JP5142610B2 - Manufacturing method of high cleanliness steel - Google Patents
Manufacturing method of high cleanliness steel Download PDFInfo
- Publication number
- JP5142610B2 JP5142610B2 JP2007186574A JP2007186574A JP5142610B2 JP 5142610 B2 JP5142610 B2 JP 5142610B2 JP 2007186574 A JP2007186574 A JP 2007186574A JP 2007186574 A JP2007186574 A JP 2007186574A JP 5142610 B2 JP5142610 B2 JP 5142610B2
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- steel
- mass
- inclusions
- mullite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
本発明は、酸素含有量を低減した高清浄度鋼の製造方法に関するものである。 The present invention relates to a method for producing a high cleanliness steel with a reduced oxygen content.
一般に、鋼の製造工程では、転炉や電気炉などで溶製された溶鋼を取鍋内に出鋼し、AlやSi、Ca−Si合金などの脱酸材を添加して溶鋼中の酸素を酸化物として除去し、さらに成分調整を行なった後、溶鋼を金型へ鋳造して凝固させ鋼塊を得ている。この場合、精錬工程において溶鋼を脱酸する際、脱酸材添加後の取鍋内では溶鋼をガス攪拌などを用いて攪拌し、介在物を凝集・合体させて浮上分離を促進させる方法が採用されているが、すべての介在物を浮上分離させることは困難であり、凝固後の鋼塊中には不可避的に介在物が残留する。 In general, in the steel manufacturing process, molten steel melted in a converter or electric furnace is taken out into a ladle, and deoxidizers such as Al, Si, and Ca-Si alloys are added to the oxygen in the molten steel. Is removed as an oxide and the components are adjusted, and then the molten steel is cast into a mold and solidified to obtain a steel ingot. In this case, when deoxidizing the molten steel in the refining process, a method is adopted in which the molten steel is agitated using gas agitation in the ladle after the deoxidizer is added, and inclusions are aggregated and coalesced to promote floating separation. However, it is difficult to float and separate all the inclusions, and inclusions inevitably remain in the steel ingot after solidification.
これらの介在物は、構成される化学成分によってその形態や大きさが異なるが、例えばアルミナ系介在物の場合は溶鋼中において凝集・合体して大型介在物を形成しやすく、この介在物が鋼塊中に捕捉された場合、高温環境下における機械的強度が要求される発電機用部材などでは、延性の低下や破壊の起点になることがあり問題となる。従って、このような製品においては大型介在物の生成を防止することは極めて重要である。 These inclusions have different shapes and sizes depending on the chemical components to be constructed. For example, in the case of alumina inclusions, large inclusions are easily formed by agglomeration and coalescence in molten steel. When trapped in a lump, a member for a generator that requires mechanical strength in a high-temperature environment may cause a decrease in ductility or a starting point of breakage. Therefore, it is extremely important to prevent the formation of large inclusions in such products.
また、プラスチック成型用金型などの素材として用いられる金型鋼では、美麗さを要求される意匠面においては表面粗さが極めて小さいことが要求され、数百μm以上の大型介在物が残存すると金型表面の凹凸が製品に転写されて表面性状を悪化させることから大きな問題となる。従って、このような製品においてはアルミナ系介在物はもとより、介在物そのものを極限まで低減させることが重要となる。 In addition, mold steel used as a material for plastic molding molds, etc. requires a very small surface roughness on the design surface that requires beauty, and if large inclusions of several hundred μm or more remain, Since the unevenness of the mold surface is transferred to the product and the surface properties are deteriorated, it becomes a big problem. Therefore, in such products, it is important to reduce the inclusions themselves to the limit as well as alumina inclusions.
これまでアルミナ系介在物の生成を防止するための鋼の処理方法としては、例えば特許文献1には、溶鋼中のCa濃度が0.001質量%以上になるようにCaを添加してAlとの複合脱酸とし、生成する酸化物をAl2O3−CaOやTiO2−CaO等の低融点酸化物に形態を変更する方法が提案されている。 Conventionally, as a steel processing method for preventing the formation of alumina inclusions, for example, in Patent Document 1, Ca is added so that the Ca concentration in molten steel is 0.001% by mass or more, and Al and And a method of changing the form of the generated oxide to a low melting point oxide such as Al 2 O 3 —CaO or TiO 2 —CaO has been proposed.
また、特許文献2には溶鋼中に、Ca、MgおよびREMのうちから選ばれる2種以上とAlとの合金を脱酸材として添加し、生成する介在物中のAl2O3を30〜85wt%の範囲内に調整してアルミナ系介在物のないAlキルド鋼を得る方法が提案されている。 Further, in Patent Document 2, an alloy of two or more selected from Ca, Mg and REM and Al is added as a deoxidizer in molten steel, and Al 2 O 3 in the generated inclusions is added in 30 to 30%. There has been proposed a method of obtaining Al killed steel free from alumina inclusions by adjusting within the range of 85 wt%.
また、特許文献3、4、5には溶鋼に脱酸材としてMn−Si合金を投入した後、真空脱ガス処理を行い溶鋼中のO含有量を100〜600質量ppmとし、次いで脱酸材としてAl、Mg、Zrおよび希土類元素を前記溶鋼に添加して複合脱酸を行い、生成する介在物を微細化して分散する方法が提案されている。
しかしながら、上記した特許文献1に示される脱酸方法では、Caの蒸気圧が高いため歩留まりが低く、溶鋼中のCa濃度が安定しない問題がある。
また、特許文献2に示される脱酸方法では、溶鋼中の酸素濃度が10ppm以下の大型鋼塊を製造する場合には、アルミナ系介在物の生成を防止することは困難である。
さらに、特許文献3〜5に示される方法では、直径100μm以上の大型介在物は低減できるものの、数十μm程度の小型介在物や溶鋼中に残存した微量元素によって生成する数μm程度の微細な二次脱酸生成物が、鋼塊における凝固の進行に伴って残液相部に蓄積され、中心部にアルミナ系介在物となって残存する問題がある。従って、さらに高清浄な製品を製造するためには、アルミナ系介在物を生成させない添加材を適用するとともに、介在物そのものを極限まで低減できる新たな処理方法を見出すことが必要である。
However, the above-described deoxidation method disclosed in Patent Document 1 has a problem in that the yield is low because the vapor pressure of Ca is high, and the Ca concentration in the molten steel is not stable.
Moreover, in the deoxidation method shown by patent document 2, when manufacturing the large steel ingot whose oxygen concentration in molten steel is 10 ppm or less, it is difficult to prevent the production | generation of an alumina type inclusion.
Furthermore, in the methods shown in Patent Documents 3 to 5 , although large inclusions having a diameter of 100 μm or more can be reduced, small inclusions of about several tens μm and fine elements of about several μm generated by trace elements remaining in molten steel. There is a problem that the secondary deoxidation product accumulates in the residual liquid phase part as solidification proceeds in the steel ingot and remains as an alumina inclusion in the central part. Therefore, in order to manufacture a more highly clean product, it is necessary to apply an additive that does not generate alumina inclusions and to find a new treatment method that can reduce the inclusions to the limit.
本発明は上記事情を背景としてなされたものであり、上記のような問題を解決し、アルミナ系介在物の生成を抑制し、清浄度の高い鋼の製造方法を提供することを目的とする。 The present invention has been made against the background of the above circumstances, and an object of the present invention is to solve the above-described problems, to suppress the formation of alumina inclusions, and to provide a method for producing steel with high cleanliness.
本発明は、前記した従来技術の問題点を解決するために検討した結果、新規に知見したものである。
すなわち、本発明の高清浄度鋼の製造方法のうち、請求項1記載の発明は、精錬の際に溶鋼中に希土類元素(REM)とムライト(3Al2O3・2SiO2)とで構成される複合処理材を添加することで高清浄な溶鋼を得ることを特徴とする。
The present invention has been newly discovered as a result of studies to solve the above-described problems of the prior art.
That is, in the manufacturing method of the high cleanliness steel of the present invention, the invention according to claim 1 is composed out a rare earth element and (REM) and mullite (3Al 2 O 3 · 2SiO 2 ) in the molten steel during refining A highly clean molten steel is obtained by adding a composite treatment material.
請求項2記載の高清浄度鋼の製造方法の発明は、請求項1記載の発明において、前記複合添加材が希土類元素(REM)とムライト(3Al2O3・2SiO2)との混合物であることを特徴とする。 The invention of the method for producing a high cleanliness steel according to claim 2 is the invention according to claim 1, wherein the composite additive is a mixture of a rare earth element (REM) and mullite (3Al 2 O 3 · 2SiO 2 ). It is characterized by that.
請求項3記載の高清浄度鋼の製造方法の発明は、請求項2記載の発明において、前記複合添加材が、それぞれ溶鋼の0.05〜1.5質量%、好ましくは0.1〜1.0質量%の範囲内の希土類元素(REM)とムライト(3Al2O3・2SiO2)とで構成されることを特徴とする。 The invention of the method for producing a high cleanliness steel according to claim 3 is the invention according to claim 2, wherein the composite additive is 0.05 to 1.5% by mass, preferably 0.1 to 1% of the molten steel, respectively. It is characterized by being composed of rare earth elements (REM) and mullite (3Al 2 O 3 .2SiO 2 ) in the range of 0.0 mass%.
請求項4記載の高清浄度鋼の製造方法の発明は、請求項1〜3のいずれかに記載の発明において、前記複合添加材の添加に先立って、一次添加材により脱酸することを特徴とする。 The invention of the method for producing a high cleanliness steel according to claim 4 is characterized in that, in the invention according to any one of claims 1 to 3, deoxidation is performed with a primary additive prior to the addition of the composite additive. And
請求項5記載の高清浄度鋼の製造方法の発明は、請求項1〜4のいずれかに記載の発明において、前記一次添加材が、Al、Si、Ca、Ca−Si合金、Ti、Mgの一種または二種以上からなることを特徴とする。 Invention of the manufacturing method of the high cleanliness steel of Claim 5 is set in the invention in any one of Claims 1-4, The said primary additive is Al, Si, Ca, Ca-Si alloy, Ti, Mg It consists of 1 type or 2 types or more of these.
請求項6記載の高清浄度鋼の製造方法の発明は、請求項1〜5のいずれかに記載の発明において、前記複合添加材または前記一次添加材あるいは両方の添加後の溶鋼を、強攪拌することで介在物の浮上分離を促進し高清浄な溶鋼を得ることを特徴とする。 The invention of the method for producing a high cleanliness steel according to claim 6 is the invention according to any one of claims 1 to 5, wherein the mixed steel after addition of the composite additive or the primary additive or both is vigorously stirred. By doing so, the floating separation of inclusions is promoted, and a highly clean molten steel is obtained.
なお、本発明においては、好適には直径100μm以上の大型アルミナ系介在物を含有せず、また好適には鋼中の酸素濃度を0.001質量%以下に低減させた鋼を、高清浄度鋼と呼ぶものとする。ただし、これらの数値が本発明の範囲を限定するものではない。 In the present invention, it is preferable to use a high cleanliness steel that does not contain large-sized alumina inclusions having a diameter of 100 μm or more, and preferably has a reduced oxygen concentration in the steel of 0.001% by mass or less. It shall be called steel. However, these numerical values do not limit the scope of the present invention.
通常、溶鋼中において生成する介在物の大きさや形態は、添加される元素によって変化するが、例えばAlにおいては溶鋼中で巨大なアルミナ系介在物を形成しやすいため、精錬工程においては浮上分離しやすい。しかし、溶鋼中に含まれるAl濃度が0.005質量%を超えると、鋼塊の凝固過程において固液分配によって残液相中のAl濃度が上昇するため、残液相中にはアルミナ系介在物が生成する。これらのアルミナ系介在物は、鋼塊の凝固末期過程において生成するため浮上分離はほとんど不可能であり、凝固後の鋼塊中に残存し欠陥となる。 Usually, the size and form of inclusions generated in molten steel vary depending on the elements added. For example, Al tends to form huge alumina inclusions in molten steel, so it floats and separates in the refining process. Cheap. However, if the Al concentration in the molten steel exceeds 0.005% by mass, the Al concentration in the residual liquid phase rises due to solid-liquid distribution during the solidification process of the steel ingot, and therefore the alumina intervenes in the residual liquid phase. Things are generated. Since these alumina inclusions are formed in the final stage of solidification of the steel ingot, levitation separation is almost impossible, and they remain in the steel ingot after solidification and become defects.
また、Alを含まないSiによる脱酸方法もあるが、炉外精錬鍋や精錬スラグ中には必然的にアルミナが含まれており、耐火物の溶損や精錬スラグなどによって溶鋼中にはAlが還元されるため、凝固末期においてアルミナ系介在物を生成させる。これらのアルミナ系介在物の生成は溶鋼中に含まれるAlと酸素濃度に大きく影響され、溶鋼中の酸素濃度が0.001質量%以下の低酸素領域においても容易に生成しやすい。従って、鋼塊の製造過程においてアルミナ系介在物を生成しないAlと酸素濃度に安定して制御することは非常に困難である。 There is also a deoxidation method using Si that does not contain Al. However, alumina is inevitably contained in the out-of-furnace refining pan and refining slag. Is reduced, so that alumina inclusions are produced at the end of solidification. The formation of these alumina inclusions is greatly influenced by the Al and oxygen concentrations contained in the molten steel, and is easily generated even in a low oxygen region where the oxygen concentration in the molten steel is 0.001% by mass or less. Therefore, it is very difficult to stably control the Al and oxygen concentrations that do not generate alumina inclusions in the production process of the steel ingot.
このため、鋼塊の凝固過程においてアルミナ系介在物の生成を防止させるためには、生成する介在物の融点を下げ、液相中において介在物を溶融していることが必要である。
そこで、本発明ではAlよりも酸化物生成自由エネルギーの小さい希土類元素(REM)をムライト(3Al 2 O 3 ・2SiO 2 )とともに、あるいはムライト(3Al 2 O 3 ・2SiO 2 )と混合して溶鋼中へ添加することで、脱酸反応を促進させるとともに生成した介在物をムライト(3Al 2 O 3 ・2SiO 2 )と反応させて低融点化させ、浮上分離を促進させて除去する方法を見出したものである。希土類元素は一種の元素からなるものであってもよく、また、複数種の元素からなるものであってもよい。なお、希土類元素には、上記作用を顕著にするCeを含むのが望ましい。なお、希土類元素と酸化物とは、溶鋼に同時に添加する他、時期をずらして溶鋼に添加されるものであってもよい。
For this reason, in order to prevent the formation of alumina inclusions in the solidification process of the steel ingot, it is necessary to lower the melting point of the generated inclusions and to melt the inclusions in the liquid phase.
Therefore, in the present invention, rare earth elements (REM) having a lower free energy for oxide formation than Al are mixed with mullite (3Al 2 O 3 .2SiO 2 ) or with mullite (3Al 2 O 3 .2SiO 2 ) in molten steel. Found a method to promote the deoxidation reaction and to lower the melting point by reacting the generated inclusions with mullite (3Al 2 O 3 · 2SiO 2 ) and to promote the floating separation and to remove it. It is. The rare earth element may be composed of one kind of element, or may be composed of a plurality of kinds of elements. In addition, it is desirable that the rare earth element contains Ce that makes the above effect remarkable. The rare earth element and the oxide may be added to the molten steel at the same time, or may be added to the molten steel at different times.
一般に溶鋼の脱酸に用いる添加材には、通常Al、Si、Ca、Ca−Si合金等が用いられるが、脱酸材としては溶鋼中に含まれる酸素と結合し酸化物を形成する元素であれば良く、例えばTi、Mgなどを添加しても良い。本発明においても脱酸を目的に一次添加材として上記元素を使用してもよく、一次添加材添加後、二次添加材として希土類元素(REM)とムライト(3Al 2 O 3 ・2SiO 2 )で構成される複合添加材を添加する複合処理が有効である。複合処理を行う理由としては、二次添加材に用いる希土類元素は比較的高価であることから、できるだけ少ない添加量で効果的に酸素濃度を低減させることが工業的には有効であると考えられるためであり、上記したAl、Si等を一次添加材に用いるのが望ましい。 Generally, Al, Si, Ca, Ca-Si alloy, etc. are usually used as additive materials for deoxidation of molten steel. However, deoxidizers are elements that combine with oxygen contained in molten steel to form oxides. For example, Ti, Mg, etc. may be added. In the present invention, the above elements may be used as a primary additive for the purpose of deoxidation. After the addition of the primary additive, rare earth elements (REM) and mullite (3Al 2 O 3 .2SiO 2 ) are used as secondary additives. A composite treatment in which the composite additive material is added is effective. The reason for performing the composite treatment is that it is industrially effective to effectively reduce the oxygen concentration with the smallest possible addition amount because the rare earth elements used in the secondary additive are relatively expensive. For this reason, it is desirable to use the above-described Al, Si, or the like as the primary additive.
二次添加材として希土類元素(REM)のみを使用した場合、溶鋼中の初期酸素濃度が高い場合には、希土類元素(REM)の添加量が少ないと十分に酸素濃度が下がらなくなるが、希土類元素(REM)の添加量が溶鋼の1.5質量%を超えると、凝固後の鋼塊中にデンドライト状の介在物が多量に生成し機械的性質を著しく低下させる。また、生成した介在物はその比重が溶鋼よりも重くなることから浮上分離が困難となる。従って、その添加量は溶鋼の0.05質量%以上および1.5質量%以下、好ましくは0.1質量%以上および1.0質量%以下であることが望ましい。
一方、本発明では二次添加材として希土類元素(REM)とともにムライト(3Al2O3・2SiO2)を添加すると、介在物除去に非常に有効であることを見出した。
このムライト(3Al 2 O 3 ・2SiO 2 )の添加量も溶鋼に対し0.05質量%以上および1.5質量%以下、好ましくは0.1質量%以上、1.0質量%以下の範囲が望ましい。その理由は、ムライト(3Al 2 O 3 ・2SiO 2 )の添加量が0.05質量%よりも少ないと酸化物の改質および吸着する能力が低下し、同時に十分に浮上分離できない。また1.5質量%を超えると過度のムライト(3Al 2 O 3 ・2SiO 2 )により溶鋼の清浄度が悪化する。同じ理由により、その添加量は0.1質量%以上、1.0質量%以下が好ましい。
When only the rare earth element (REM) is used as the secondary additive, if the initial oxygen concentration in the molten steel is high, the oxygen concentration cannot be sufficiently lowered if the amount of rare earth element (REM) added is small. When the amount of (REM) added exceeds 1.5% by mass of the molten steel, a large amount of dendritic inclusions are formed in the steel ingot after solidification and the mechanical properties are remarkably lowered. In addition, the generated inclusions are heavier than the molten steel, so that floating separation becomes difficult. Therefore, the addition amount is 0.05% by mass or more and 1.5% by mass or less, preferably 0.1% by mass or more and 1.0% by mass or less of the molten steel.
On the other hand, when the present invention is added to mullite (3Al 2 O 3 · 2SiO 2 ) with a rare earth element (REM) as a secondary additive, it was found to be very effective in inclusion removal.
The mullite (3Al 2 O 3 · 2SiO 2 ) the addition amount more than 0.05 wt% and 1.5 wt% or less with respect to the molten steel, is preferably 0.1 mass% or more, the range of 1.0 wt% or less desirable. The reason for this is that if the amount of mullite (3Al 2 O 3 .2SiO 2 ) added is less than 0.05% by mass, the ability to modify and adsorb oxides is lowered, and at the same time, sufficient floating separation is not possible. The cleanliness of the molten steel by excessive mullite exceeds 1.5 mass% (3Al 2 O 3 · 2SiO 2) is deteriorated. For the same reason, the addition amount is preferably 0.1% by mass or more and 1.0% by mass or less.
本発明による複合処理方法を用い、希土類元素(REM)とムライト(3Al2O3・2SiO2)を同時期に添加することで、溶鋼中において希土類元素(REM)とともにムライト(3Al2O3・2SiO2)が反応し、活性面を持つ原子集団のクラスターを作り、低融点化して溶鋼中に含まれる微視的介在物を吸着しながら効果的に浮上分離することが可能となる。 By using the composite treatment method according to the present invention, rare earth element (REM) and mullite (3Al 2 O 3 .2SiO 2 ) are added at the same time, so that mullite (3Al 2 O 3. 2SiO 2) is reacted, creating clusters of atoms population with the active surface, it is possible to effectively flotation while adsorbing the microscopic inclusions contained in the molten steel to lower the melting point.
以上説明したように、精錬の際に溶鋼中に希土類元素(REM)とムライト(3Al2O3・2SiO2)とで構成される複合添加物を添加することで、アルミナ系介在物の生成を抑制しつつ効果的に溶鋼中の微視的介在物を除去することができ、清浄度の高い鋼を得ることができる。
また、上記複合添加物の添加に先立って一次添加材による処理を行うことで、REMの添加量を軽減して有利なコストで効果的に清浄度の高い鋼を得ることができる。
As described above, the rare earth element in the molten steel during refining and (REM) mullite (3Al 2 O 3 · 2SiO 2 ) and by adding the formed composite additive out, the production of alumina-based inclusions It is possible to effectively remove the microscopic inclusions in the molten steel while suppressing, and to obtain a steel having a high cleanliness.
In addition, by performing the treatment with the primary additive prior to the addition of the composite additive, it is possible to reduce the amount of REM added and to obtain steel with high cleanliness effectively at an advantageous cost.
本発明の方法は、転炉や電気炉などで溶解した鋼を精錬する際に効果的に適用することができる。なお、鋼の溶解方法は、本発明としては特に限定されるものではなく、種々の溶解方法が選択可能である。また、清浄化の対象となる鋼の成分も特に限定をされるものではなく、種々の組成の鋼を対象とすることができる。
鋼の精錬に際しては、炉外精錬などの種々の精錬方法を選択することができ、精錬方法が限定されるものではない。
The method of the present invention can be effectively applied when refining steel melted in a converter or an electric furnace. In addition, the melting method of steel is not specifically limited as this invention, Various melting methods can be selected. Further, the components of steel to be cleaned are not particularly limited, and steels having various compositions can be targeted.
In refining steel, various refining methods such as out-of-furnace refining can be selected, and the refining method is not limited.
鋼の精錬に際しては、前記したように、Al、Si、Ca、Ca−Si合金、Ti、Mgなどの添加による一次処理を行うことが望ましい。なお、本発明としては、この一次処理を行わないものであっても良い。
REMおよびムライト(3Al 2 O 3 ・2SiO 2 )は、それぞれ溶鋼に対し、好適にはそれぞれ0.1〜1.0質量%の範囲内の量で添加がなされる。REMの反応によって生成される介在物は、同時期に添加されるムライト(3Al 2 O 3 ・2SiO 2 )と反応して低融点化し、スラグ中に容易に移行する。
上記溶鋼は凝固に伴って、介在物等がスラグに留まり、清浄化された鋼が得られる。
In refining steel, as described above, it is desirable to perform primary treatment by adding Al, Si, Ca, Ca—Si alloy, Ti, Mg or the like. In the present invention, this primary processing may not be performed.
REM and mullite (3Al 2 O 3 · 2SiO 2 ) , compared molten steel respectively, addition is made in an amount of preferably within the range of each 0.1 to 1.0 mass%. Inclusions produced by the REM reaction react with mullite (3Al 2 O 3 .2SiO 2 ) added at the same time to lower the melting point and easily migrate into the slag.
As the molten steel solidifies, inclusions and the like remain in the slag, and a purified steel is obtained.
以下に本発明の実施例について説明する。
丸型電気炉を用いて、C:0.2質量%、Si:0.1質量%、Mn:0.3質量%、Ni:3.8質量%、Cr:1.8質量%、Mo:0.5質量%、V:0.1質量%を含有し、残部がFeおよび不可避不純物からなる溶鋼300gを、直径30mm、高さ100mmの緻密質MgOるつぼ内で溶製し、酸化鉄(Fe2O3)を溶鋼中酸素濃度が100ppmになるように添加した後、一次添加材として金属Alまたは44質量%Ca−56質量%Si合金を溶鋼の0.1質量%添加して攪拌を行った。
さらに、60分経過した後、二次添加材として希土類元素(REM)とムライト(56質量%Al2O3−40質量%SiO2)を1mm〜2mmに粉砕して粒度調整し、それぞれ溶鋼に対して0.1質量%または1.0質量%計量・混合したものを溶鋼に添加して、溶鋼中に浸漬させた直径4mmのMgO管からArガスを毎分300cc流しながら連続的に攪拌を行った。
Examples of the present invention will be described below.
Using a round electric furnace, C: 0.2 mass%, Si: 0.1 mass%, Mn: 0.3 mass%, Ni: 3.8 mass%, Cr: 1.8 mass%, Mo: 300 g of molten steel containing 0.5% by mass and V: 0.1% by mass with the balance being Fe and inevitable impurities is melted in a dense MgO crucible having a diameter of 30 mm and a height of 100 mm, and iron oxide (Fe 2 O 3 ) is added so that the oxygen concentration in the molten steel is 100 ppm, and then, as a primary additive, metal Al or 44 mass% Ca-56 mass% Si alloy is added by 0.1 mass% of the molten steel and stirred. It was.
Further, after the lapse of 60 minutes, a rare earth element and (REM) and mullite (56 mass% Al 2 O 3 -40 wt% SiO 2) was ground to 1mm~2mm adjust the particle size as a secondary additive, in the molten steel respectively In contrast, 0.1 wt% or 1.0 wt% weighed and mixed is added to the molten steel and continuously stirred while flowing 300 cc of Ar gas from an MgO tube with a diameter of 4 mm immersed in the molten steel per minute. went.
図1に上記実施例1の添加材の添加前後における溶鋼中の酸素濃度を示す。溶鋼中の酸素濃度は添加物の添加後次第に低下し、凝固後の酸素濃度は一次添加材にAlを使用した場合は22ppm、Ca−Si合金を使用した場合には37ppmであったが、二次添加材として希土類元素(REM)とムライト(56質量%Al2O3−40質量%SiO2)を溶鋼に対し、それぞれ0.1質量%添加し攪拌すると5ppmまで低減され、同様に希土類元素(REM)とムライト(56質量%Al2O3−40質量%SiO2)を溶鋼に対し、それぞれ1.0質量%添加し攪拌すると3ppmまで低減した。 FIG. 1 shows the oxygen concentration in the molten steel before and after the addition of the additive of Example 1 above. The oxygen concentration in the molten steel gradually decreased after the addition of the additive. The oxygen concentration after solidification was 22 ppm when Al was used as the primary additive, and 37 ppm when the Ca-Si alloy was used. As the next additive, rare earth element (REM) and mullite (56 mass% Al 2 O 3 -40 mass% SiO 2 ) were each added to 0.1 mass% of molten steel and stirred to reduce to 5 ppm. (REM) and to the molten steel mullite (56 mass% Al 2 O 3 -40 wt% SiO 2), was reduced to 3ppm when added respectively 1.0% by weight is stirred.
また、図3の電子顕微鏡写真(倍率1000倍)に凝固後の鋼塊中に認められた代表的な介在物を示す。Alを一次添加材として添加し、凝固させた鋼塊中の介在物にはアルミナ系介在物が認められた。これらの結果から、Alを一次添加材として添加したものにはアルミナ系介在物が認められ、またAlを一次添加材として添加したものおよびCa−Si合金を一次添加材として添加したものは酸素濃度を10ppm以下に低減することはできなかった。
一方、本発明を適用した鋼塊中には、アルミナ系介在物の存在が認められず、酸素濃度を10ppm以下まで低減させることができた。
Moreover, the typical inclusion recognized in the steel ingot after solidification is shown in the electron micrograph (magnification 1000 times) of FIG. Alumina inclusions were observed in the inclusions in the steel ingot that was solidified by adding Al as a primary additive. From these results, alumina inclusions were observed in the case where Al was added as a primary additive, and those in which Al was added as a primary additive and those in which Ca-Si alloy was added as a primary additive were oxygen concentrations. Could not be reduced to 10 ppm or less.
On the other hand, the presence of alumina inclusions was not observed in the steel ingot to which the present invention was applied, and the oxygen concentration could be reduced to 10 ppm or less.
次に、実施例2について説明する。
真空誘導溶解炉を用いて、C:0.3質量%、Si:0.2質量%、Mn:0.4質量%、Ni:4.0質量%、Cr:1.8質量%、Mo:0.5質量%、V:0.1質量%を含有し、残部がFeおよび不可避不純物からなる溶鋼15kgを、直径130mm、高さ240mmの多孔質MgOるつぼ内で溶製し、一次添加材として44質量%Ca−56質量%Si合金を溶鋼の0.1質量%添加し一次処理を行った。
Next, Example 2 will be described.
Using a vacuum induction melting furnace, C: 0.3% by mass, Si: 0.2% by mass, Mn: 0.4% by mass, Ni: 4.0% by mass, Cr: 1.8% by mass, Mo: As a primary additive, melt 15 kg of molten steel containing 0.5% by mass and V: 0.1% by mass with the balance being Fe and inevitable impurities in a porous MgO crucible having a diameter of 130 mm and a height of 240 mm. 44 mass% Ca-56 mass% Si alloy was added 0.1 mass% of the molten steel, and the primary treatment was performed.
さらに、一次添加材の添加から10分後、二次添加材として希土類元素(REM)とムライト(56質量%Al2O3−40質量%SiO2)を1mm〜2mmに粉砕し粒度調整したものをそれぞれ溶鋼に対して1.0質量%計量・混合したものを溶鋼に添加して攪拌した。なお、比較のため、上記一次処理(Ca−Si合金添加)のみを行った例を用意した。 Further, 10 minutes after the addition of the primary additive, the secondary additive was pulverized with rare earth elements (REM) and mullite (56 mass% Al 2 O 3 -40 mass% SiO 2 ) to 1 mm to 2 mm to adjust the particle size. Were mixed and weighed and mixed with 1.0% by mass of each of the molten steel. In addition, the example which performed only the said primary process (Ca-Si alloy addition) was prepared for the comparison.
図2に実施例2の添加材の添加前後における溶鋼中の酸素濃度を示す。溶鋼中の酸素濃度は溶け落ち後にMgOるつぼからの還元反応により酸素濃度がおよそ0.03質量%程度まで上昇しているが、添加材の添加後急激に低下し、凝固後の酸素濃度は一次添加材にCa−Si合金のみを使用した場合には18ppmであった。一方、複合処理として希土類元素(REM)とムライト(56質量%Al2O3−40質量%SiO2)を添加すると7ppmまで低減された。また、酸素濃度はCa−Si合金のみを使用した場合よりも複合処理を行った方が早く低下しており、複合処理による効果が認められた。本発明による方法を用いることで従来よりも短時間で高清浄な溶鋼を得ることが可能となり、精錬時間の短縮によるコスト低減効果が得られた。 FIG. 2 shows the oxygen concentration in the molten steel before and after the addition of the additive of Example 2. The oxygen concentration in the molten steel has risen to about 0.03% by mass due to the reduction reaction from the MgO crucible after it has melted down, but it drops sharply after the addition of the additive, and the oxygen concentration after solidification is primary. When only the Ca—Si alloy was used as the additive, it was 18 ppm. On the other hand, it was reduced to 7ppm the addition of rare earth elements (REM) and mullite (56 mass% Al 2 O 3 -40 wt% SiO 2) as a composite process. In addition, the oxygen concentration decreased earlier when the composite treatment was performed than when only the Ca—Si alloy was used, and the effect of the composite treatment was recognized. By using the method according to the present invention, it has become possible to obtain molten steel with higher cleanliness in a shorter time than before, and the cost reduction effect by shortening the refining time was obtained.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007186574A JP5142610B2 (en) | 2007-07-18 | 2007-07-18 | Manufacturing method of high cleanliness steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007186574A JP5142610B2 (en) | 2007-07-18 | 2007-07-18 | Manufacturing method of high cleanliness steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009024201A JP2009024201A (en) | 2009-02-05 |
JP5142610B2 true JP5142610B2 (en) | 2013-02-13 |
Family
ID=40396299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007186574A Expired - Fee Related JP5142610B2 (en) | 2007-07-18 | 2007-07-18 | Manufacturing method of high cleanliness steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5142610B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5943814A (en) * | 1982-09-06 | 1984-03-12 | Kawasaki Steel Corp | Method for refining molten steel in ladle in manufacture of non-oriented electrical steel sheet with small iron loss |
JPS5974212A (en) * | 1982-10-20 | 1984-04-26 | Kawasaki Steel Corp | Ladle refining method of molten steel to be used for producing non-directional electrical sheet having less iron loss |
JPS60234751A (en) * | 1984-05-07 | 1985-11-21 | Nippon Steel Corp | Flux for continuous casting of steel |
JP3893785B2 (en) * | 1999-01-26 | 2007-03-14 | Jfeスチール株式会社 | Melting method of high carbon steel for wire |
-
2007
- 2007-07-18 JP JP2007186574A patent/JP5142610B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009024201A (en) | 2009-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5541310B2 (en) | Manufacturing method of highly clean steel | |
JP2013142181A (en) | Method for producing forging steel | |
JP5381243B2 (en) | Method for refining molten steel | |
JP6311400B2 (en) | Carbon steel slab and method for producing carbon steel slab | |
JP5379583B2 (en) | Manufacturing method of ultra high purity alloy ingot | |
CN113215360A (en) | Deoxidation method of aluminum killed silicon-containing steel | |
JP5458607B2 (en) | Manufacturing method of clean steel with excellent resistance to sulfide corrosion cracking | |
US20230257858A1 (en) | Silicon based alloy, method for the production thereof and use of such alloy | |
JP5142610B2 (en) | Manufacturing method of high cleanliness steel | |
CN109694936B (en) | Deoxidizing alloying agent capable of purifying molten steel and preparation method thereof | |
JP5590056B2 (en) | Manufacturing method of highly clean steel | |
JP6347405B2 (en) | Method for producing maraging steel | |
JP2011012300A (en) | Copper alloy and method for producing copper alloy | |
JP2010189678A (en) | Cr-containing copper alloy wire, and method for producing the same | |
JP2006326639A (en) | Method for producing maraging steel | |
JP2018127680A (en) | Method for smelting clean steel | |
JP6140423B2 (en) | Method for recovering metal containing desulfurized slag | |
JP5814500B2 (en) | Method for producing stainless steel ingot having carbon [C] of 10 ppm or less in ingot | |
JP5387045B2 (en) | Manufacturing method of bearing steel | |
JP2000273525A (en) | Production of high cleanliness steel | |
JPH11293359A (en) | Melting of metallic vanadium or/and metallic vanadium alloy, and its casting method | |
JP2003013132A (en) | Method for manufacturing high cleanliness steel | |
JP6728933B2 (en) | Continuous casting method for molten steel | |
CN115572876A (en) | Ultra-pure ferrovanadium alloy and preparation method and application thereof | |
JP6126355B2 (en) | Hot metal desulfurization treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081117 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120419 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121114 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121120 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151130 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |