JPH03267116A - Method for decomposing nitrogen oxide in waste gas - Google Patents

Method for decomposing nitrogen oxide in waste gas

Info

Publication number
JPH03267116A
JPH03267116A JP2063416A JP6341690A JPH03267116A JP H03267116 A JPH03267116 A JP H03267116A JP 2063416 A JP2063416 A JP 2063416A JP 6341690 A JP6341690 A JP 6341690A JP H03267116 A JPH03267116 A JP H03267116A
Authority
JP
Japan
Prior art keywords
gas
waste gas
ammonia
nox
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2063416A
Other languages
Japanese (ja)
Inventor
Yukio Ishiguchi
由紀男 石口
Tatatomi Ideta
出田 忠臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2063416A priority Critical patent/JPH03267116A/en
Publication of JPH03267116A publication Critical patent/JPH03267116A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To initiate the reduction reaction of NOx in waste gas at a considerably reduced temp. by adding gaseous hydrocarbon as well as ammonia to the waste gas and decomposing the NOx. CONSTITUTION:Gaseous hydrocarbon such as methane or hydrocarbon-contg. gas such as coke oven gas as well as ammonia is added to waste combustion gas. The reduction reaction of NOx takes place and the NOx is decomposed. By this method, a high rate of denitration is attained even at about 650 deg.C which is a very low temp. in the case of noncatalytic denitration. It is not necessary to heat even low-temp. waste gas such as waste gas from a heat treating furnace or an annealing furnace in an iron mill and the consumption of heat energy is very low.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、燃焼排ガス中の窒素酸化物を還元し分解する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for reducing and decomposing nitrogen oxides in combustion exhaust gas.

[従来の技術〕 燃焼排ガス中の窒素酸化物を除去する排煙脱硝法の一方
法として、触媒を使用せずに、排カス中にアンモニアを
添加するだけで窒素酸化物を還元し分解する方法、いわ
ゆる無触媒脱硝法がある。
[Prior art] As a method of exhaust gas denitration to remove nitrogen oxides from combustion exhaust gas, there is a method that reduces and decomposes nitrogen oxides by simply adding ammonia to exhaust gas without using a catalyst. There is a so-called non-catalytic denitrification method.

窒素酸化物の還元反応は多数の素反応の組み合わせによ
る連鎖反応であるが、全体として次のように表される。
The reduction reaction of nitrogen oxides is a chain reaction resulting from a combination of many elementary reactions, and can be expressed as a whole as follows.

NO+NH3+1/402 =N2 +3/2 H20
無触媒脱硝法は、高価な触媒を使用することなく、従っ
て触媒の使用に伴う種々の炬わしい問題が生じないので
、操業が非常に容易な脱硝法である。しかし、この方法
においては、排ガス温度が非常に高< (900℃付近
より高く)なければ、上記の還元反応が開始しないと言
う問題があった。
NO+NH3+1/402 =N2 +3/2 H20
The non-catalytic denitrification method is a denitrification method that is very easy to operate because it does not use expensive catalysts and therefore does not suffer from the various serious problems associated with the use of catalysts. However, this method has a problem in that the above-mentioned reduction reaction does not start unless the exhaust gas temperature is extremely high (higher than about 900° C.).

このような問題に対処し、反応開始温度を低くできる方
法が発表されている(燃料協会誌、第56巻、第605
号、751〜757頁(1977))、この改良された
方法は、第5図に示すように、排ガスにアンモニアと共
に水素を添加することによって低い温度で反応を開始さ
せる方法である。第5図では700℃付近から急激に還
元反応が進行し始めることが示されている。
A method to deal with these problems and lower the reaction initiation temperature has been announced (Journal of Japan Fuel Association, Vol. 56, No. 605).
In this improved method, as shown in FIG. 5, the reaction is started at a low temperature by adding hydrogen together with ammonia to the exhaust gas. FIG. 5 shows that the reduction reaction begins to proceed rapidly from around 700°C.

[発明が解決しようとする課題] しかし、上記の改良された方法を実用条件に従って実施
した場合、水素添加の効果が著しく低下してしまう6本
発明者等が行った第4図の試験結果によれば、700℃
程度まで反応温度を下げると、窒素酸化物が還元される
度合いは非常に低くなる。このため、この改良された方
法によっても、反応温度を大幅に下げることはできず、
温度が低い排ガスを処理する場合には、排ガスの加熱を
要し、多量の熱エネルギーを消費する。
[Problems to be Solved by the Invention] However, when the above-mentioned improved method is carried out under practical conditions, the effect of hydrogenation is significantly reduced6. According to 700℃
If the reaction temperature is lowered to a certain degree, the degree of reduction of nitrogen oxides becomes very low. Therefore, even with this improved method, the reaction temperature cannot be lowered significantly;
When processing low-temperature exhaust gas, it is necessary to heat the exhaust gas, consuming a large amount of thermal energy.

本発明は、上記改良法を更に改良し、窒素酸化物の還元
反応開始温度を更に大幅に低くできる排ガス中の窒素酸
化物を分解する方法を提供することを目的とする。
An object of the present invention is to provide a method for decomposing nitrogen oxides in exhaust gas that further improves the above-mentioned improved method and can further significantly lower the nitrogen oxide reduction reaction initiation temperature.

「課題を解決するための手段及び作用]上記の目的を達
成するために、本発明においては、排ガスにアンモニア
と共に炭化水素ガス又は炭化水素含有ガスを添加し、窒
素酸化物を分解する。
"Means and effects for solving the problems" In order to achieve the above object, in the present invention, a hydrocarbon gas or a hydrocarbon-containing gas is added to the exhaust gas together with ammonia to decompose nitrogen oxides.

また、排ガスにアンモニアと共にコークス炉ガスを添加
しても、効率よく窒素酸化物を分解することができる。
Further, even if coke oven gas is added to the exhaust gas together with ammonia, nitrogen oxides can be efficiently decomposed.

本発明者等は、水素等の還元性ガスよりも窒素酸化物の
還元反応開始温度を更に低下させる作用を有する添加ガ
スを探すことを目的に、種々の試験を実施した結果、メ
タン等の炭化水素ガスを添加すると、その効果の発現が
著しいことを見出した。
The present inventors conducted various tests with the aim of searching for an additive gas that has the effect of further lowering the reduction reaction initiation temperature of nitrogen oxides than reducing gases such as hydrogen, and found that carbonization of methane, etc. It has been found that the effect is remarkable when hydrogen gas is added.

また、添加ガスとしてコークス炉ガスを加えた場合、コ
ークス炉ガス中にはメタンが含まれているので、このガ
スも同様の作用をなすとともに、水素や一酸化炭素も含
有しているので、これら還元性ガスによる効果も併せて
得ることができる。
In addition, when coke oven gas is added as an additive gas, coke oven gas contains methane, so this gas has the same effect, and also contains hydrogen and carbon monoxide, so these gases The effects of reducing gas can also be obtained.

なお、アンモニアの添加形態としては、アンモニア水で
あってもよい。
Note that ammonia may be added in aqueous ammonia.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

第6図は本発明の方法を実施した装置の説明図である。FIG. 6 is an explanatory diagram of an apparatus implementing the method of the present invention.

1は燃焼炉、2はバーナー、3は燃焼炉内に装入された
被加熱物、4は脱硝反応室、5は熱交換器を示す、バー
ナー2から発生する燃焼ガスは、燃焼炉1から脱硝反応
室4に入る。脱硝反応室4にはアンモニアが導入され、
更に別の配管から炭化水素ガスあるいはコークス炉ガス
などの添加ガスが添加される。これらのガスの導入によ
って窒素酸化物の還元反応が起こり、窒素酸化物は分解
される。そして、処理排ガスは熱交換器5で顕熱の一部
が回収された後排出する。
1 is a combustion furnace, 2 is a burner, 3 is an object to be heated charged in the combustion furnace, 4 is a denitrification reaction chamber, and 5 is a heat exchanger. The combustion gas generated from the burner 2 is transferred from the combustion furnace 1. Enter the denitrification reaction chamber 4. Ammonia is introduced into the denitrification reaction chamber 4,
Furthermore, additive gas such as hydrocarbon gas or coke oven gas is added from another pipe. By introducing these gases, a reduction reaction of nitrogen oxides occurs, and the nitrogen oxides are decomposed. Then, the treated exhaust gas is discharged after a portion of its sensible heat is recovered in the heat exchanger 5.

(実施例1) 第6図の装置を使用し、燃焼排ガスにアンモニアと共に
メタンを添加して窒素酸化物の還元分解反応を行った。
(Example 1) Using the apparatus shown in FIG. 6, methane was added together with ammonia to the combustion exhaust gas to perform a reductive decomposition reaction of nitrogen oxides.

アンモニアの形態としてはアンモニア水で添加した。こ
の際の反応温度は650℃付近から900℃付近の間で
種々変え、固定させた反応条件は、 脱硝反応室入口のNo、 = 18 Qppm、(NH
3)/ (NOx )のモル比=10、脱硝反応室人口
02−1% にした、この結果を第1図に示す、この図のように、メ
タンを1000PPffi7上添加した場合、650℃
付近から900℃付近までの全域に亙って良好の脱硝率
が得られた。
Ammonia was added in the form of aqueous ammonia. The reaction temperature at this time was varied from around 650°C to around 900°C, and the fixed reaction conditions were: No. at the entrance of the denitrification reaction chamber, = 18 Qppm, (NH
3)/(NOx) molar ratio = 10, the denitrification reaction chamber population was set to 02-1%, and the results are shown in Figure 1. As shown in this figure, when methane was added at 1000 PPffi7, the temperature at 650°C
A good denitrification rate was obtained over the entire range from around 900°C to around 900°C.

なお、本実施例の脱硝率が第5図に示した従来技術の脱
硝率よりも低い値になっているのは、本実施例では、未
反応アンモニアの排出濃度をできるだけ低くするために
、(NH3)/ (NO! )モル比を10で実施した
のに対し、従来技術ではこれより遥かに大きな(NHs
 )/ (NOx )モル比で行ったためであると思わ
れる。
Note that the reason why the denitrification rate of this example is lower than that of the conventional technology shown in FIG. NH3)/(NO!) molar ratio of 10, whereas in the conventional technology, the molar ratio (NH3)/(NO!) was much larger than this.
)/(NOx) molar ratio.

(比較例) 実施例1の場合と同じ条件になるようにし、水素ガスを
添加して窒素酸化物の還元分解反応を行った。この結果
は第4図のごとく低温側における脱硝率は低く、実施例
1の脱硝率に対し著しい差があった。この結果において
、実施例1と同程度の脱硝率が得られる反応温度は少な
くとも850℃以上である。
(Comparative Example) Under the same conditions as in Example 1, hydrogen gas was added to perform a reductive decomposition reaction of nitrogen oxides. As shown in FIG. 4, the results showed that the denitrification rate was low on the low temperature side, and there was a significant difference from the denitrification rate of Example 1. In this result, the reaction temperature at which a denitrification rate comparable to that of Example 1 can be obtained is at least 850°C.

(実施例2) 実施例1の場合と同じ条件になるようにし、第1表の組
成のコークス炉ガスを添加して窒素酸化物の分解反応を
行った。脱硝率は第2図に示す。
(Example 2) Under the same conditions as in Example 1, a coke oven gas having the composition shown in Table 1 was added to carry out a decomposition reaction of nitrogen oxides. The denitrification rate is shown in Figure 2.

この実施例においては、コークス炉ガス3600pp■
添加した場合、実施例1と同様に650℃付近から90
0℃付近までの全域に亙って良好の脱硝率が得られた。
In this example, coke oven gas 3600pp■
When added, the temperature from around 650°C to 90°C is the same as in Example 1.
A good denitrification rate was obtained over the entire temperature range up to around 0°C.

第3図はアンモニアが150 PP11の場合における
処理排ガス中のアンモニア濃度を示した図である。未反
応のNH,濃度は非常に低く、アンモニアガスの排出に
よる環境問題発生の懸念もないことが確認された。
FIG. 3 is a diagram showing the ammonia concentration in the treated exhaust gas when the ammonia is 150 PP11. The concentration of unreacted NH was very low, and it was confirmed that there was no concern about environmental problems caused by ammonia gas emissions.

第1表 (vo1%) [発明の効果] 本発明は、排ガスに、窒素酸化物の還元反応開始温度を
大幅に低下させ得る炭化水素ガス又は炭化水素含有ガス
を添加する方法であるので、無触媒脱硝の温度としては
非常に低い温領域である650℃付近でも良好な脱硝率
を得ることができる。
Table 1 (vo1%) [Effects of the Invention] The present invention is a method of adding to exhaust gas a hydrocarbon gas or a hydrocarbon-containing gas that can significantly lower the nitrogen oxide reduction reaction initiation temperature. A good denitrification rate can be obtained even at around 650° C., which is a very low temperature range for catalytic denitrification.

従って、例えば、製鉄所の熱処理炉や焼鈍炉の排ガスの
ような温度の低い排ガスを脱硝する場合においても、排
ガスを加熱することな〈実施することができ、熱エネル
ギー消費が極めて少ない。
Therefore, for example, even when denitrating low-temperature exhaust gas such as exhaust gas from a heat treatment furnace or annealing furnace in a steel mill, it can be carried out without heating the exhaust gas, and the thermal energy consumption is extremely low.

また、炭化水素含有ガスとしてコークス炉ガスを添加す
ると、コークス炉ガス中にはメタンの他に水素や一酸化
炭素も含有しているので、これら還元性ガスによる効果
も併せて得ることができる。
Further, when coke oven gas is added as the hydrocarbon-containing gas, since the coke oven gas also contains hydrogen and carbon monoxide in addition to methane, the effects of these reducing gases can also be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における反応温度と脱硝率の
関係を示す図、第2図は本発明の他の実施例における反
応温度と脱硝率の関係を示す図、第3図は第2図の試験
における処理排ガス中のアンモニア濃度を示した図、第
4図は本発明者等が従来技術に従って実施した場合の反
応温度と脱硝率の関係を示す図、第5図は従来技術によ
る反応温度と脱硝率の関係を示す図、第6図は本発明の
方法を実施した装Wの説明図である。 1・・・燃焼炉、2・・バーナー、3・・・燃焼炉内に
装入された被加熱物、4・・・脱硝反応室、5・・・熱
交換器。 i民〒温亙 第1図 敗M  (’C) 第2図
FIG. 1 is a diagram showing the relationship between reaction temperature and NOx removal rate in one embodiment of the present invention, FIG. 2 is a diagram showing the relationship between reaction temperature and NOx removal rate in another embodiment of the present invention, and FIG. 3 is a diagram showing the relationship between reaction temperature and NOx removal rate in another embodiment of the present invention. Figure 2 is a diagram showing the ammonia concentration in the treated exhaust gas in the test, Figure 4 is a diagram showing the relationship between reaction temperature and denitrification rate when the inventors carried out the test according to the conventional technique, and Figure 5 is a diagram according to the conventional technique. A diagram showing the relationship between reaction temperature and denitrification rate, and FIG. 6 is an explanatory diagram of a device W in which the method of the present invention was implemented. DESCRIPTION OF SYMBOLS 1... Combustion furnace, 2... Burner, 3... Material to be heated charged into the combustion furnace, 4... Denitrification reaction chamber, 5... Heat exchanger. I people〒Wenhai Figure 1 defeat M ('C) Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)窒素酸化物を含有する排ガスにアンモニアを添加
して窒素酸化物を分解する方法において、前記排ガスに
前記アンモニアと共に炭化水素ガス又は炭化水素含有ガ
スを添加し、窒素酸化物を分解することを特徴とする排
ガス中の窒素酸化物を分解する方法。
(1) In a method of decomposing nitrogen oxides by adding ammonia to exhaust gas containing nitrogen oxides, the nitrogen oxides are decomposed by adding a hydrocarbon gas or a hydrocarbon-containing gas to the exhaust gas together with the ammonia. A method for decomposing nitrogen oxides in exhaust gas, characterized by:
(2)請求項1記載の方法において、炭化水素含有ガス
がコークス炉ガスであることを特徴とする排ガス中の窒
素酸化物を分解する方法。
(2) A method for decomposing nitrogen oxides in exhaust gas according to claim 1, wherein the hydrocarbon-containing gas is coke oven gas.
JP2063416A 1990-03-14 1990-03-14 Method for decomposing nitrogen oxide in waste gas Pending JPH03267116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2063416A JPH03267116A (en) 1990-03-14 1990-03-14 Method for decomposing nitrogen oxide in waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2063416A JPH03267116A (en) 1990-03-14 1990-03-14 Method for decomposing nitrogen oxide in waste gas

Publications (1)

Publication Number Publication Date
JPH03267116A true JPH03267116A (en) 1991-11-28

Family

ID=13228665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2063416A Pending JPH03267116A (en) 1990-03-14 1990-03-14 Method for decomposing nitrogen oxide in waste gas

Country Status (1)

Country Link
JP (1) JPH03267116A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423283B1 (en) 1996-09-17 2002-07-23 Hitachi Zosen Corporation Method for removing NOx
JP2005254093A (en) * 2004-03-10 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for denitrification
JP2013094765A (en) * 2011-11-04 2013-05-20 Kobe Steel Ltd Method for removing nitrogen oxide
JP2018512998A (en) * 2015-03-26 2018-05-24 コーニング インコーポレイテッド Method and system for selective non-catalytic NOx reduction
JP2020104037A (en) * 2018-12-26 2020-07-09 Dowaメタルマイン株式会社 Heavy metal-containing exhaust gas processing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423283B1 (en) 1996-09-17 2002-07-23 Hitachi Zosen Corporation Method for removing NOx
JP2005254093A (en) * 2004-03-10 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for denitrification
JP2013094765A (en) * 2011-11-04 2013-05-20 Kobe Steel Ltd Method for removing nitrogen oxide
US9138680B2 (en) 2011-11-04 2015-09-22 Kobe Steel, Ltd. Method for removing nitrogen oxides
JP2018512998A (en) * 2015-03-26 2018-05-24 コーニング インコーポレイテッド Method and system for selective non-catalytic NOx reduction
JP2020104037A (en) * 2018-12-26 2020-07-09 Dowaメタルマイン株式会社 Heavy metal-containing exhaust gas processing method

Similar Documents

Publication Publication Date Title
EP1970545B1 (en) Process for denitration of exhaust gas
US7465429B2 (en) Heat-treated active carbons for use in denitration, processes for producing same, denitration method using same, and denitration system using same
US3988423A (en) Method for removing harmful materials from waste gas
JPH0268404A (en) Method and device for reducing nitrogen oxide (nox) from combustion exhaust gas
US4235604A (en) Method for processing coke oven gas
WO2013065850A1 (en) Method for removing nitrogen oxides
US4297319A (en) Apparatus for removing nitrogen oxides from flue gas
CA2039531A1 (en) Process for removing carbon-containing or nitrogen oxide-containing pollutants in flue gases
JPH03267116A (en) Method for decomposing nitrogen oxide in waste gas
US5087431A (en) Catalytic decomposition of cyanuric acid and use of product to reduce nitrogen oxide emissions
NO884147D0 (en) METHOD OF REDUCING NITROGEN OXIDE.
US6969486B1 (en) Apparatus and method for treating pollutants in a gas using hydrogen peroxide and UV light
KR20070089063A (en) Process for denoxification of off-gases from annealing and pickling lines, and an annealing and pickling line, especially for stainless steel hot or cold strip
US9005570B2 (en) Method for treating a carbon dioxide-containing waste gas from an electrofusion process
KR101830477B1 (en) Apparatus for removing of nitrogen oxides in exhaust sintering gas and method for removing of nitrogen oxides
GB2226122A (en) Reducing nitrogen oxide formation during combustion
RU2008126781A (en) METHOD FOR CLEANING SMOKE GASES CONTAINING NITROGEN OXIDES
JP2003010641A (en) Method and apparatus for purifying waste gas in coke oven gas treatment
US5171558A (en) Catalytic decomposition of cyanuric acid and use of product to reduce nitrogen oxide emissions
KR101172125B1 (en) Method for removing of nitrogen oxides
RU98113143A (en) METHOD FOR RECOVERING NITRATE IONS IN THE TYPE OF NITRIC ACID FROM STRAINS OF THE NUCLEAR INDUSTRY
RU2113890C1 (en) Method of removing nitrogen oxides from flue gases
JPS6128446A (en) Preparation of inert gas
US5547651A (en) Process for production and use of deactivated gaseous atomic nitrogen for post combustion gas nitric oxide emissions control
RU2089269C1 (en) Method of removing nitrogen oxides from effluent gases