JPS5943814A - Method for refining molten steel in ladle in manufacture of non-oriented electrical steel sheet with small iron loss - Google Patents

Method for refining molten steel in ladle in manufacture of non-oriented electrical steel sheet with small iron loss

Info

Publication number
JPS5943814A
JPS5943814A JP15499482A JP15499482A JPS5943814A JP S5943814 A JPS5943814 A JP S5943814A JP 15499482 A JP15499482 A JP 15499482A JP 15499482 A JP15499482 A JP 15499482A JP S5943814 A JPS5943814 A JP S5943814A
Authority
JP
Japan
Prior art keywords
molten steel
rare earth
added
ladle
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15499482A
Other languages
Japanese (ja)
Other versions
JPS626604B2 (en
Inventor
Kazuhisa Hamagami
和久 浜上
Hitoshi Morishita
森下 仁
Fumio Sudo
数土 文夫
Hidenari Kitaoka
北岡 英就
Katsuo Kinoshita
勝雄 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15499482A priority Critical patent/JPS5943814A/en
Publication of JPS5943814A publication Critical patent/JPS5943814A/en
Publication of JPS626604B2 publication Critical patent/JPS626604B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0075Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To manufacture the titled electrical steel sheet by adding a deoxidizer contg. Si and Al to deoxidize well molten steel, adding an alloy consisting of rare earth elements and a flux for desulfurization to the deoxidized molten steel, and carrying out ladle refining including vacuum degassing. CONSTITUTION:A deoxidizer contg. Si and Al is added to molten steel manufactured in a steel manufacturing furnace to deoxidize well the molten steel, and the molten steel is well agitated to separate the deoxidation products. To the deoxidized molten steel are added 0.1-2kg/t rare earth element or alloy consisting of >=2 kinds of rare earth elements and 1-20kg/t flux for desulfurization such as lime, soda ash, NaOH or KOH, and ladle refining including vacuum degassing is carried out.

Description

【発明の詳細な説明】 本発明は、鉄損の低い無方向性電磁鋼板の製造に供する
取鍋精錬法に関し、とくに愚東密度や鉄損値に優れた冷
延無方向性電磁鋼板を得るために必要とされる介在物や
析出物の低減に対し、とりわけ有効な溶鋼処理の方法に
ついて提案する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ladle refining method for producing non-oriented electrical steel sheets with low iron loss, and in particular to obtain cold-rolled non-oriented electrical steel sheets with excellent iron density and iron loss values. We propose a method of molten steel treatment that is particularly effective for reducing inclusions and precipitates.

無方向性電磁鋼板の最も重要な特性は鉄損の低いことで
ある。この鉄損は冷間圧延後の仕上げ焼鈍によって得ら
れる再結晶粒径に依存し、最も低い鉄損は再結晶粒径が
150〜25011のときに得られることが知られてい
る。かかる粒径に再結晶させるためには、窒化物、硫化
物の如き微細な析出物を極度に少なく管理する必要があ
る。これら析出物のうち、窒化物については鋼中に0.
15%以上のAJを含有させることによりl?Nを比較
的大きな粒径で析出させることができるから、仕上げ焼
鈍に際して再結晶の粒成長を妨げることは少ナイ。一方
、硫化物についても合金元累として添加する希土類元素
あるいはOaを用いれば、硫化物を熱力学的に安定で固
溶再析出することがなく、または比較的大きな析出物と
して固定することができ鉄損値の改善に効果のあること
が特開昭51−62115号あるいは同55−2494
2号としてすでに提案され公知である。
The most important characteristic of non-oriented electrical steel sheets is low iron loss. This iron loss depends on the recrystallized grain size obtained by finish annealing after cold rolling, and it is known that the lowest iron loss is obtained when the recrystallized grain size is 150 to 25011. In order to recrystallize to such a grain size, it is necessary to control fine precipitates such as nitrides and sulfides to an extremely low level. Among these precipitates, nitrides are present in the steel.
By containing 15% or more of AJ, l? Since N can be precipitated with a relatively large grain size, there is little interference with recrystallization grain growth during final annealing. On the other hand, for sulfides, if rare earth elements or Oa are added as an alloying element, the sulfides are thermodynamically stable and do not undergo solid solution reprecipitation, or can be fixed as relatively large precipitates. It is reported in JP-A-51-62115 or JP-A-55-2494 that it is effective in improving the iron loss value.
No. 2 has already been proposed and is publicly known.

