JP3893785B2 - Melting method of high carbon steel for wire - Google Patents

Melting method of high carbon steel for wire Download PDF

Info

Publication number
JP3893785B2
JP3893785B2 JP01667699A JP1667699A JP3893785B2 JP 3893785 B2 JP3893785 B2 JP 3893785B2 JP 01667699 A JP01667699 A JP 01667699A JP 1667699 A JP1667699 A JP 1667699A JP 3893785 B2 JP3893785 B2 JP 3893785B2
Authority
JP
Japan
Prior art keywords
slag
rem
carbon steel
wire
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01667699A
Other languages
Japanese (ja)
Other versions
JP2000212635A (en
Inventor
晴 本郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP01667699A priority Critical patent/JP3893785B2/en
Publication of JP2000212635A publication Critical patent/JP2000212635A/en
Application granted granted Critical
Publication of JP3893785B2 publication Critical patent/JP3893785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、線材用高炭素鋼の溶製方法に関する。
【0002】
【従来の技術】
例えば、自動車用タイヤ・コードに使用される高炭素鋼線材は、高炭素鋼からなる素材(通常、鋳片)を直径約5.5mmまで熱間圧延し、その後パテンティング(熱処理の1種)を施しながら、数回にわたって冷間で引き抜き加工(伸線加工)し、最終的に直径0.15mm程度の極細線にされる。この伸線加工に際して、素材中に硬質な粒状の非金属介在物が存在していると、該素材の基地(マトリックスともいう)が伸延されても、非金属介在物は伸延しない。この状態では、該介在物の周辺に微小な空隙(ボイドという)が形成されるので、素材の延性が低下して断線が生じ易くなる。特に、近年は、タイヤ・コードの極細線化及び高強度化が志向されるので、素材中の介在物の無害化要求が強まっている。
【0003】
そこで、従来より、素材中に存在する非金属介在物が素材の圧延時に十分延伸するように、それを軟質なものにする技術開発が盛んに行なわれてきた。その結果、多くの技術が提案され、実用されるようになった。それらの技術のうちでも、特に、製鋼段階で溶鋼に希土類元素を添加し、介在物を軟質にする方法が注目されている。
【0004】
例えば、特公昭57−35243号公報は、Alで脱酸せずに出鋼した溶鋼を取鍋に移し、そこにキャリア・ガスと共にCaO含有フラックスを吹き込んで予備脱酸し、その後Ca,Mg,希土類元素(以下、REMという)の一種又は二種以上を含む合金を微量吹き込み、素材を溶製する方法を提案している。
【0005】
また、特開平10−183229号公報は、重量比にてCを0.50〜1.00%含む高炭素鋼線材の製造方法において、転炉あるいは電気炉での脱C,脱P処理後に行なう取鍋内二次精錬に際し、スラグ中のCaO/SiO2を1.0〜1.5に調整し、攪拌処理を行ないスラグ−メタル反応を進行させて溶鋼中のO濃度を20ppm以下にした後、Al−REM含有Fe合金を添加して精錬後の溶鋼中のAl濃度を3.0ppm以下、溶存REM濃度を1.5〜5.0ppmとし、さらにN濃度を40ppm未満にし、その後連続鋳造し、熱間圧延する方法を提案している。これらの方法によって得た素材は、圧延で従来より良く延伸され、ある程度の非金属介在物の軟質化が達成された。
【0006】
しかしながら、これらの方法で得た素材でも、線材にした際に断線が完全に生じないわけではなく、まだ改良の余地が残されていると思われる。
【0007】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑み、従来より断線頻度が格段と低い素材を得ることの可能な線材用高炭素鋼の溶製方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
発明者は、上記目的を達成するため、上記した従来の製造方法で得た素材中の非金属介在物の形態を調査し、その成果を本発明に具現化した。
【0009】
すなわち、本発明は、
C:0.5〜1.0wt%、
Si:0.15〜0.50wt%、
Mn:0.30〜0.90wt%、
P:<0.020wt%、
S:<0.020wt%、
で残部鉄、及び不可避的不純物からなる高炭素溶鋼を取鍋に入れ、CaO/SiO2を1.0〜1.5に調整したスラグと共に撹拌してスラグ−メタル反応を進行させて二次精錬する線材用高炭素鋼の溶製方法において、前記スラグ中に、REM含有鉄合金を添加し、攪拌処理することを特徴とする線材用高炭素鋼の溶製方法である。
【0010】
また、本発明は、前記スラグ中へのREM含有鉄合金の添加を、キャリア・ガスによる吹き込みで行なったり、あるいはスラグ上へ投入で行なうことを特徴とする線材用高炭素鋼の溶製方法である。
【0011】
さらに、本発明は、前記REM含有鉄合金が吹き込まれたスラグに電極を挿入し、再加熱することを特徴とする線材用高炭素鋼の溶製方法である。
【0012】
加えて、本発明は、前記溶鋼中の溶存酸素濃度を20ppm以下とすることを特徴とする線材用高炭素鋼の溶製方法でもある。
【0013】
本発明では、予め鋼中に形成された非金属介在物がスラグ−メタルの界面を通してREMと接触するため、介在物の複合化が促進され、REM単体または、REM酸化物の濃度が高い非金属介在物が発生しなくなる。その結果、得られた鋼材の伸線加工性や耐時効性が従来より改良される。
【0014】
【発明の実施の形態】
以下、発明をなすに至った経緯をまじえ、本発明の実施の形態を説明する。
【0015】
まず、発明者は、上記した従来の線材用高炭素鋼の製造方法で得た素材中の非金属介在物の形態を調査し、それらの大部分は、軟質化に望ましい複合化合物になっていたが、まだCaO,Al23,SiO2等の単体でも存在していることを知った。つまり、介在物中のREM含有量を定量したところ、0〜60重量%の範囲でバラツいており、すべてが完全な複合化合物になってはいないことが判明した。素材中のREMは、あまり多く含有されていてもREM酸化物が単味の介在物となり、素材の伸延性に好ましい影響を与えないので、もっとREMが確実に介在物を複合化する必要があると考えられる。
【0016】
そこで、発明者は、さらに研究を重ね、溶製時のREMの添加方法に着眼した。
つまり、従来は、REM含有鉄合金が、溶鋼中に投入されるか、あるいは吹き込まれていた。これでは、精錬時間には制限があるので、REMが鋼中に単体のまま、あるいはREM酸化物として高い濃度で残留し、介在物の複合化が達成されない可能性が大である。
【0017】
本発明は、この従来のREMの添加方法を改め、スラグ中にREMを直接含有させることで、上記目的を達成するようにしたものである。スラグ中へREMを直接含有させる具体的手段としては、図1に示すように、取鍋1内の溶鋼2上に存在するスラグ3中に、直接REM含有合金4をキャリア・ガス5(通常、アルゴン・ガス)を用いて吹き込むようにしたしたり、あるいはスラグ上に投入すれば良い。また、転炉出鋼後の温度降下及びREM添加によりスラグ3の温度が低下し、所謂スラグ−メタル反応が円滑に行なえなくなる恐れもある。そこで、本発明では、溶鋼2の二次精錬方法として確立している所謂「レードル・ファーネス法;略称LF法」を採用し、該スラグ3中に電極6を挿入し、通電することで該スラグ3を加熱し、再溶融を行なったり、あるいは熔融状態の維持を十分にする。これによって、スラグ・メタル反応は円滑になり、且つスラグへのREM添加処理のため、鋼中にREMの単体や酸化物が存在することがなくなり、介在物の複合化が達成される。
【0018】
なお、本発明で溶製する溶鋼の主成分は、従来から採用されている下記のもので十分である。
【0019】
C:0.5〜1.0wt%、
Si:0.15〜0.50wt%、
Mn:0.30〜0.90wt%、
P:<0.020wt%、
S:<0.020wt%、
また、この精錬に際しては、溶鋼中の酸素濃度は従来法と同様に、20ppmまで脱酸することが望ましい。さらに、スラグ中に含有させるREM濃度は、溶製する高炭素鋼の種類に応じて、変更させるものとする。
【0020】
【実施例】
まず、Pを0.020wt%未満,Sを0.020wt%未満に予備処理した溶銑を、生産能力180トンの上底吹き転炉(図示せず)で多数チャージにわたって酸素吹錬し、多数のタイヤ・コード用溶鋼とした。この溶鋼2を、それぞれAl23を含有しない耐火物で内張りした取鍋1(スラグ・ラインにマグネシア・カーボン煉瓦、その他の部分にジルコニアを施工)に出鋼し、低Al含有(0.01wt%以下)のFe−Siを500g,Fe−Mnを1000g投入して脱酸並びに成分調整した。そして、スラグ3のCaO/SiO2が表1の値になるように、種々の組成のCaO−SiO2−Al23系フラックス7を2000kg添加し、脱酸した。
【0021】
次に、溶鋼2の上に存在するスラグ3の中に、REM,Mg,Caを含む鉄合金をアルゴン・ガス5と共に吹き込み、スラグ中へのREM添加を行なうと共に、溶鋼中に溶鋼攪拌用ガス(アルゴン・ガス)7を吹き込み、溶鋼を攪拌してスラグ・メタル反応を促進した。所定時間撹拌を続けた後、タンディッシュ(図示せず)に出鋼した。なお、鉄合金の吹込みでスラグが固化した場合もあったので、その場合には、取鍋1に電極4を取り付け、スラグ3を通電加熱で再溶解しつつ撹拌処理を行なった。タンディッシュに出鋼した溶鋼は、連続鋳造でスラブ(鋳片)とした後、熱間圧延で5.5mmφの線材にし、その中の非金属介在物を調査した。なお、効果を比較するため、前記特開平10−183229号公報記載の従来方法で得た溶鋼による二次精錬及び介在物調査も行なった。
【0022】
本発明及び従来の線材用高炭素鋼の溶製方法で得た5.5mmφ線材の介在物個数指数(1μm以上)、製品(0.15mφ)への冷間引抜加工時の断線回数指数、製品を150℃で30分熱処理時効後のR.A(絞り%)を表1に一括して示す。
【0023】
表1より、本発明に係る方法で溶製した鋼材は、従来の方法で得たものに比し、格段に優れていることが明らかである。なお、介在物中のREM含有量を調査したところ、本発明による線材では、20〜40wt%程度に狭い範囲であったのに対し、従来の方法では、0〜60wt%と広くばらついていた。つまり、本発明により、介在物の複合化が改良されたものと推定される。
【0024】
【表1】

Figure 0003893785
【0025】
【発明の効果】
以上述べたように、本発明により、伸線加工性や耐時効性が従来より改良され、伸線加工時に断線のない高炭素鋼線材が製造できるようになった。
【図面の簡単な説明】
【図1】本発明の実施に使用したレイドル・ファーネスを示す縦断面図である。
【符号の説明】
1 取鍋
2 溶鋼
3 スラグ
4 REM含有鉄合金
5 キャリア・ガス(アルゴン・ガス)
6 電極
7 溶鋼攪拌用ガス
8 電源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for melting high carbon steel for wire.
[0002]
[Prior art]
For example, a high carbon steel wire used for an automobile tire cord is a hot carbon steel material (usually a cast slab) that is hot rolled to a diameter of about 5.5 mm and then patented (a type of heat treatment). While drawing, it is cold-drawn several times (drawing process) and finally made into an ultrafine wire having a diameter of about 0.15 mm. In the wire drawing process, if hard granular non-metallic inclusions are present in the material, the non-metallic inclusions do not extend even if the base (also referred to as matrix) of the material is extended. In this state, since minute voids (called voids) are formed around the inclusions, the ductility of the material is lowered and breakage is likely to occur. In particular, in recent years, the demand for making the inclusions in the material harmless has been increasing because of the trend toward ultra-thin wire and high-strength tire cords.
[0003]
Therefore, conventionally, technical development has been actively conducted to soften non-metallic inclusions existing in the raw material so that the non-metallic inclusion is sufficiently stretched when the raw material is rolled. As a result, many techniques have been proposed and put into practical use. Among these techniques, a method of softening inclusions by adding rare earth elements to molten steel in the steelmaking stage is attracting attention.
[0004]
For example, Japanese Examined Patent Publication No. 57-35243 discloses that molten steel produced without deoxidizing with Al is transferred to a ladle, and pre-deoxidized by blowing a CaO-containing flux together with a carrier gas, and then Ca, Mg, A method of injecting a trace amount of an alloy containing one or more rare earth elements (hereinafter referred to as REM) and melting the material is proposed.
[0005]
Japanese Patent Laid-Open No. 10-183229 discloses a method for producing a high carbon steel wire material containing 0.5 to 1.00% of C by weight, after de-C and P treatment in a converter or electric furnace. After secondary refining in the ladle, after adjusting CaO / SiO 2 in the slag to 1.0 to 1.5 and performing a slag-metal reaction to reduce the O concentration in the molten steel to 20 ppm or less Then, the Al concentration in the molten steel after refining by adding an Al-REM-containing Fe alloy is 3.0 ppm or less, the dissolved REM concentration is 1.5 to 5.0 ppm, the N concentration is less than 40 ppm, and then continuous casting is performed. A method of hot rolling is proposed. The material obtained by these methods was stretched better than before by rolling, and a certain degree of softening of nonmetallic inclusions was achieved.
[0006]
However, even with the materials obtained by these methods, disconnection does not completely occur when the wire is made, and it seems that there is still room for improvement.
[0007]
[Problems to be solved by the invention]
In view of such circumstances, an object of the present invention is to provide a method for melting high-carbon steel for a wire, which can obtain a material having a much lower disconnection frequency than conventional ones.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the inventor investigated the form of non-metallic inclusions in the material obtained by the above-described conventional manufacturing method, and realized the result in the present invention.
[0009]
That is, the present invention
C: 0.5 to 1.0 wt%
Si: 0.15-0.50 wt%,
Mn: 0.30-0.90 wt%
P: <0.020 wt%,
S: <0.020 wt%,
In addition, the high carbon molten steel consisting of the remaining iron and unavoidable impurities is put into a ladle and stirred with slag adjusted to CaO / SiO 2 of 1.0 to 1.5 to advance the slag-metal reaction and secondary refining. In the method for melting high-carbon steel for wire rods, the REM-containing iron alloy is added to the slag, followed by stirring treatment.
[0010]
Further, the present invention is a method for melting high-carbon steel for wire rods, characterized in that the addition of the REM-containing iron alloy into the slag is performed by blowing with a carrier gas or by being introduced onto the slag. is there.
[0011]
Furthermore, the present invention is a method for melting high-carbon steel for wire rods, characterized in that an electrode is inserted into the slag into which the REM-containing iron alloy is blown and reheated.
[0012]
In addition, the present invention is also a method for melting high carbon steel for wire rods, wherein the dissolved oxygen concentration in the molten steel is 20 ppm or less.
[0013]
In the present invention, the nonmetallic inclusions formed in the steel in advance come into contact with the REM through the slag-metal interface, so that the inclusion complexation is promoted, and the REM alone or the nonmetallic high concentration of the REM oxide is increased. Inclusions are not generated. As a result, the wire drawing workability and aging resistance of the obtained steel material are improved as compared with the prior art.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on the circumstances leading to the invention.
[0015]
First, the inventor investigated the form of non-metallic inclusions in the material obtained by the above-described conventional method for producing high carbon steel for wire rods, and most of them were complex compounds desirable for softening. However, I found out that CaO, Al 2 O 3 , SiO 2, etc. still exist. That is, when the REM content in the inclusions was quantified, it was found that the REM content varied in the range of 0 to 60% by weight, and not all were complex compounds. Even if the REM in the material is contained in a large amount, the REM oxide becomes a simple inclusion and does not have a favorable effect on the extensibility of the material. Therefore, it is necessary for the REM to compound the inclusion more reliably. it is conceivable that.
[0016]
Therefore, the inventor conducted further research and focused on a method for adding REM during melting.
That is, conventionally, the REM-containing iron alloy has been thrown into or blown into the molten steel. In this case, since the refining time is limited, it is highly possible that the REM remains in the steel as a single substance or remains at a high concentration as the REM oxide, and the inclusion complexation cannot be achieved.
[0017]
In the present invention, the above-mentioned object is achieved by modifying this conventional method of adding REM and directly including REM in the slag. As a specific means for directly containing REM in the slag, as shown in FIG. 1, the REM-containing alloy 4 is directly added to the carrier gas 5 (usually, in the slag 3 existing on the molten steel 2 in the ladle 1. (Argon gas) may be used for blowing, or it may be put on the slag. Moreover, the temperature drop after converter steelmaking and the addition of REM may reduce the temperature of the slag 3, and the so-called slag-metal reaction may not be performed smoothly. Therefore, in the present invention, a so-called “ladle furnace method; abbreviated LF method” established as a secondary refining method for the molten steel 2 is adopted, and an electrode 6 is inserted into the slag 3 and the slag is energized. 3 is heated and remelted or the molten state is maintained sufficiently. As a result, the slag-metal reaction becomes smooth, and because of the REM addition treatment to the slag, there is no presence of REM simple substance or oxide in the steel, and the composite of inclusions is achieved.
[0018]
In addition, the following main components employed in the past are sufficient as the main component of the molten steel produced by the present invention.
[0019]
C: 0.5 to 1.0 wt%
Si: 0.15-0.50 wt%,
Mn: 0.30-0.90 wt%
P: <0.020 wt%,
S: <0.020 wt%,
In this refining, it is desirable to deoxidize the oxygen concentration in the molten steel to 20 ppm as in the conventional method. Furthermore, the REM concentration contained in the slag is changed according to the type of the high carbon steel to be melted.
[0020]
【Example】
First, hot metal pretreated with P of less than 0.020 wt% and S of less than 0.020 wt% was subjected to oxygen blowing over a large number of charges in a top-to-bottom converter (not shown) with a production capacity of 180 tons. It was made of molten steel for tire cords. This molten steel 2 is put out into a ladle 1 (magnesia carbon brick is applied to the slag line and zirconia is applied to other portions) lined with a refractory that does not contain Al 2 O 3 , and low Al content (0. 01 wt% or less) Fe-Si (500 g) and Fe-Mn (1000 g) were added to deoxidize and adjust the components. Then, 2000 kg of CaO—SiO 2 —Al 2 O 3 flux 7 having various compositions was added so that the CaO / SiO 2 of the slag 3 had the values shown in Table 1, and deoxidized.
[0021]
Next, an iron alloy containing REM, Mg, Ca is blown into the slag 3 existing on the molten steel 2 together with the argon gas 5 to add REM to the slag, and the molten steel stirring gas is added to the molten steel. (Argon gas) 7 was blown, and the molten steel was stirred to promote the slag metal reaction. After stirring for a predetermined time, the steel was tapped into a tundish (not shown). In some cases, the slag was solidified by blowing the iron alloy. In this case, the electrode 4 was attached to the ladle 1, and the slag 3 was re-dissolved by electric heating and stirred. The molten steel produced in the tundish was made into a slab (slab) by continuous casting, and then hot rolled to a 5.5 mmφ wire, and the nonmetallic inclusions in the steel were investigated. In order to compare the effects, secondary refining using molten steel obtained by the conventional method described in JP-A-10-183229 and investigation of inclusions were also performed.
[0022]
Inclusion number index (1 μm or more) of 5.5 mmφ wire rod obtained by the present invention and the conventional melting method of high carbon steel for wire rod, index of number of breaks during cold drawing to product (0.15 mφ), product After aging at 150 ° C. for 30 minutes. A (aperture%) is collectively shown in Table 1.
[0023]
From Table 1, it is clear that the steel material melted by the method according to the present invention is remarkably superior to that obtained by the conventional method. In addition, when the REM content in the inclusions was investigated, the wire according to the present invention was in a narrow range of about 20 to 40 wt%, whereas the conventional method was widely dispersed with 0 to 60 wt%. That is, it is presumed that the inclusion compounding is improved by the present invention.
[0024]
[Table 1]
Figure 0003893785
[0025]
【The invention's effect】
As described above, according to the present invention, wire drawing workability and aging resistance have been improved compared to the prior art, and it has become possible to produce a high carbon steel wire without wire breakage during wire drawing.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a ladle furnace used in the practice of the present invention.
[Explanation of symbols]
1 Ladle 2 Molten steel 3 Slag 4 REM-containing iron alloy 5 Carrier gas (argon gas)
6 Electrode 7 Gas for stirring molten steel 8 Power supply

Claims (5)

C:0.5〜1.0wt%、
Si:0.15〜0.50wt%、
Mn:0.30〜0.90wt%、
P:<0.020wt%、
S:<0.020wt%、
で残部鉄、及び不可避的不純物からなる高炭素溶鋼を取鍋に入れ、CaO/SiO2を1.0〜1.5に調整したスラグと共に撹拌してスラグ−メタル反応を進行させて二次精錬する線材用高炭素鋼の溶製方法において、
前記スラグ中に、REM含有鉄合金を添加し、攪拌処理することを特徴とする線材用高炭素鋼の溶製方法。
C: 0.5 to 1.0 wt%
Si: 0.15-0.50 wt%,
Mn: 0.30-0.90 wt%
P: <0.020 wt%,
S: <0.020 wt%,
In addition, the high carbon molten steel consisting of the remaining iron and unavoidable impurities is put into a ladle and stirred with slag adjusted to CaO / SiO 2 of 1.0 to 1.5 to advance the slag-metal reaction and secondary refining. In the method of melting high carbon steel for wire
A REM-containing iron alloy is added to the slag, followed by stirring. A method for melting high-carbon steel for wire rods.
前記スラグ中へのREM含有鉄合金の添加を、キャリア・ガスによる吹き込みで行なうことを特徴とする請求項1記載の線材用高炭素鋼の溶製方法。The method for melting high-carbon steel for wire rods according to claim 1, wherein the addition of the REM-containing iron alloy into the slag is performed by blowing with a carrier gas. 前記スラグへのREM含有鉄合金の添加を、スラグ上へ投入で行なうことを特徴とする請求項1記載の線材用高炭素鋼の溶製方法。The method for melting high-carbon steel for wire rods according to claim 1, wherein the addition of the REM-containing iron alloy to the slag is performed by charging the slag. 前記REM含有鉄合金が吹き込まれたスラグに電極を挿入し、再加熱することを特徴とする請求項2又は3記載の線材用高炭素鋼の溶製方法。The method for melting high-carbon steel for wire rods according to claim 2 or 3, wherein an electrode is inserted into the slag in which the REM-containing iron alloy is blown and reheated. 前記溶鋼中の溶存酸素濃度を20ppm以下とすることを特徴とする請求項1〜4のいずれかに記載の線材用高炭素鋼の溶製方法。The dissolved oxygen concentration in the said molten steel shall be 20 ppm or less, The melting method of the high carbon steel for wire materials in any one of Claims 1-4 characterized by the above-mentioned.
JP01667699A 1999-01-26 1999-01-26 Melting method of high carbon steel for wire Expired - Fee Related JP3893785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01667699A JP3893785B2 (en) 1999-01-26 1999-01-26 Melting method of high carbon steel for wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01667699A JP3893785B2 (en) 1999-01-26 1999-01-26 Melting method of high carbon steel for wire

Publications (2)

Publication Number Publication Date
JP2000212635A JP2000212635A (en) 2000-08-02
JP3893785B2 true JP3893785B2 (en) 2007-03-14

Family

ID=11922926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01667699A Expired - Fee Related JP3893785B2 (en) 1999-01-26 1999-01-26 Melting method of high carbon steel for wire

Country Status (1)

Country Link
JP (1) JP3893785B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107062914A (en) * 2017-04-27 2017-08-18 常州中车汽车零部件有限公司 Table adds alloy machine and its application method automatically with small-sized

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142610B2 (en) * 2007-07-18 2013-02-13 株式会社日本製鋼所 Manufacturing method of high cleanliness steel
CN101892353B (en) * 2010-07-27 2012-02-15 南阳金戈利镁业有限公司 Method for preparing magnesium-based desulfurizing agent
CN108950359A (en) * 2018-06-19 2018-12-07 东北大学 A method of improving photovoltaic industry cutting wire steel tensile strength and cleanliness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107062914A (en) * 2017-04-27 2017-08-18 常州中车汽车零部件有限公司 Table adds alloy machine and its application method automatically with small-sized
CN107062914B (en) * 2017-04-27 2019-03-22 常州中车汽车零部件有限公司 Table adds alloy machine and its application method with small-sized automatically

Also Published As

Publication number Publication date
JP2000212635A (en) 2000-08-02

Similar Documents

Publication Publication Date Title
CN110629132B (en) Wire rod for ultra-high strength steel cord and method for producing same
JP3550924B2 (en) Method for manufacturing high carbon steel wire and wire
CN117230376B (en) Electrode for producing 300M steel and preparation method and application thereof
JP4280163B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same
JP5398329B2 (en) Manufacturing method of high strength steel wire steel with excellent fatigue characteristics
JP3893785B2 (en) Melting method of high carbon steel for wire
JP3994456B2 (en) Method for producing steel for wire rods with excellent drawability and cleanliness
JP2002161308A (en) Production method for high strength, high fatigue resistant steel for use in structural application
JP5205799B2 (en) Method for melting Cr-containing low alloy steel
CN110512140A (en) A kind of engineering machinery wheel steel and preparation method thereof
JP2004169147A (en) Refining process for clean steel containing extremely low amount of non-metallic inclusion
KR101233836B1 (en) Tundish flux composite and Method of manufacturing the same
JP5398325B2 (en) Manufacturing method of high strength steel wire steel with excellent fatigue characteristics
JPH07188831A (en) Method and equipment for manufacturing stainless steel
US3607227A (en) Production of spheroidal graphite irons
JP3036362B2 (en) Manufacturing method of oxide dispersion steel
JP3536461B2 (en) High carbon steel wire with excellent drawability and aging resistance
JP3836249B2 (en) Method for melting high ferritic stainless steel with high Al content that suppresses refractory melting of refining vessel
US2049091A (en) Manufacture of metallic alloys
JPH07103416B2 (en) High carbon steel wire manufacturing method
JP3548453B2 (en) Manufacturing method of carbon steel with excellent drawability
JP3673409B2 (en) Steel for high-strength ultrafine wire and method for producing the same
US3288589A (en) Process for the production of exceptionally-clean steel
JP3752740B2 (en) Heat raising method for molten steel in ladle
RU2398889C1 (en) Procedure for melting rail steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees