生成物の生成が少なく、酸化物の個数が全体に少な
い。一方、Zr>0.015%では脱酸生成物中のジル
コニウム酸化物の組成が高く高融点化し、その酸化物は
クラスター化し、微小な酸化物は減少する(第2図(C
))。
When Zr<0,005%, the production of primary deoxidation products accompanying deoxidation addition is small, and the number of oxides is small overall. On the other hand, when Zr>0.015%, the composition of the zirconium oxide in the deoxidized product becomes high and the melting point increases, the oxide clusters, and the number of minute oxides decreases (Figure 2 (C
)).

AI>0.005%では脱酸生成物中のアルミニウム酸
化物の組成が高く高融点化し、そのため酸化物はクラス
ター化し、微小な酸化物は減少する(第2図(d))。
When AI>0.005%, the composition of aluminum oxide in the deoxidized product becomes high and the melting point increases, so that the oxide clusters and the number of fine oxides decreases (FIG. 2(d)).

従って、脱酸生成物をクラスター化することなく微小な
酸化物を多数分散させるには溶鋼成分を下記の範囲に制
御することが有効である。
Therefore, in order to disperse a large number of fine oxides without clustering the deoxidized products, it is effective to control the molten steel components within the following range.

Ti : 0.008〜0.018% Zr : 0.005 〜0.015  %Ca : 
0.0010〜0.0045%A7 : 0.005%
以下 なお、成分コントロール、材質のバラツキ等を考慮する
と、Ti : 0.010〜0.015%、Zr : 
0.005〜0.015%、Ca : 0.0015〜
0.0040%、A1: 0.005%以下とすること
が望ましい。
Ti: 0.008-0.018% Zr: 0.005-0.015% Ca:
0.0010-0.0045% A7: 0.005%
In addition, considering component control, material variations, etc., Ti: 0.010 to 0.015%, Zr:
0.005~0.015%, Ca: 0.0015~
0.0040%, A1: Desirably 0.005% or less.

(実施例) 第1表に本発明法及び比較法における溶鋼成分、脱酸元
素の種類、製造された鋳片の鋳片厚み方向の中央部の酸
化物個数と粒径側の酸化物分布、平均酸化物粒径、クラ
スター生成の有無を示す。ここで、製造方法1〜11は
比較方法であり、12〜14が本発明方法である。比較
方法のうち1はTi単独脱酸、2.3はTi+Zr脱酸
、4はTi+Ca脱酸で、5〜11は脱酸元素の溶鋼中
濃度が本発明範囲外にある。
(Example) Table 1 shows the composition of molten steel in the present invention method and the comparative method, the type of deoxidizing element, the number of oxides in the center of the manufactured slab in the thickness direction of the slab, and the oxide distribution on the grain size side. Indicates the average oxide particle size and the presence or absence of cluster formation. Here, manufacturing methods 1 to 11 are comparative methods, and manufacturing methods 12 to 14 are methods of the present invention. Among the comparative methods, 1 is Ti deoxidation alone, 2.3 is Ti+Zr deoxidation, 4 is Ti+Ca deoxidation, and in 5 to 11, the concentration of the deoxidizing element in the molten steel is outside the range of the present invention.

第1表から明らかなように、1.2では酸化物個数が少
なく、3では酸化物個数は多いもののクラスターが発生
している。4では酸化物個数が少なく、かつ粒径が大き
くなっている。Ti+Zr十Ca脱酸の本発明範囲外の
5〜11の結果は次のとおりである。Zrの上限超では
酸化物はクラスター化し、微小な酸化物は減少しており
、Zrの下限未満では酸化物の個数が全体に少なくなっ
ている。Caの上限超ではクラスター化を抑制し、球状
化酸化物となるが、十分低融点化したため酸化物同士の
凝集合体が容易となり、酸化物が粗大化している。Ti
の上限超では酸化物はクラスクー化し、微小な酸化物は
減少している。Tiの下限未満では酸化物の個数が全体
に少ない。Mの上限超では酸化物はクラスター化し、微
小な酸化物は減少している。
As is clear from Table 1, in case 1.2, the number of oxides is small, and in case 3, although the number of oxides is large, clusters are generated. In No. 4, the number of oxides is small and the particle size is large. The results of 5 to 11 outside the scope of the present invention for Ti+Zr+Ca deoxidation are as follows. When the Zr content exceeds the upper limit, the oxides cluster and the number of minute oxides decreases, and when the Zr content exceeds the lower limit, the number of oxides decreases overall. If the Ca content exceeds the upper limit, clustering is suppressed and a spheroidized oxide is formed, but since the melting point is sufficiently low, the oxides easily aggregate and coalesce, and the oxide becomes coarse. Ti
Above the upper limit of , the oxides become clascous and the number of minute oxides decreases. Below the lower limit of Ti, the number of oxides is small overall. When M exceeds the upper limit, oxides cluster and the number of minute oxides decreases.

一方、本発明範囲内の?5tlffi中濃度のTi +
 Zr + Ca脱酸では粒径が31程度と微細で多数
の酸化物が、クラスターを発生させることなく、鋳片内
に分布している。
On the other hand, what is within the scope of the present invention? 5tlffi medium concentration of Ti +
In Zr + Ca deoxidation, a large number of fine oxides with a particle size of about 31 mm are distributed within the slab without generating clusters.

(発明の効果) 本発明によれば、材質上有害となるクラスターを生成す
ることなく、鋳片内に微小な酸化物を多数分散させるこ
とが可能であるから、本発明は産業上きわめて有用であ
る。
(Effects of the Invention) According to the present invention, it is possible to disperse a large number of minute oxides in a slab without producing clusters that are harmful to the material, so the present invention is extremely useful industrially. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTi+Zr脱酸の場合とTi十Zr十Ca脱酸
の場合の微小酸化物とクラスターの生成実績を比較して
示す図、第2図(a)〜(6)は溶鋼中のTi、 Ca
、 Zr。 Al濃度と酸化物生成個数、酸化物平均粒径及びクラス
ター生成個数の関係を示す図である。
Figure 1 is a diagram comparing the formation of micro oxides and clusters in the case of Ti + Zr deoxidation and in the case of Ti + Zr + Ca deoxidation. , Ca
, Zr. FIG. 2 is a diagram showing the relationship between Al concentration, the number of oxides produced, the average particle size of oxides, and the number of clusters produced.

Claims (2)

【特許請求の範囲】[Claims] (1)転炉から出鋼された取鍋内溶鋼に、第一脱酸材と
してMn、Si合金を投入し、その後第二脱酸材として
Ti、Zr、Ca合金を溶鋼中に投入して酸素を50p
pm以下として溶製し、その際鋼中成分の重量濃度を以
下に示す範囲に制御することを特徴とする製鋼工程での
脱酸方法。 Ti:0.008〜0.018% Zr:0.005〜0.015% Ca:0.0010〜0.0045% N:0.005%以下
(1) Mn and Si alloys are added as the first deoxidizer to the molten steel in the ladle tapped from the converter, and then Ti, Zr and Ca alloys are added as the second deoxidizer to the molten steel. 50p of oxygen
1. A deoxidizing method in a steel manufacturing process, characterized in that the steel is melted to a temperature of pm or less, and the weight concentration of components in the steel is controlled within the range shown below. Ti: 0.008-0.018% Zr: 0.005-0.015% Ca: 0.0010-0.0045% N: 0.005% or less
(2)転炉から出鋼された取鍋内溶鋼に、第一脱酸材と
してMn、Si合金を投入した後に真空脱ガス精錬工程
で溶鋼中の酸素を60〜150ppmとし、その後第二
脱酸材としてTi、Zr、Ca合金を溶鋼中に投入して
酸素を50ppm以下として溶製し、その際鋼中成分の
重量濃度を以下に示す範囲に制御することを特徴とする
製鋼工程での脱酸方法。 Ti:0.008〜0.018% Zr:0.005〜0.015% Ca:0.0010〜0.0045% Al:0.005%以下
(2) After adding Mn and Si alloys as the first deoxidizer to the molten steel in the ladle tapped from the converter, the oxygen in the molten steel is reduced to 60 to 150 ppm in the vacuum degassing refining process, and then the second deoxidation A steelmaking process characterized by adding Ti, Zr, and Ca alloys as acid materials into molten steel and melting with oxygen at 50 ppm or less, and controlling the weight concentration of the components in the steel within the range shown below. Deoxidation method. Ti: 0.008-0.018% Zr: 0.005-0.015% Ca: 0.0010-0.0045% Al: 0.005% or less
JP6865590A 1990-03-19 1990-03-19 Deoxidizing method in steel making stage Pending JPH03267311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6865590A JPH03267311A (en) 1990-03-19 1990-03-19 Deoxidizing method in steel making stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6865590A JPH03267311A (en) 1990-03-19 1990-03-19 Deoxidizing method in steel making stage

Publications (1)

Publication Number Publication Date
JPH03267311A true JPH03267311A (en) 1991-11-28

Family

ID=13379934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6865590A Pending JPH03267311A (en) 1990-03-19 1990-03-19 Deoxidizing method in steel making stage

Country Status (1)

Country Link
JP (1) JPH03267311A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280953A (en) * 2009-06-04 2010-12-16 Sumitomo Metal Ind Ltd Method for restraining nozzle-blockade of zr-added steel and method for manufacturing minute-oxide dispersing steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280953A (en) * 2009-06-04 2010-12-16 Sumitomo Metal Ind Ltd Method for restraining nozzle-blockade of zr-added steel and method for manufacturing minute-oxide dispersing steel

Similar Documents

Publication Publication Date Title
JP2009538990A (en) Grain refiner for steel, production method and use thereof
JP2005002356A (en) Process for production of titanium alloy
JPH09263820A (en) Production of cluster-free aluminum killed steel
CN112501466A (en) Modification treatment process and modification treatment agent for secondary aluminum
JP2002146473A (en) Steel for machine structural use having excellent treatability of chip and mechanical property
JPH10317083A (en) Grain refiner for aluminum alloy
JPH0617163A (en) Production of eutectic copper-iron alloy
US20230257858A1 (en) Silicon based alloy, method for the production thereof and use of such alloy
JPH03267311A (en) Deoxidizing method in steel making stage
JPH01165731A (en) Manufacture of v-al alloy
US3459540A (en) Production of clean fine grain steels
JPH11323426A (en) Production of high clean steel
JPH042713A (en) Deoxidizing method in steelmaking process
JP2961448B2 (en) Method for finely dispersing MnS in high S content steel
JP2001026812A (en) Deoxidizing alloy for molten steel
JP4710180B2 (en) Manufacturing method of high cleanliness steel
CN111041253A (en) Aluminum-titanium alloy wire and preparation method thereof
JP2000273525A (en) Production of high cleanliness steel
JP2002105527A (en) Method for producing high cleanliness steel
CN117026069A (en) Gold separation control method for ferrovanadium alloy smelting slag
JPS60169505A (en) Production of compact vermicular graphite cast iron
JP5142610B2 (en) Manufacturing method of high cleanliness steel
KR950013282B1 (en) Making method of weldability structural steel
US20120000317A1 (en) Method Of Refining The Grain Structure Of Alloys
JP2001252747A (en) Method for treating molten steel excellent in quality characteristic