しかるに、高級電磁鋼板の分野におりて、さらに鉄損値
を改善するためには、最も理想とする再結晶粒径を得る
こととともに基地組織中の介在物や析出物を極力低減す
ることが必要になる。無方向性高級電磁生板の鉄損値は
、磁気的履P:損失と渦電流損失とからなるが、その比
率は6〜7:4〜3で履歴接失の寄力が大きい。
However, in the field of high-grade electrical steel sheets, in order to further improve the iron loss value, it is necessary to obtain the most ideal recrystallized grain size and to reduce inclusions and precipitates in the matrix structure as much as possible. become. The iron loss value of a non-directional high-grade electromagnetic plate is composed of magnetic wear P: loss and eddy current loss, and the ratio thereof is 6 to 7:4 to 3, and the contribution of hysteretic contact loss is large.

その鉄損値に影響を及はず上記渦電流損失を低減するこ
は、SlやA/の含有量を増加して鋼板基地の電気抵抗
を低減ずれt−1’よいことが知られている。しかし、
S1+A/’の「1が4チを越えると、冷延時に割れが
生じるため、渦電流損失の低減には限界がある。一方、
履歴損失は、6基地組織中の介在物や析出物によって増
加するから、これらの生成を抑制しなければならない。
It is known that to reduce the above eddy current loss without affecting the iron loss value, it is possible to increase the content of Sl and A/ to reduce the electrical resistance of the steel plate base by t-1'. but,
If S1+A/' exceeds 4 inches, cracks will occur during cold rolling, so there is a limit to reducing eddy current loss.On the other hand,
Since hysteresis loss increases due to inclusions and precipitates in the hexabase structure, their formation must be suppressed.

すなわち、磁壁の移動に際し、これらの介在物や析出物
が障害となって履歴損失を増加させるのである。こうし
た介在物や析出物を形成するのは、前記窒化物や硫化物
とともに酸化物であり、高級無方向性電磁鋼板の鉄損値
を改善するためには、正にかかる窒化物、硫化物ならび
に酸化物抑制のために、鞘製された溶銅中のN、S、O
などの低減が必要である。
In other words, these inclusions and precipitates act as obstacles to the movement of the domain wall, increasing hysteresis loss. These inclusions and precipitates are formed by oxides as well as nitrides and sulfides, and in order to improve the iron loss value of high-grade non-oriented electrical steel sheets, it is necessary to N, S, and O in the sheathed molten copper to suppress oxides.
It is necessary to reduce the

本発明は上述した斯界の現状に鑑みその間鎖点の克服を
目的として開発した技術であ1)、その要旨とするとこ
ろは、鉄損の低い無方向性’tVb、磁鋼板の製造に供
するべく製鋼炉で溶製された浴脩の取鍋精錬に当り、ま
ず5i−Arを使う脱酸剤を添加して十分に脱酸し、そ
の脱酸溶鋼中に希土、%種または2 ffi以上からな
るその合金を、脱硫フラックスとともに添加して真空脱
ガス処理を;Vむ取鍋精錬を行うことを特徴とする鉄損
の低い無方向性電磁鋼板の製造に供する溶鋼の取鍋鞘0
)11方法の構成にある。以下にその構成の詳細を説明
する。
The present invention is a technology developed in view of the above-mentioned current state of the industry with the aim of overcoming the disadvantages1). When refining the molten steel in a ladle, first add a deoxidizing agent using 5i-Ar to fully deoxidize the molten steel. A ladle sheath of molten steel used for the production of non-oriented electrical steel sheet with low core loss, characterized in that the alloy consisting of the following is added together with desulfurization flux and subjected to vacuum degassing treatment;V ladle refining.
) 11 method configuration. The details of the configuration will be explained below.

一般に、無方向性電磁鋼板用素材の′r8製は、脱硫溶
銑を溶製炉で脱炭した後、取鍋梢fcti処J!11に
より行う。取鍋精錬方法としては、真空梢ρ1!が好適
であり、まずリムド処理により十分脱炭した後、Slお
よびAI!を添加して脱酸し、溶鋼を十分攪拌して脱酸
生成物を分離する。溶鋼中Sは溶銑脱硫時に十分低くし
ておくことが必要であるが、溶製炉力・ら汚染により復
硫する場合もあり、かならずしも満足のゆく低硫溶鋼が
得られていないのが現状である。そこで、SlおよびA
/’による脱酸の後で、脱硫フラックスを添加して脱硫
を試各ることもあるが、高級無方向性電磁鋼板の鉄損値
を確保するためのS濃度(S≦l Oppm )を得る
ためには、脱硫フラックスを大量に添加せねばならず、
その場合は、脱酸が十分に進行しな−と言う欠点があっ
た。
In general, 'R8' material for non-oriented electrical steel sheets is produced by decarburizing desulfurized hot metal in a smelting furnace and then using a ladle at the top of the fcti process. 11. As a ladle refining method, vacuum Kozue ρ1! is preferable, and after first sufficiently decarburizing by rimmed treatment, Sl and AI! is added to deoxidize, and the molten steel is sufficiently stirred to separate the deoxidized products. It is necessary to keep the S content in molten steel sufficiently low during hot metal desulfurization, but resulfurization may occur due to pollution from the smelting furnace, and currently it is not possible to obtain a satisfactory low-sulfur molten steel. be. Therefore, Sl and A
After deoxidation by /', desulfurization is sometimes tried by adding desulfurization flux, but the S concentration (S≦lOppm) is obtained to ensure the core loss value of high-grade non-oriented electrical steel sheet. In order to do this, it is necessary to add a large amount of desulfurization flux,
In that case, there was a drawback that deoxidation did not proceed sufficiently.

そこで、本発明は、製鋼炉で得た溶粂の取鍋精錬に当り
、まずSlおよびl’による十分な脱酸の後、希土類元
素を添加して溶存Sを低減すると共に必要最小量の脱硫
フラックスを複合添加して溶存Sを脱硫することにより
、希土類元素の添加によつ“ご生成し溶鋼中に浮遊して
いる希土類の硫化物ならびに硫酸化物を該脱硫フラック
スによって浮上分離を促進して、脱酸に引き続いて脱硫
を行う方法である。
Therefore, in the ladle refining of the molten lees obtained in a steelmaking furnace, first, after sufficient deoxidation with Sl and L', rare earth elements are added to reduce dissolved S, and at the same time, the necessary minimum amount of desulfurization is carried out. By desulfurizing dissolved S by adding flux in combination, the desulfurization flux promotes flotation and separation of rare earth sulfides and sulfides that are generated and suspended in molten steel due to the addition of rare earth elements. This is a method in which deoxidation is followed by desulfurization.

以下本発明方法をさらに詳述する。希土類元素は、酸素
との親和力が強く脱硫を有効に行うためには溶鋼を十分
に脱酸し、予め脱酸生成物を系外に除去しておくことが
必要である。したがって、希土類元素の添加に先立ち、
溶鋼中にSit・よびA/を添加し十分脱酸し、しかる
後にその脱酸溶鋼に対し希土類元素を添加する。
The method of the present invention will be explained in further detail below. Rare earth elements have a strong affinity for oxygen, and in order to effectively desulfurize, it is necessary to sufficiently deoxidize the molten steel and remove the deoxidized products from the system in advance. Therefore, prior to the addition of rare earth elements,
Sit. and A/ are added to molten steel to sufficiently deoxidize it, and then rare earth elements are added to the deoxidized molten steel.

この希土類元素の添加に際しては溶鋼中の溶存Sを平衡
S#度に低減するために必要な希土類元素の添加量を確
保することが大切であり、具体的には0.1〜2 kf
/lの希土類元素を添加する。通常、無方向性珪素鋼の
製造においては、溶銑脱硫時に溶鋼のS濃度を100 
ppm程度にまで下げてから取鍋精錬を行うので、希土
類元素のSとの反応効率を約50係とすると、2に9/
lの希土類元素の添加が必要である。また、溶鋼の初期
S濃度が低い場合でも、0.1kp/を以下の添加量で
は、水洗における効果は期待できない。
When adding these rare earth elements, it is important to secure the amount of rare earth elements necessary to reduce the dissolved S in the molten steel to the equilibrium S# degree, specifically 0.1 to 2 kf.
/l of rare earth element is added. Normally, in the production of non-oriented silicon steel, the S concentration of molten steel is reduced to 100 when desulfurizing hot metal.
Since ladle refining is performed after reducing the amount to about ppm, assuming that the reaction efficiency of rare earth elements with S is about 50 parts, the ratio is 2 to 9 parts.
1 of rare earth elements is required. Further, even if the initial S concentration of molten steel is low, no effect in water washing can be expected if the addition amount is less than 0.1 kp/.

希土類元素を添加した後、溶存Sとの反応を完全に行わ
せるために溶鋼を十分攪拌する。希土類元素は、溶存S
および溶鋼中に浮遊する酸化物と反応し、硫化物(Ce
S、 LaS ) l>るいは酸硫化物(CeO2,’
La5s)を形成するが、これらの硫化物22    
 22 あるいは酸硫化物は密度が太きく、溶鋼に対する密度差
が小さいためあまり浮上分肉11が期erできず、溶鋼
中に回遊している。
After adding the rare earth element, the molten steel is sufficiently stirred to allow the reaction with dissolved S to occur completely. Rare earth elements are dissolved S
and reacts with oxides floating in molten steel, producing sulfides (Ce
S, LaS) l>or oxysulfide (CeO2,'
La5s), but these sulfides 22
22 Alternatively, oxysulfides have a high density and have a small density difference with respect to the molten steel, so the surfacing wall thickness 11 cannot be expected to form much, and they migrate into the molten steel.

次いで、脱硫フラックスを添加して希土類元素と未反応
の溶存Sを脱硫する。ここで使用される脱硫フラックス
は石灰(CaO)、(Ca F 2 )、ソーダ灰(N
 ’ 2 COa )、苛性ソーダ(NaOH)、苛性
カリ(KOH)など、通常使用される公知の種(白のも
の、あるいはそれらを複合したものでよい。カルシウム
カーバイド(Oa C2) il″j:、本状において
は、溶鋼の復炭をきたし、′成虫鋼板の電磁79性を劣
化せしめるためあ才り好ましいものではない。な訃、脱
硫フラックスとして石灰((、aO)など溶鋼温2度に
おいて固体のものを使用する場合、溶鋼温度における固
体脱硫フラックスの滓化溶融を促進するため、弗化カル
シウム(C乙F)、酸化鉄(Fe208)、石灰石(C
” COa )などの1種類以上を添加したものを混合
して使用することが有効である。溶鋼に添加された脱硫
フラックスは、溶存Sと反応して硫化物を形成するとと
もに、フラックスにより形成された硫fヒ物あるいは過
剰に存在するフラックスは、先に形成され密度が大きく
て浮上できずに溶鋼中に浮遊している状態の希土類元素
の硫化物あるいは酸硫化物と吸着合体し、その見掛は上
の密度を低下させて浮上性を増大し、溶鋼か「)の脱セ
ムを急激に促進する。
Next, a desulfurization flux is added to desulfurize dissolved S that has not reacted with the rare earth element. The desulfurization fluxes used here are lime (CaO), (CaF 2 ), soda ash (N
' 2 COa ), caustic soda (NaOH), caustic potash (KOH), etc., commonly used known species (white ones, or composites thereof may be used.Calcium carbide (Oa C2) il''j:, main form In this case, it is not desirable because it causes recarburization of the molten steel and deteriorates the electromagnetic properties of the immature steel plate.As a desulfurization flux, lime ((, aO), etc., which is solid at a temperature of 2 degrees Celsius) is not desirable. When using calcium fluoride (CF), iron oxide (Fe208), limestone (C
It is effective to use a mixture of one or more types of desulfurization flux such as ``COa''.The desulfurization flux added to molten steel reacts with dissolved S to form sulfides, and the flux is also formed by the flux. The sulfur arsenides or excessively present flux adsorb and coalesce with the rare earth element sulfides or oxysulfides that were formed earlier and are too dense to float in the molten steel. Hanging reduces the density of the upper surface and increases the floatability, rapidly promoting the de-semination of molten steel or ")".

脱硫フラックスの添加量は、脱硫をl1li進するうえ
て必要な量を確保するとともに、あ徒り過剰に添加して
溶鋼中の酸素の量を高めることがあっては好寸しくない
。具体的には[〜2 (,1ky/ tの脱硫フラック
スを添加する。1kV/を未満のフラックス添加量では
上記の脱硫効果が十分でな(ハ。また、20にり/lよ
り多いフラックス添加では、鋼中酸素濃度が増加し、か
えって製品の電磁特性が劣化する。
The amount of desulfurization flux to be added is to ensure the amount necessary to accelerate desulfurization, but it is not suitable if it is added in excess and increases the amount of oxygen in the molten steel. Specifically, desulfurization flux of [~2 (,1 kV/t) is added. If the amount of flux added is less than 1 kV/t, the desulfurization effect described above is not sufficient. In this case, the oxygen concentration in the steel increases, which actually deteriorates the electromagnetic properties of the product.

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

実施例 I S濃度が0.004 %の脱硫溶銑を、280トン底吹
き転炉で吹錬し、溶鋼成分が、c : o、oa〜0.
06 ’1、Si : tr、 Mn : 0,10〜
0.20%、P:0.007〜0.015係、 S :
 0.002〜0.004係、0:400〜6 (10
ppmの成分組成の鋼を溶?!(3チヤージ)し、この
溶製鋼をRH脱ガス装置を用いて脱炭処理とともに、イ
聾1に示す条件のRH脱ガスの取鍋精錬を実施し、同表
に示すような成分の溶製鋼を得た。次に、その溶鋼を連
Uシ彷造してスラブとなし、熱間圧延して熱延板を得た
。これらの熱延板をr浚洗後、連続焼鈍をはさむ2回(
9間圧延により0.85tntmの仕上厚の冷延板とし
たV仕上げ連続焼鈍を施した。Δ、13.03相類の蛋
@鋼板について得られた電磁114.性を表2に示(、
た。この表から、本発明例で・ちる希土類元素合金と脱
硫フラックスとを複合添加したA法、比較例である希土
類元素合金あるいは脱硫フラックスをそれぞれ単独添加
したB法あるいはC法に比較し、格段と優れていること
がわかる。
Example IS Desulfurized hot metal with an S concentration of 0.004% was blown in a 280-ton bottom blowing converter, and the molten steel components were c: o, oa to 0.
06'1, Si: tr, Mn: 0,10~
0.20%, P: 0.007-0.015, S:
Section 0.002-0.004, 0:400-6 (10
Melting steel with ppm composition? ! (3 charges), and this molten steel is decarburized using an RH degassing device, and RH degassed ladle refining is carried out under the conditions shown in 1. I got it. Next, the molten steel was formed into a slab by continuous U-shaping, and hot rolled to obtain a hot rolled plate. After dredging these hot-rolled sheets, they were subjected to two consecutive annealing sessions (
A cold-rolled plate with a finishing thickness of 0.85 tntm was obtained by rolling for 9 hours and subjected to continuous annealing for V-finishing. Δ, 13.0 Electromagnetic 114 obtained for 3-phase steel plate. The gender is shown in Table 2 (,
Ta. From this table, it can be seen that compared to Method A in which a rare earth element alloy and desulfurization flux were added in combination in the present invention example, and Method B or C in which a rare earth element alloy or desulfurization flux was added alone as a comparative example, the results were significantly improved. It turns out that it is excellent.

実施例 2 S濃度が0.004 %の脱硫溶銑を、90トンの上底
吹併用転炉で吹ρ1(シ、上記実施例1と同一成分溶鋼
を溶製し、次いでその溶鋼をRH脱ガス装置に上り脱炭
脱ガスを−1−分に行って希土類元素の合金の添加を行
う炉外精練の後、表8に示すように1部のチャージは取
鍋浸漬ランスを用いて石灰系脱硫フラックスをArガス
とともに吹き込んだ。それぞれの溶鋼を連続鋳造し、て
スラブとなし、以下熱間圧延、1回冷間圧延により0.
5 m、m仕上厚の冷延板と17で仕上焼鈍を行った。
Example 2 Desulfurized hot metal with an S concentration of 0.004% was blown in a 90-ton top-bottom blowing converter. After out-of-furnace scouring in which decarburization and degassing are carried out in the equipment for -1- minutes and addition of rare earth alloys, a portion of the charge is subjected to lime-based desulfurization using a ladle immersion lance, as shown in Table 8. Flux was blown in with Ar gas. Each molten steel was continuously cast to form a slab, which was then hot rolled and once cold rolled to a 0.
Finish annealing was performed using a cold-rolled plate with a finish thickness of 5 m and a finish thickness of 17 m.

方法D −y f) (7) 4鋼種について得られた
製品板の電磁特性を?モ4に示した。これより希土類元
素合金と脱硫フラックスとを複合添加した本発明のG方
法が、比較方法り、E、Fに対し著しく優ねた電磁特性
が得られていることがわかる。
Method D -y f) (7) What are the electromagnetic properties of the product sheets obtained for the four steel types? It is shown in Mo4. From this, it can be seen that method G of the present invention, in which a rare earth element alloy and desulfurization flux are added in combination, has significantly superior electromagnetic properties to those of E and F compared to the comparative methods.

表2 製品板の電磁特性 −90− 表4 製品板の電磁特性 以上説明したように本発明によれば、最も好ましい再結
晶粒径を調整し得るとともに、基地組織中の介在物や析
出物を著しく低減できるかC)鉄損の低い無方向性高級
電磁鋼板の製造を容易にする効果がある。
Table 2 Electromagnetic properties of product plate -90- Table 4 Electromagnetic properties of product plate As explained above, according to the present invention, the most preferable recrystallized grain size can be adjusted, and inclusions and precipitates in the matrix structure can be adjusted. Can it be significantly reduced? C) It has the effect of facilitating the production of non-oriented high-grade electrical steel sheets with low iron loss.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄損の低い無方向性電磁鋼板の製造に供される製鋼
炉で溶製された溶鋼の取鍋精&Ijに当り、まずSl・
A/’を使う脱酸剤を添加して十分に脱酸し、その脱酸
溶鋼中に希土類元素の1種または2種以上からなるその
合金を、脱硫フラックスとともに添加して真空脱ガス処
理を含む取鍋精錬を行うことを特徴とする鉄損の低い無
方向性電磁鋼板の製造に供する溶鋼の取鍋相線方法。
1. When preparing ladle & Ij of molten steel melted in a steelmaking furnace used for manufacturing non-oriented electrical steel sheets with low core loss, first, Sl.
A deoxidizing agent using A/' is added to fully deoxidize, and the alloy consisting of one or more rare earth elements is added to the deoxidized molten steel along with desulfurization flux to perform vacuum degassing treatment. 1. A ladle refining method for molten steel used for manufacturing non-oriented electrical steel sheets with low iron loss, characterized by carrying out ladle refining including molten steel.
JP15499482A 1982-09-06 1982-09-06 Method for refining molten steel in ladle in manufacture of non-oriented electrical steel sheet with small iron loss Granted JPS5943814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15499482A JPS5943814A (en) 1982-09-06 1982-09-06 Method for refining molten steel in ladle in manufacture of non-oriented electrical steel sheet with small iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15499482A JPS5943814A (en) 1982-09-06 1982-09-06 Method for refining molten steel in ladle in manufacture of non-oriented electrical steel sheet with small iron loss

Publications (2)

Publication Number Publication Date
JPS5943814A true JPS5943814A (en) 1984-03-12
JPS626604B2 JPS626604B2 (en) 1987-02-12

Family

ID=15596384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15499482A Granted JPS5943814A (en) 1982-09-06 1982-09-06 Method for refining molten steel in ladle in manufacture of non-oriented electrical steel sheet with small iron loss

Country Status (1)

Country Link
JP (1) JPS5943814A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024201A (en) * 2007-07-18 2009-02-05 Japan Steel Works Ltd:The Method for manufacturing superclean steel
JP2012012681A (en) * 2010-07-02 2012-01-19 Sumitomo Metal Ind Ltd Method for desulfurizing and denitrogenizing molten steel at high speed
WO2020071048A1 (en) * 2018-10-02 2020-04-09 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for producing cast slab constituting material thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024201A (en) * 2007-07-18 2009-02-05 Japan Steel Works Ltd:The Method for manufacturing superclean steel
JP2012012681A (en) * 2010-07-02 2012-01-19 Sumitomo Metal Ind Ltd Method for desulfurizing and denitrogenizing molten steel at high speed
WO2020071048A1 (en) * 2018-10-02 2020-04-09 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for producing cast slab constituting material thereof
JPWO2020071048A1 (en) * 2018-10-02 2021-02-15 Jfeスチール株式会社 Manufacturing method of non-oriented electrical steel sheet and slab slab as its material
CN112789363A (en) * 2018-10-02 2021-05-11 杰富意钢铁株式会社 Non-oriented electrical steel sheet and method for producing slab cast sheet as material thereof
RU2768098C1 (en) * 2018-10-02 2022-03-23 ДжФЕ СТИЛ КОРПОРЕЙШН Sheet from unstructured electrical steel and method of making slab used as material therefor
CN112789363B (en) * 2018-10-02 2022-06-07 杰富意钢铁株式会社 Non-oriented electrical steel sheet and method for producing slab cast sheet as material thereof

Also Published As

Publication number Publication date
JPS626604B2 (en) 1987-02-12

Similar Documents

Publication Publication Date Title
US20150034212A1 (en) Non-Oriented Electrical Steel Sheet with Fine Magnetic Performance, and Calcium Treatment Method Therefor
US3960616A (en) Rare earth metal treated cold rolled, non-oriented silicon steel and method of making it
JPH09263820A (en) Production of cluster-free aluminum killed steel
JP2575827B2 (en) Manufacturing method of ultra low carbon steel for continuous casting with excellent cleanliness
JP2971080B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
KR100711410B1 (en) Highly Ductile Steel Sheet and Method of Manufacturing the Same
KR100886046B1 (en) Method for producing extremely low carbon steel sheet and extremely low carbon cast piece having excellent surface characteristics, workability and formability
JPS6241290B2 (en)
JPS5943814A (en) Method for refining molten steel in ladle in manufacture of non-oriented electrical steel sheet with small iron loss
JP3687644B2 (en) Method for producing non-oriented electrical steel sheet
JP3627755B2 (en) Method for producing high cleanliness ultra low carbon steel with extremely low S content
EP0002929B1 (en) Use of plain low carbon steels for electrical applications
JPH07122090B2 (en) Method of melting directional silicon steel material
JP2991796B2 (en) Melting method of thin steel sheet by magnesium deoxidation
JP4502944B2 (en) Thin steel plate rich in ductility and method for producing steel ingot to obtain the steel plate
JP5509913B2 (en) Method of melting high Si steel with low S and Ti content
JP4218136B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP7047818B2 (en) Refining method of molten steel
RU2768098C1 (en) Sheet from unstructured electrical steel and method of making slab used as material therefor
JP3160124B2 (en) Deoxidation method of low silicon aluminum killed steel
JP2004204252A (en) Ti-CONTAINING HIGH-WORKABILITY FERRITIC CHROMIUM STEEL SHEET SUPERIOR IN RIDGING RESISTANCE, AND MANUFACTURING METHOD THEREFOR
JPH10212555A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
JP3680470B2 (en) Melting method for non-oriented silicon steel with excellent electromagnetic characteristics
JPS5974213A (en) Ladle refining method of molten steel to be used for producing non-directional electrical sheet having less iron loss
JP3295008B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties