JPH0326699B2 - - Google Patents

Info

Publication number
JPH0326699B2
JPH0326699B2 JP1945084A JP1945084A JPH0326699B2 JP H0326699 B2 JPH0326699 B2 JP H0326699B2 JP 1945084 A JP1945084 A JP 1945084A JP 1945084 A JP1945084 A JP 1945084A JP H0326699 B2 JPH0326699 B2 JP H0326699B2
Authority
JP
Japan
Prior art keywords
group
polysilsesquioxane
formula
represented
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1945084A
Other languages
Japanese (ja)
Other versions
JPS60163930A (en
Inventor
Shozo Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP1945084A priority Critical patent/JPS60163930A/en
Publication of JPS60163930A publication Critical patent/JPS60163930A/en
Publication of JPH0326699B2 publication Critical patent/JPH0326699B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Silicon Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な構造単位を有するポリシルセス
キオキサン及び該ポリシルセスキオキサンを有効
成分とする制癌剤を提供する。 従来、ポリシルセスキオキサンの一部は、(−
O−)3(−SiR)2,さらに略記すればO1.5SiR(但し
Rは1価の有機基を表わす)で示されるシルセス
キオキサンを繰り返し単位とし、モデル的には下
記式 で示される一般に梯子状又は篭状の骨格構造を有
する重合体化合物であることが知られていて、撥
水処理剤,潤滑剤,触媒,有機珪素化合物の合成
中間体等として広く利用されている。 他方、炭素−窒素2重結合を有する有機珪素化
合物としては、米国特許第3022270号に於いて、
一般式、 (但しR3は炭化水素基又は水素原子,aは3
以上の整数,bは0〜3の整数,Rはピリジン,
インドール,アクリジン,ピペリジン,キノリ
ン,フラン,ベンゾフラン,ピラン,ピリミジ
ン,シンノリン,キナゾリン,フエナジン,ピラ
ゾール,オキサジン,ベンゾオキサジン,オキサ
ゾール,イソオキサゾールなどの複素環であり、
si≡で示される珪素原子の不飽和価標はアルキ
ル,アリル,アルコキシ,ハイドロキシあるいは
−O−Si≡基に結合している)で提示されている
アルコキシシラン誘導体ならびにポリシロキサン
誘導体が公知であり、該化合物が濾光剤,紫外線
吸収剤,鋏化剤としての利用が提案されている。 本発明者は各種のポリシルセスキオキサンを合
成し、それらの生理活性につき種々研究を行なつ
て来た。その結果、下記一般式のポリシルセスキ
オキサンがすぐれた生理活性を有することを見出
し、本発明を完成させるに至つた。 即ち、本発明は、一般式、 〔式中、Arは
The present invention provides a polysilsesquioxane having a novel structural unit and an anticancer agent containing the polysilsesquioxane as an active ingredient. Conventionally, some polysilsesquioxanes are (−
The repeating unit is silsesquioxane represented by O-) 3 (-SiR) 2 or O 1 .5 SiR (where R represents a monovalent organic group), and the model is as follows: It is known to be a polymer compound that generally has a ladder-like or cage-like skeleton structure, and is widely used as a water repellent agent, lubricant, catalyst, synthetic intermediate for organosilicon compounds, etc. . On the other hand, as an organosilicon compound having a carbon-nitrogen double bond, in US Pat. No. 3,022,270,
general formula, (However, R 3 is a hydrocarbon group or a hydrogen atom, and a is 3
or more, b is an integer of 0 to 3, R is pyridine,
Heterocycles such as indole, acridine, piperidine, quinoline, furan, benzofuran, pyran, pyrimidine, cinnoline, quinazoline, phenazine, pyrazole, oxazine, benzoxazine, oxazole, isoxazole, etc.
Alkoxysilane derivatives and polysiloxane derivatives in which the unsaturated valence of the silicon atom represented by si≡ is bonded to alkyl, allyl, alkoxy, hydroxy, or -O-Si≡ group are known. The use of this compound as a filtering agent, an ultraviolet absorber, and a scissoring agent has been proposed. The present inventor has synthesized various polysilsesquioxanes and conducted various studies on their physiological activities. As a result, it was discovered that polysilsesquioxane of the following general formula has excellent physiological activity, and the present invention was completed. That is, the present invention provides the general formula, [In the formula, Ar is

【式】又は[Formula] or

【式】で示され、R1及びR2はそれぞれ 水素原子;アルキル基;ハロゲン原子;フエニル
基;アルコキシ基;アルキルカルボニル基;アル
コキシカルボニル基;カルバミド基;カルボキシ
基又はその塩;スルホン酸基又はその塩;ニトロ
基;シアノ基又は
[Formula], R 1 and R 2 are each a hydrogen atom; an alkyl group; a halogen atom; a phenyl group; an alkoxy group; an alkylcarbonyl group; an alkoxycarbonyl group; a carbamide group; a carboxy group or a salt thereof; a sulfonic acid group or its salt; nitro group; cyano group or

【式】で表示される基で、 フラン環又はチオフエン環の2及び3位の炭素原
子に結合し閉環した基,(但し、R1又はR2が水素
原子又はアルキル基のときは他の基即ちR2又は
R1は水素原子又はアルキル基以外の上記置換基
である)である〕 で示される構造単位を有する分子量700〜6000の
ポリシルセスキオキサンである。 本発明のポリシルセスキオキサンは前記一般式
で示される構造単位を有する新規化合物であり、
前記一般式中,R1又はR2で示されるアルキル基,
アルコキシ基,アルキルカルボニル基,及びアル
コキシカルボニル基中に含まれる脂肪族炭化水素
残基は特に限定されず使用出来るが、一般には炭
素原子数が1〜4個のもの、即ちメトキシ基,エ
トキシ基,プロポキシ基,ブトキシ基,アセチル
基,エチルカルボニル基,プロピルカルボニル
基,ブチルカルボニル基,メトキシカルボニル
基,エトキシカルボニル基,プロポキシカルボニ
ル基,ブトキシカルボニル基,メチル基,エチル
基,n−プロピル基,iso−プロピル基,n−ブ
チル基,iso−ブチル基,t−ブチル基等がその
製法上の有利性から最も好適に使用される。また
前記一般式中、R1又はR2で示されるハロゲン原
子としては塩素,臭素,沃素および弗素の各原子
が特に限定されず使用される。 さらに前記一般式中、R1又はR2で示されるカ
ルボキシル基の塩型基およびスルホン酸基の塩型
基はそれぞれ一般的にCOO M およびSO3
で表わされ、M としては特に限定されるもの
ではないが一般にはアンモニウム(NH4 );ナ
トリウム(Na ),カリウム(K ),リチウム
(Li )等のアルカリ金属;マグネシウム1/
2Mg2 ),カルシウム(1/2Ca2 )等のアル
カリ土類金属等が最も好適に使用される。 また前記一般式中、R1又はR2
A group represented by [Formula], which is a ring-closed group bonded to the 2nd and 3rd carbon atoms of a furan ring or thiophene ring (however, when R 1 or R 2 is a hydrogen atom or an alkyl group, other groups i.e. R 2 or
R 1 is a hydrogen atom or the above-mentioned substituent other than an alkyl group. The polysilsesquioxane of the present invention is a new compound having a structural unit represented by the above general formula,
In the general formula, an alkyl group represented by R 1 or R 2 ,
Alkoxy groups, alkylcarbonyl groups, and aliphatic hydrocarbon residues contained in alkoxycarbonyl groups are not particularly limited and can be used, but generally those with 1 to 4 carbon atoms, such as methoxy groups, ethoxy groups, Propoxy group, butoxy group, acetyl group, ethylcarbonyl group, propylcarbonyl group, butylcarbonyl group, methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, butoxycarbonyl group, methyl group, ethyl group, n-propyl group, iso- Propyl group, n-butyl group, iso-butyl group, t-butyl group, etc. are most preferably used because of their advantages in manufacturing process. Further, in the above general formula, the halogen atom represented by R 1 or R 2 includes chlorine, bromine, iodine, and fluorine atoms without particular limitation. Further, in the above general formula, the carboxyl group salt type group and the sulfonic acid group salt type group represented by R 1 or R 2 are generally COO M and SO 3 M, respectively.
M is not particularly limited, but generally includes ammonium (NH 4 ); alkali metals such as sodium (Na), potassium (K), and lithium (Li); magnesium 1/
Alkaline earth metals such as 2Mg 2 ) and calcium (1/2Ca 2 ) are most preferably used. Furthermore, in the general formula, R 1 or R 2 is

【式】 で表示される基で、フラン環又はチオフエン環の
2及び3位の炭素原子に結合し閉環した基は具体
的に示せば次ぎのような一般式で示される。
In the group represented by the formula, the ring-closed group bonded to the 2nd and 3rd carbon atoms of the furan ring or thiophene ring is specifically shown by the following general formula.

【式】又は[Formula] or

【式】 (但し、Rは前記【formula】 (However, R is

【式】で表示される基以 外のR1又はR2で示される基である。) 更に、また前記一般式中、R1又はR2が水素原子
又はアルキル基のときは、他の基即ちR2又はR1
は水素原子及びアルキル基以外の前記原子又は各
基である必要がある。これらの各原子又は基によ
つて本発明の生理活性は異なるので必要に応じて
生理活性を確認していずれの基を使用するか予め
決定すればよい。 前記一般式で示されるポリシルセスキオキサン
は無定形の白色,淡黄色,黄色,橙黄色,橙色,
橙赤色,赤色,褐色,黒褐色等を呈する固体状高
分子体として得られ、粉砕して粉末として取扱わ
れる場合が多いが、前記一般式中のArの種類に
よつてゴム状固体あるいは粘稠物として得られる
場合もある。該ポリシルセスキオキサンは、通常
前記構造単位の3〜15量体として存在し、主とし
て7〜8量体のモデル的に前記した如く三次元篭
状の重合体と推定され、通常リグロイン,シクロ
ペンタン,ヘキサンにはほとんど不溶であり、ベ
ンゼン,トルエン,クロロホルム,四塩化炭素な
どには難容な場合が多い。他方、アルコールには
可溶であり、さらにホルムアミド,N,N−ジメ
チルホルムアミド,ジメチルスルホキシド,ヘキ
サメチルホスホアミド等の極性非水溶媒には可溶
である場合が多く、特に加熱した場合には溶解度
が著しく増加する傾向が見られる。また水には難
溶であるものが多く、従つて水中では比較的安定
であるが、酸性あるいはアルカリ性水溶液中に於
いてはその濃度および温度によつて安定性は異な
るが、一般に炭素−窒素2重結合が加水分解を受
け、γ−アミノプロピルポリシルセスキオキサン
と対応するアルデヒド化合物(例えば置換フルフ
ラールあるいは置換チオフエンアルデヒドなど)
に分解する。該加水分解は酸あるいは塩基の濃度
が増加する程、また温度が上昇する程激しくなる
傾向が見られる。 該ポリシルセスキオキサンが前記一般式で示さ
れる構造単位を有する化学構造であることは、一
般に化学分析および機器分析によつて確認するこ
とが出来る。特に元素分析ならびに赤外吸収スペ
クトル測定が極めて有力な手段となる。即ち合成
した該ポリシルセスキオキサンにつき、炭素,水
素,窒素,珪素(およびハロゲン原子やイオウ原
子,さらには金属原子を分子中に含有する場合に
はハロゲン原子やイオウ原子、さらには金属原
子)の元素の重量%を求め、さらに認知された各
元素の重量%の和を100から減じることにより、
酸素元素の重量%を算出し、該試料であるポリシ
ルセスキオキサンの組成式を決定することができ
る。さらに該試料について赤外吸収スペクトルを
測定し、該ポリシルセスキオキサン分子内に存在
する特徴的な化学結合および官能基の種類を確認
することができる。一般に該ポリシルセスキオキ
サンは1650cm-1〜1620cm-1付近にCH=N結合に
基づく特徴的な赤外吸収を示すこと、さらに元素
分析結果から該ポリシルセスキオキサンは固体状
態に於いて通常一水和の形、時に二水和の形で存
在し、無水和の形で存在することは稀であること
が知られる。さらに得られたポリシルセスキオキ
サンが適当な溶媒に対し、測定に供するのに充分
な程度の溶解度を有する場合、13C−核磁気共鳴ス
ペクトル(13C−nmr)を測定することによつて
該化合物中の炭素原子の個数,炭素鎖の配列様
式,炭素原子の結合様式を知ることが出来る。例
えばN−(4−ブロモチオフエンメチリデン)γ
−アミノプロピルポリシルセスキオキサンにつき
ベンゼン中、テトラメチルシランを基準として
13C−nmrを測定すると、観察される各ピークは
次の様に解析される(単位δ,ppm)。 さらにまた、1H−核磁気共鳴スペクトル(1H
−nmr)を測定することにより、前記一般式で表
わされる本発明の化合物中に存在する水素原子の
結合様式を知ることが出来る。例えばN−(4−
ブロモチオフエンメチリデン)r−アミノプロピ
ルポリシルセスキオキサンにつきベンゼン中、テ
トラメチルシランを内部基準として1H−nmrを
測定すると、観察される各ピークは次の様に解析
される(単位δ,ppm)。 本発明に用いられるポリシルセスキオキサンの
製造方法は特に限定されず如何なる製造方法で得
られたものでもよい。一般には、下記一般反応式
で示される如く、γ−アミノプロピルポリシルセ
スキオキサンと一般式Ar−CH=Oで示されるア
ルデヒド化合物を脱水縮合させることにより、容
易に合成することが出来る。 O1.5SiCH2CH2CH2NH2+Ar−CH=O →O1.5SiCH2CH2CH2N=CH−Ar 〔式中、Arは
A group represented by R 1 or R 2 other than the group represented by [Formula]. ) Furthermore, in the above general formula, when R 1 or R 2 is a hydrogen atom or an alkyl group, another group, that is, R 2 or R 1
must be the above atoms or groups other than hydrogen atoms and alkyl groups. Since the physiological activity of the present invention differs depending on each of these atoms or groups, it is sufficient to confirm the physiological activity as necessary and decide in advance which group to use. The polysilsesquioxane represented by the above general formula is amorphous white, pale yellow, yellow, orange-yellow, orange,
It is obtained as a solid polymer exhibiting orange-red, red, brown, blackish-brown colors, etc., and is often crushed and handled as a powder, but depending on the type of Ar in the above general formula, it can be a rubbery solid or a viscous substance. In some cases, it can be obtained as The polysilsesquioxane usually exists as a 3- to 15-mer of the above-mentioned structural units, and is estimated to be a three-dimensional cage-like polymer as described above based on the model of mainly 7- to 8-mers, and is usually composed of ligroin, cyclo It is almost insoluble in pentane and hexane, and is often difficult to dissolve in benzene, toluene, chloroform, carbon tetrachloride, etc. On the other hand, it is soluble in alcohol, and is often soluble in polar non-aqueous solvents such as formamide, N,N-dimethylformamide, dimethylsulfoxide, hexamethylphosphoamide, etc., and its solubility decreases particularly when heated. There is a tendency for the number to increase significantly. In addition, many substances are poorly soluble in water, and are therefore relatively stable in water, but in acidic or alkaline aqueous solutions, stability varies depending on the concentration and temperature, but in general carbon-nitrogen 2 The heavy bond undergoes hydrolysis, resulting in γ-aminopropyl polysilsesquioxane and corresponding aldehyde compounds (such as substituted furfural or substituted thiophene aldehyde)
Decompose into. The hydrolysis tends to become more severe as the concentration of acid or base increases and as the temperature rises. It can generally be confirmed by chemical analysis and instrumental analysis that the polysilsesquioxane has a chemical structure having a structural unit represented by the above general formula. In particular, elemental analysis and infrared absorption spectrometry are extremely effective methods. That is, the synthesized polysilsesquioxane contains carbon, hydrogen, nitrogen, silicon (and halogen atoms, sulfur atoms, and even metal atoms when the molecule contains halogen atoms, sulfur atoms, and metal atoms). By finding the weight percent of the element and further subtracting the sum of the weight percent of each recognized element from 100,
By calculating the weight percent of the oxygen element, the compositional formula of the polysilsesquioxane sample can be determined. Furthermore, by measuring the infrared absorption spectrum of the sample, it is possible to confirm the characteristic chemical bonds and types of functional groups present within the polysilsesquioxane molecule. In general, the polysilsesquioxane exhibits characteristic infrared absorption based on CH=N bonds in the vicinity of 1650 cm -1 to 1620 cm -1 , and elemental analysis results indicate that the polysilsesquioxane is in a solid state. It is known that it usually exists in a monohydrated form, sometimes in a dihydrated form, and rarely in an anhydrated form. Furthermore, if the obtained polysilsesquioxane has sufficient solubility in an appropriate solvent to be subjected to measurement, it can be determined by measuring 13 C-nuclear magnetic resonance spectrum ( 13 C-nmr). It is possible to know the number of carbon atoms in the compound, the arrangement of carbon chains, and the bonding manner of carbon atoms. For example, N-(4-bromothiophenemethylidene)γ
-Aminopropylpolysilsesquioxane in benzene, based on tetramethylsilane
When measuring 13 C-nmr, each peak observed is analyzed as follows (unit: δ, ppm). Furthermore, 1 H-nuclear magnetic resonance spectrum ( 1 H
-nmr), it is possible to know the bonding mode of hydrogen atoms present in the compound of the present invention represented by the above general formula. For example, N-(4-
When 1 H-nmr of (bromothiophenemethylidene) r-aminopropylpolysilsesquioxane is measured in benzene using tetramethylsilane as an internal standard, each peak observed is analyzed as follows (unit: δ, ppm). The method for producing the polysilsesquioxane used in the present invention is not particularly limited, and any method may be used to produce the polysilsesquioxane. Generally, it can be easily synthesized by dehydrating condensation of γ-aminopropylpolysilsesquioxane and an aldehyde compound represented by the general formula Ar-CH=O, as shown in the general reaction formula below. O 1.5 SiCH 2 CH 2 CH 2 NH 2 +Ar−CH = O →O 1.5 SiCH 2 CH 2 CH 2 N=CH−Ar [In the formula, Ar is

【式】又は[Formula] or

【式】で示され、R1及びR2はそれぞれ 水素原子;アルキル基;ハロゲン原子;フエニル
基;アルコキシ基;アルキルカルボニル基;アル
コキシカルボニル基;カルバミド基;カルボキシ
ル基又はその塩;スルホン酸基又はその塩;ニト
ロ基;シアノ基又は
[Formula], R 1 and R 2 are each a hydrogen atom; an alkyl group; a halogen atom; a phenyl group; an alkoxy group; an alkylcarbonyl group; an alkoxycarbonyl group; a carbamide group; a carboxyl group or a salt thereof; a sulfonic acid group or its salt; nitro group; cyano group or

【式】で表示される基 で、フラン環又はチオフエン環の2及び3位の炭
素原子に結合し閉環した基、(但し、R1又はR2
水素原子又はアルキル基のときは他の基即ちR2
又はR1は水素原子及びアルキル基以外の上記置
換基である)である。〕 前記アミノプロピルポリシルセスキオキサン類
と前記アルデヒド化合物の反応時のモル比は特に
制限されるものではないが、未反応物の回収を考
慮すれば1:1以上で、アルデヒド化合物を過剰
に使用するのがよい。そして未反応のカルボニル
化合物は反応後蒸留し、ヘキサンなどの溶媒で洗
浄し除去すればよい。 また一般に上記反応は反応溶媒を使用するのが
好ましく、例えばベンゼン,トルエン,クロロホ
ルム,エタノール等の水と共沸する溶媒が好適に
使用出来る。反応温度は例えば0〜150℃或いは
それ以上の広い範囲で実施出来るが、一般には溶
媒の沸点温度で行うのが好適である。また反応時
間は反応温度によつて異なるが、一般には数分か
ら数日の間で選べばよい。 上記反応の脱水縮合反応を促進するために反応
系に酢酸,蟻酸等の酸を添加する手段はしばしば
好適に採用される。 前記一般式で表わされる本発明のポリシルセス
キオキサンは新規化合物であり、本発明者が該ポ
リシルセスキオキサンについて生理活性試験を行
なつたところ、特に制癌活性が著しいことを確認
した。即ち該ポリシルセスキオキサンが極めて強
力な制癌効果を示すため、前記構造単位を有する
ポリシルセスキオキサンは制癌剤として各種癌の
予防,治療または処理のために使用することがで
きる。 しかして本発明の制癌剤は経口,非経口(たと
えば腹腔内,直腸内)または局所投与のいずれに
よつても患者に投与することができ、その際の有
効成分であるポリシルセスキオキサンの有効投与
量は、投与すべき患者の年令,体重,症状の軽
重,癌の種類等に応じて異なるが、一般には800
〜0.002mg/Kg/日,好ましくは500〜0.01mg/
Kg/日とすることができる。該1日の投与量は1
日1回のみ又は1日数回(3〜5回)に分けて投
与することができる。また、上記の投与量は単な
る指針であり、処置を行なう医師の判断により、
上記範囲を越えて投与することも可能であること
はいうまでもない。 上記有効成分の投与に当つて、上記ポリシルセ
スキオキサンは、希望とする投与方法(経口,非
経口又は局所)に応じて、種々の剤形に製剤する
ことができる。 例えば、経口投与に際しては、錠剤,丸薬,糖
衣錠,散薬包,顆粒,シロツプ,カプセル剤等の
剤形に製剤することができ、また、非経口投与に
際しては、懸濁液,坐薬等の剤形に製剤すること
ができ、さらに局所投与に際しては、軟膏,硬
膏,クリーム等の剤形に製剤することができる。 これら製剤中における有効成分の濃度は特に制
限されるものではなく、剤形に応じて広範に変え
ることができるが、一般には0.05〜90重量%、好
ましくは1〜60重量%程度の濃度とすることがで
きる。 上記製剤に使用しうる賦形剤としては当該分野
で常用されているものはいずれも使用可能であ
り、固体形態の製剤に対しては、例えば、乳糖,
しよ糖,でん粉,グリシン,結晶セルロース,マ
ンニツト,ステアリン酸マグネシウム,流動パラ
フイン,炭酸カルシウム,炭酸水素ナトリウム等
が挙げられ、また、液体形態の製剤に対しては、
例えば生理食塩水,界面活性剤液,ぶどう糖液,
アルコール,エステル類等が挙げられる。 かかる製剤の具体例を示せば次のとおりであ
る。 製剤例1:カプセル剤 ステアリン酸マグネシウム0.6重量部に乳糖4.5
重量部を加えて撹拌混合することにより均一と
し、さらに乳糖5重量部と結晶セルロース10重量
部を加えて混合する。この混合物に予め微粉末化
したポリシルセスキオキサン20重量部を加えて、
再度混合することにより調製粉末を得る。この粉
末をカプセル充填機を用いゼラチンカプセルに充
填することによりカプセル剤を製造するとよい。 製剤例2:軟こう剤 ステアリルアルコール10重量部,流動パラフイ
ン20重量部およびワセリン160重量部を80℃に加
温溶解した後、コレステロール0.5重量部ならび
に予め微粉末化したポリシルセスキオキサン10重
量部をよく撹拌しながら加え、さらによく撹拌を
行つた後室温に放置し、適当な硬さにして軟こう
剤を得るとよい。 製剤例3:錠剤 ポリシルセスキオキサン25重量部とマンニツト
20重量部をよく混合粉砕した後、でんぷん糊とし
て馬鈴署でんぷん4.7重量部を加えて粒状化する。 この粒子を60メツシユふるいを通し、乾燥して
所定の重量とし16メツシユふるいにかける。次
に、この粒子をステアリン酸マグネシウム0.3重
量部と混合して、なめらかにし、通常の方法によ
り錠剤成型機により圧縮して適当な大きさの素錠
とすればよい。 以下に本発明の制癌剤において有効成分として
使用されるポリシルセスキオキサンの製造例、並
びに薬理活性試験法及びその結果を示す。しか
し、本発明は以下の実施例に限定されるものでは
ない。 実施例 1 γ−アミノプロピルポリシルセスキオキサン・
1水和物(2.57g),5−ブロモフルフラール
(5.00g)及び無水ベンゼン(30ml)の混合物を
一夜室温にて撹拌した後、約5時間加熱還流する
ことにより共沸脱水させながら反応を終結させ
た。反応液を濃縮し、固体を濾取、ベンゼンで洗
浄後に真空乾燥することにより黒褐色粉末(4.72
g)を得た。元素分析を行なつたところC339.2
%,H4.28%,N5.37%なる値を示し、C8H9NO2.
5BrSi.H2O(285.19)に対する計算値C33.69%,
H3.89%,N4.91%によく一致した。さらに赤外
吸収スペクトルを測定したところ第1図に示す赤
外吸収スペクトルが得られた。第1図から明らか
な様に、原料である5−ブロモフルフラールに特
有な吸収は観察されず、3620〜3100cm-1に水和水
に基づく吸収、1670cm-1にCH=N結合に基づく
吸収、及び1220〜820cm-1に強いSi−O結合に基
づく吸収を示した。以上の結果から単離した生成
物が脱水縮合反応によつて得られるシツフ塩基化
合物、即ちN−(5−ブロモフリルメチリデン)
γ−アミノプロピルポリシルセスキオキサンであ
ることが明らかとなつた。該生成物の分子量を蒸
気圧浸透圧測定法(テトラヒドロフラン溶液)に
より測定したところ2350であつた。 実施例 2 γ−アミノプロピルポリシルセスキオキサンΓ
1水和物(4.62g),5−ニトロフルフラール
(5.10g),酢酸(16.90g),ベンゼン(50ml)の
混合物を室温で3日間撹拌した後、約4時間加熱
還流することにより共沸脱水させながら反応を終
結させた。 揮発分を減圧下に留去した後、残渣を真空乾燥
することにより黒褐色粉末(8.90g)を得た。元
素分析を行なつたところC40.06%,H4.47%,
N11.01%なる値を示し、C8H9N2O4.5SiΓ1/2H2O
(242.27)に対する計算値C39.66%,H4.16%,
N11.57%によく一致した。さらに赤外吸収スペ
クトルを測定したところ第2図に示す赤外吸収ス
ペクトルが得られた。第2図から明らかな様に
3320cm-1付近に水和水に基づく吸収、1650cm
-1CH=N結合に基づく吸収、及び1220〜950cm-1
に強いSi−O結合に基づく吸収を示した。 以上の結果から単離した生成物が脱水縮合反応
によつて得られるN−(5−ニトロフリルメチリ
デン)γ−アミノプロピルポリシルセスキオキサ
ンであることが明らかとなつた。該生成物の分子
量を実施例1と同様にして測定したところ1590で
あつた。 実施例 3 5−ホルミルフラン−2−スルホン酸ナトリウ
ム(5.15g)をベンゼン(100ml)中、加熱還流
することにより脱水を行なつた。該混合物にγ−
アミノプロピルポリシルセスキオキサン・1水和
物(4.62g),N,N−ジメチルホルムアミド
(30ml),酢酸(4.77g)を加えてさらに5日間加
熱還流を続けて共沸脱水を行なつた。反応液を吸
引濾過することにより、淡褐色粉末(7.10g)を
得た。元素分析を行なつたところ、C31.27%,
H4.72%,N5.19%なる値を示し、C8H9NO5.
5SNaSiΓH2O(308.34)に対する計算値C31.16
%,H3.60%,N4.54%に一致した。さらに赤外
吸収スペクトルを測定したところ第3図に示す赤
外吸収スペクトルが得られた。第3図から明らか
な様に3540〜3400cm-1付近に水和水に基づく吸
収、1670cm-1にCH=N結合に基づく吸収、及び
1280〜960cm-1にSi−Oに基づく強い吸収を示し
た。以上の結果から単離した生成物が脱水縮合反
応によつて得られるN−(5−ソデイオスルホフ
リルメチルデン)γ−アミノプロピルポリシルセ
スキオキサンであることが明らかとなつた。該生
成物の分子量を実施例1と同様にして測定したと
ころ3700であつた 実施例 4 γ−アミノプロピルポリシルセスキオキサンΓ
1水和物(1.22g),5−メトキシチオフエン−
2−アルデヒド(1.33g),無水ベンゼン(30ml)
の混合物を加熱還流することにより脱水反応を行
なつた。ベンゼンを留去し、残渣を真空乾燥する
ことによつて橙赤色ゴム状固体(2.34g)を得
た。元素分析を行なつたところ、C42.42%,
H5.20%,N5.27%なる値を示し、C9H12NO2.
5SSiΓH2O(252.37)に対する計算値である
C42.83%,H5.59%,N5.55%によく一致した。
さらに赤外吸収スペクトルを測定したところ第4
図に示す赤外吸収スペクトルが得られた。第4図
から明らかな様に、3640〜3200cm-1に水和水に基
づく吸収、1630cm-1にCH=N結合に基づく吸収、
及び1270〜900cm-1にSi−O結合に基づく吸収を
示した。以上の結果から単離した生成物が脱水縮
合反応によつて得られるN−(5−メトキシチオ
フエンメチリデン)γ−アミノプロピルポリシル
セスキオキサンの1水和物であることが明らかと
なつた。該生成物の分子量を実施例1と同様にし
て測定したところ1300であつた。 実施例 5 γ−アミノプロピルポリシルセスキオキサンΓ
1水和物(1.84g)と4−ブロモチオフエン−2
−アルデヒド(2.75g)をベンゼン中で30分間反
応させることにより、ほとんど白色の固体(3.17
g)を得た。元素分析を行なつたところ、C32.38
%,H3.18%,N4.62%,Br27.14%,S10.55%,
Si10.02%なる値を示し、C8H7NO1.5BrSSiΓ1/2
H2O(292.25)に対する計算値であるC32.88%,
H3.45%,N4.79%,Br27.35%,S10.97%,
Si9.61%によく一致した。赤外吸収スペクトルを
測定したところ第5図に示すスペクトルが得られ
た。第5図から明らかな様に、3600〜3160cm-1
水和水に基づく吸収、1630cm-1にCH=N結合に
基づく吸収、及び1270〜900cm-1にSi−O結合に
基づく吸収を示した。さらに13C−核磁気共鳴ス
ペクトル(13C−nmr)(δ,ppm;テトラメチル
シラン基準)ならびに1H−核磁気共鳴スペクト
ル(1H−nmr)(δ,ppm;テトラメチルシラン
基準)をベンゼン中で測定し、得られた各ピーク
について解析を行なつた結果は次の通りであつ
た。 以上の結果から単離した生成物N−(4−ブロ
モチオフエンメチリデン)γ−アミノプロピルポ
リシルセスキオキサンの1水和物であることが明
らかとなつた。該生成物の分子量を実施例1と同
様にして測定したところ2620であつた。 実施例 6 実施例1〜5において詳細に記述したのと同様
な方法により、第1表に記載したポリシルセスキ
オキサンを合成した。なお第1表には合成した各
ポリシルセスキオキサン化合物の様態、赤外吸収
スペクトルにおける特性吸収値および元素分析結
果、さらに用いた反応原料組成、反応条件ならび
に反応処理条件をも併せて略記した。本実施例
中、No.6及びNo.18のポリシルセスキオキサンの分
子量を実施例1と同様にして測定したところ、
各々5700、2920であつた。
A group represented by [Formula], which is a ring-closed group bonded to the 2nd and 3rd carbon atoms of a furan ring or thiophene ring (however, when R 1 or R 2 is a hydrogen atom or an alkyl group, other groups i.e. R 2
or R 1 is the above-mentioned substituent other than a hydrogen atom or an alkyl group). ] The molar ratio of the aminopropyl polysilsesquioxanes and the aldehyde compound during the reaction is not particularly limited, but in consideration of recovery of unreacted materials, the molar ratio should be 1:1 or more, and the aldehyde compound should not be used in excess. Good to use. Unreacted carbonyl compounds may be removed by distillation after the reaction and washing with a solvent such as hexane. In addition, it is generally preferable to use a reaction solvent in the above reaction, and for example, solvents that are azeotropic with water such as benzene, toluene, chloroform, and ethanol can be suitably used. Although the reaction temperature can be varied over a wide range of, for example, 0 to 150°C or higher, it is generally preferable to carry out the reaction at the boiling point temperature of the solvent. Although the reaction time varies depending on the reaction temperature, it can generally be selected from several minutes to several days. In order to promote the dehydration condensation reaction in the above reaction, a method of adding an acid such as acetic acid or formic acid to the reaction system is often suitably employed. The polysilsesquioxane of the present invention represented by the above general formula is a new compound, and when the present inventor conducted a physiological activity test on the polysilsesquioxane, it was confirmed that the polysilsesquioxane has particularly remarkable anticancer activity. . That is, since the polysilsesquioxane exhibits an extremely strong anticancer effect, the polysilsesquioxane having the above-mentioned structural unit can be used as an anticancer agent for the prevention, treatment, or treatment of various cancers. Therefore, the anticancer agent of the present invention can be administered to patients orally, parenterally (for example, intraperitoneally, intrarectally), or locally, and the effectiveness of polysilsesquioxane, the active ingredient, The dosage varies depending on the patient's age, weight, severity of symptoms, type of cancer, etc., but in general, 800
~0.002mg/Kg/day, preferably 500~0.01mg/
It can be Kg/day. The daily dose is 1
It can be administered only once a day or divided into several times (3 to 5 times) a day. In addition, the above dosages are only a guideline and are subject to the judgment of the treating physician.
It goes without saying that it is also possible to administer doses exceeding the above range. When administering the active ingredient, the polysilsesquioxane can be formulated into various dosage forms depending on the desired administration method (oral, parenteral, or topical). For example, for oral administration, it can be formulated into tablets, pills, sugar-coated tablets, powder packets, granules, syrups, capsules, etc., and for parenteral administration, it can be formulated into suspensions, suppositories, etc. Furthermore, for topical administration, it can be formulated into dosage forms such as ointments, plasters, and creams. The concentration of the active ingredient in these preparations is not particularly limited and can vary widely depending on the dosage form, but it is generally about 0.05 to 90% by weight, preferably 1 to 60% by weight. be able to. As excipients that can be used in the above formulation, any excipient commonly used in the field can be used, and for solid form formulations, for example, lactose,
Examples include sucrose, starch, glycine, crystalline cellulose, mannitrate, magnesium stearate, liquid paraffin, calcium carbonate, sodium hydrogen carbonate, etc. For liquid form preparations,
For example, physiological saline, surfactant solution, glucose solution,
Examples include alcohols and esters. Specific examples of such formulations are as follows. Formulation Example 1: Capsule 0.6 parts by weight of magnesium stearate and 4.5 parts by weight of lactose
Add parts by weight and stir and mix to make the mixture uniform.Furthermore, 5 parts by weight of lactose and 10 parts by weight of crystalline cellulose are added and mixed. 20 parts by weight of polysilsesquioxane, which had been previously pulverized, was added to this mixture.
A prepared powder is obtained by mixing again. Capsules may be produced by filling this powder into gelatin capsules using a capsule filling machine. Formulation Example 2: Ointment After heating and dissolving 10 parts by weight of stearyl alcohol, 20 parts by weight of liquid paraffin, and 160 parts by weight of petrolatum, 0.5 parts by weight of cholesterol and 10 parts by weight of polysilsesquioxane, which had been pulverized in advance, were added. It is preferable to add the mixture with good stirring, and after further stirring, leave it at room temperature to obtain an appropriate hardness. Formulation Example 3: Tablet 25 parts by weight of polysilsesquioxane and mannite
After thoroughly mixing and pulverizing 20 parts by weight, 4.7 parts by weight of potato starch was added as starch paste and granulated. The particles are passed through a 60-mesh sieve, dried to a predetermined weight, and passed through a 16-mesh sieve. Next, the particles may be mixed with 0.3 parts by weight of magnesium stearate, smoothed, and compressed using a tablet machine in a conventional manner to form uncoated tablets of an appropriate size. Examples of the production of polysilsesquioxane used as an active ingredient in the anticancer agent of the present invention, as well as pharmacological activity testing methods and their results are shown below. However, the present invention is not limited to the following examples. Example 1 γ-aminopropyl polysilsesquioxane
A mixture of monohydrate (2.57 g), 5-bromofurfural (5.00 g), and anhydrous benzene (30 ml) was stirred at room temperature overnight, and then heated under reflux for about 5 hours to terminate the reaction while performing azeotropic dehydration. I let it happen. The reaction solution was concentrated, the solid was collected by filtration, washed with benzene, and vacuum dried to give a blackish brown powder (4.72
g) was obtained. Elemental analysis revealed C339.2
%, H4.28%, N5.37%, and C 8 H 9 NO 2 .
Calculated value C33.69% for 5 BrSi.H 2 O (285.19),
It was in good agreement with H3.89% and N4.91%. Furthermore, when an infrared absorption spectrum was measured, the infrared absorption spectrum shown in FIG. 1 was obtained. As is clear from Figure 1, no absorption peculiar to the raw material 5-bromofurfural was observed; absorption based on hydration water at 3620 to 3100 cm -1 , absorption based on CH=N bond at 1670 cm -1 , And absorption based on strong Si-O bond was observed in the range from 1220 to 820 cm -1 . From the above results, the isolated product is a Schiff base compound obtained by dehydration condensation reaction, namely N-(5-bromofurylmethylidene).
It became clear that it was γ-aminopropyl polysilsesquioxane. The molecular weight of the product was determined to be 2350 by vapor pressure osmometry (tetrahydrofuran solution). Example 2 γ-aminopropyl polysilsesquioxane Γ
A mixture of monohydrate (4.62 g), 5-nitrofurfural (5.10 g), acetic acid (16.90 g), and benzene (50 ml) was stirred at room temperature for 3 days, and then azeotropically dehydrated by heating under reflux for about 4 hours. The reaction was terminated while After the volatile components were distilled off under reduced pressure, the residue was dried in vacuo to obtain a dark brown powder (8.90 g). Elemental analysis revealed C40.06%, H4.47%,
It shows a value of N11.01%, C 8 H 9 N 2 O 4 . 5 SiΓ1/2H 2 O
Calculated value for (242.27) C39.66%, H4.16%,
It matched well with N11.57%. Furthermore, when an infrared absorption spectrum was measured, the infrared absorption spectrum shown in FIG. 2 was obtained. As is clear from Figure 2
Absorption based on hydration water near 3320cm -1 , 1650cm
-1 Absorption based on CH=N bond and 1220 to 950 cm -1
showed absorption based on strong Si-O bonds. From the above results, it was revealed that the isolated product was N-(5-nitrofurylmethylidene)γ-aminopropylpolysilsesquioxane obtained by a dehydration condensation reaction. The molecular weight of the product was measured in the same manner as in Example 1 and was found to be 1590. Example 3 Sodium 5-formylfuran-2-sulfonate (5.15 g) was dehydrated by heating under reflux in benzene (100 ml). The mixture contains γ-
Aminopropylpolysilsesquioxane monohydrate (4.62 g), N,N-dimethylformamide (30 ml), and acetic acid (4.77 g) were added, and the mixture was heated under reflux for an additional 5 days to perform azeotropic dehydration. . A light brown powder (7.10 g) was obtained by suction filtration of the reaction solution. Elemental analysis revealed C31.27%,
The values are 4.72% H, 5.19% N, and C 8 H 9 NO 5 .
5 Calculated value C31.16 for SNaSiΓH 2 O (308.34)
%, H3.60%, N4.54%. Furthermore, when an infrared absorption spectrum was measured, the infrared absorption spectrum shown in FIG. 3 was obtained. As is clear from Figure 3, there is absorption based on hydration water near 3540 to 3400 cm -1 , absorption based on CH=N bond at 1670 cm -1 , and
Strong absorption based on Si-O was observed at 1280 to 960 cm -1 . From the above results, it was revealed that the isolated product was N-(5-sodeiosulfofurylmethyldene)γ-aminopropylpolysilsesquioxane obtained by the dehydration condensation reaction. The molecular weight of the product was measured in the same manner as in Example 1 and was found to be 3700. Example 4 γ-Aminopropylpolysilsesquioxane Γ
Monohydrate (1.22g), 5-methoxythiophene-
2-aldehyde (1.33g), anhydrous benzene (30ml)
A dehydration reaction was carried out by heating the mixture under reflux. Benzene was distilled off, and the residue was vacuum-dried to obtain an orange-red rubbery solid (2.34 g). Elemental analysis revealed C42.42%,
The values are 5.20% H, 5.27% N, and C 9 H 12 NO 2 .
5 Calculated value for SSiΓH 2 O (252.37)
It matched well with C42.83%, H5.59%, and N5.55%.
Furthermore, when we measured the infrared absorption spectrum, the fourth
The infrared absorption spectrum shown in the figure was obtained. As is clear from Figure 4, absorption based on hydration water is present at 3640 to 3200 cm -1 , absorption based on CH=N bond is observed at 1630 cm -1 ,
It also showed absorption based on Si-O bonds at 1270 to 900 cm -1 . From the above results, it is clear that the isolated product is a monohydrate of N-(5-methoxythiophenemethylidene)γ-aminopropylpolysilsesquioxane obtained by a dehydration condensation reaction. Summer. The molecular weight of the product was measured in the same manner as in Example 1 and was found to be 1300. Example 5 γ-aminopropyl polysilsesquioxane Γ
Monohydrate (1.84g) and 4-bromothiophene-2
- An almost white solid (3.17
g) was obtained. Elemental analysis revealed that C32.38
%, H3.18%, N4.62%, Br27.14%, S10.55%,
Showing a value of Si10.02%, C 8 H 7 NO 1 . 5 BrSSiΓ1/2
C32.88%, which is the calculated value for H 2 O (292.25),
H3.45%, N4.79%, Br27.35%, S10.97%,
It matched well with Si9.61%. When the infrared absorption spectrum was measured, the spectrum shown in FIG. 5 was obtained. As is clear from Figure 5, there is an absorption based on hydration water at 3600 to 3160 cm -1 , an absorption based on CH=N bond at 1630 cm -1 , and an absorption based on Si-O bond at 1270 to 900 cm -1 . Ta. Furthermore, 13 C-nuclear magnetic resonance spectra ( 13 C-nmr) (δ, ppm; based on tetramethylsilane) and 1 H-nuclear magnetic resonance spectra ( 1 H-nmr) (δ, ppm; based on tetramethylsilane) were analyzed for benzene. The results of analysis of each peak obtained were as follows. From the above results, it was revealed that the isolated product was a monohydrate of N-(4-bromothiophenemethylidene)γ-aminopropylpolysilsesquioxane. The molecular weight of the product was measured in the same manner as in Example 1 and was found to be 2,620. Example 6 The polysilsesquioxanes listed in Table 1 were synthesized by methods similar to those described in detail in Examples 1-5. In Table 1, the mode of each synthesized polysilsesquioxane compound, characteristic absorption value in infrared absorption spectrum and elemental analysis results, as well as the composition of the reaction raw materials used, reaction conditions, and reaction treatment conditions are also abbreviated. . In this example, the molecular weights of polysilsesquioxanes No. 6 and No. 18 were measured in the same manner as in Example 1.
They were 5700 and 2920 respectively.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 実施例 7 実施例1で得たN−(5−ブロモフリルメチリ
デン)γ−アミノプロピルポリシルセスキオキサ
ンを界面活性剤ツイーン80を含む生理食塩水に加
えて規定量の試料を含む懸濁液である6種類の試
料溶液(2512mg/Kg,1995mg/Kg,1585mg/Kg,
1259mg/Kg,1000mg/Kgおよび794mg/Kgの投与
量)を作成した。この試料溶液を用いて体重20g
前後のCDF1系マウスの雌それぞれ6匹の腹腔内
に注射投与して20日間試験を行ない、急性毒性値
をリツチフイールドとウイルコクソンの方法によ
りLD50を求めたところ、2225mg/Kgであつた。 実施例 8 実施例1で得られたN−(5−ブロモフリルメ
チリデン)γ−アミノプロピルポリシルセスキオ
キサンを用いて、マウスのエールリツヒ腹水癌に
対する制癌活性を試験した。即ち、該ポリシルセ
スキオキサンを前記実施例1に記載した方法で調
整した注射剤を、エールリツヒ癌細胞数5×106
個を有するスイスマウス(雄)6匹の腹腔内に
0.5mlずつ9日間連続注射投与した。その60日間
にわたる延命効果の結果から、平均生存日数
(MST)を求め、対照群(30匹)の平均生存日数
と比較することによりT/C(%)を算出した。
即ち、平均生存日数を験体(T)と対照体(C)につ
いて求め、T/C×100(%)で算出した。概値は
6匹の験体中4匹目が死亡した日数を平均生存日
数とし、これを対照体から同様に求めた平均生存
日数で除した値に100を掛けることにより求めら
れる。なお、実施例(第2表)に電算機を用いて
算出した正確な値を記載した。なお対照群として
はマウス30匹を使用したが表には6匹としての平
均値を記載した。
[Table] Example 7 N-(5-bromofurylmethylidene)γ-aminopropylpolysilsesquioxane obtained in Example 1 was added to physiological saline containing surfactant Tween 80, and a specified amount of sample was added. Six types of sample solutions (2512mg/Kg, 1995mg/Kg, 1585mg/Kg,
1259mg/Kg, 1000mg/Kg and 794mg/Kg). Using this sample solution, weigh 20g.
The drug was administered intraperitoneally to 6 female CDF 1 strain mice before and after the test for 20 days.The acute toxicity value was determined by the method of Richfield and Wilcoxon, and the LD 50 was 2225 mg/Kg. . Example 8 Using the N-(5-bromofurylmethylidene)γ-aminopropylpolysilsesquioxane obtained in Example 1, the anticancer activity against Ehrlichi's ascites carcinoma in mice was tested. That is, an injection prepared from the polysilsesquioxane by the method described in Example 1 was administered to Ehrlichi cancer cells of 5×10 6
Intraperitoneally of 6 Swiss mice (male) with
Continuous injections of 0.5 ml were administered for 9 days. From the results of the survival effect over 60 days, the mean survival days (MST) was determined, and T/C (%) was calculated by comparing it with the mean survival days of the control group (30 animals).
That is, the average survival days were determined for the test subject (T) and the control subject (C), and calculated as T/C x 100 (%). The approximate value is calculated by taking the number of days the fourth of the six test animals died as the average survival days, dividing this by the average survival days similarly determined from the control animals, and multiplying the value by 100. In addition, exact values calculated using a computer are listed in Examples (Table 2). Although 30 mice were used as a control group, the average value for 6 mice is shown in the table.

【表】 実施例 9 実施例1で得られたN−(5−ブロモフリルメ
チリデン)γ−アミノプロピルポリシルセスキオ
キサンの規定量を、少量のジメチルスルホキシド
を添加した界面活性剤ツイーン80を含む生理食塩
水(0.85g)溶液に懸濁させて試料溶液を調製し
た。この試料溶液を、腹腔内にウオーカーカルシ
ノサルコーマ256癌細胞数1×105個を有するスプ
ラグドーレイ系ラツト(雌)6匹に対して、腹腔
内注射を5日間連続して施し1ケ月間にわたつて
延命効果を調べた。その結果を第3表に示した。
[Table] Example 9 A specified amount of N-(5-bromofurylmethylidene)γ-aminopropylpolysilsesquioxane obtained in Example 1 was mixed with surfactant Tween 80 to which a small amount of dimethyl sulfoxide was added. A sample solution was prepared by suspending the sample in a physiological saline solution (0.85 g) containing the following. This sample solution was injected intraperitoneally for 5 consecutive days into 6 Sprague-Dawley rats (female) having 1 x 10 5 Walker Carcinosarcoma 256 cancer cells in their peritoneal cavities for 1 month. The life-prolonging effect was investigated over time. The results are shown in Table 3.

【表】 実施例 10 実施例2〜6で得た下記一般式で示されるポリ
シルセスキオキサンを用いて、実施例8と同様に
してマウスのエールリツヒ腹水癌に対する制癌活
性試験を行なつた。その結果を第4表に記載し
た。 O1.5SiCH2CH2CH2N=CH−Ar
[Table] Example 10 Using the polysilsesquioxanes represented by the following general formulas obtained in Examples 2 to 6, an anticancer activity test against Ehrlichi's ascites carcinoma in mice was conducted in the same manner as in Example 8. . The results are listed in Table 4. O 1 . 5 SiCH 2 CH 2 CH 2 N=CH−Ar

【表】【table】

【表】【table】

【表】 実施例 11 実施例1と同様にして下記一般式で示されるポ
リシルセスキオキサンを合成し、実施例8と同様
にしてマウスのエールリツヒ腹水癌に対する制癌
活性試験を行なつた。その結果を第5表に記載し
た。 O1.5SiCH2CH2CH2N=CH−Ar
[Table] Example 11 A polysilsesquioxane represented by the following general formula was synthesized in the same manner as in Example 1, and an anticancer activity test against Ehrlichi's ascites carcinoma in mice was conducted in the same manner as in Example 8. The results are listed in Table 5. O 1 . 5 SiCH 2 CH 2 CH 2 N=CH−Ar

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

添付図面第1〜5図はそれぞれ実施例1〜5で
得られたポリシルセスキオキサンの赤外吸収スペ
クトルを示すチヤートである。
Figures 1 to 5 of the accompanying drawings are charts showing infrared absorption spectra of polysilsesquioxanes obtained in Examples 1 to 5, respectively.

Claims (1)

【特許請求の範囲】 1 一般式、 〔式中、Arは【式】又は 【式】で示され、R1及びR2はそれぞれ 水素原子;アルキル基;ハロゲン原子;フエニル
基;アルコキシ基;アルキルカルボニル基;アル
コキシカルボニル基;カルバミド基;カルボキシ
ル基又はその塩;スルホン酸基又はその塩;ニト
ロ基;シアノ基又は【式】で表示される基 で、フラン環又はチオフエン環の2及び3位の炭
素原子に結合し閉環した基、(但し、R1又はR2
水素原子又はアルキル基のときは他の基即ちR2
又はR1は水素原子及びアルキル基以外の上記置
換基である)である〕 で示される構造単位を有する分子量700〜6000の
ポリシルセスキオキサン。
[Claims] 1 General formula, [Wherein, Ar is represented by [Formula] or [Formula], and R 1 and R 2 are each a hydrogen atom; an alkyl group; a halogen atom; a phenyl group; an alkoxy group; an alkylcarbonyl group; an alkoxycarbonyl group; a carbamide group; A carboxyl group or a salt thereof; a sulfonic acid group or a salt thereof; a nitro group; a cyano group or a group represented by the formula, which is bonded to the 2nd and 3rd carbon atoms of a furan ring or thiophene ring and is closed; ( However, when R 1 or R 2 is a hydrogen atom or an alkyl group, other groups, that is, R 2
or R 1 is the above-mentioned substituent other than a hydrogen atom and an alkyl group] A polysilsesquioxane having a molecular weight of 700 to 6000 and having a structural unit represented by the following.
JP1945084A 1984-02-07 1984-02-07 Polysilsesquioxane Granted JPS60163930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1945084A JPS60163930A (en) 1984-02-07 1984-02-07 Polysilsesquioxane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1945084A JPS60163930A (en) 1984-02-07 1984-02-07 Polysilsesquioxane

Publications (2)

Publication Number Publication Date
JPS60163930A JPS60163930A (en) 1985-08-26
JPH0326699B2 true JPH0326699B2 (en) 1991-04-11

Family

ID=11999644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1945084A Granted JPS60163930A (en) 1984-02-07 1984-02-07 Polysilsesquioxane

Country Status (1)

Country Link
JP (1) JPS60163930A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210138A (en) * 1985-07-06 1987-01-19 Tokuyama Soda Co Ltd Polysilsesquioxane
JP7276214B2 (en) * 2020-03-19 2023-05-18 信越化学工業株式会社 Organopolysiloxane and curable composition containing same

Also Published As

Publication number Publication date
JPS60163930A (en) 1985-08-26

Similar Documents

Publication Publication Date Title
JP4347693B2 (en) Inclusion compounds containing cucurbituril derivatives as host molecules and pharmaceutical compositions containing the same
JPH04211078A (en) Triazole antimycotic drug
WO2023241507A1 (en) Crystal form of alkynylpyridine compound and preparation method therefor
JPS58159489A (en) 2,3-diaryl-5-halothiophene compound
JPH0326699B2 (en)
WO1987004434A1 (en) Novel indenothiazole derivatives and process for their preparation
JPS6055069B2 (en) N-pyridyl-amide of 1-phenyl-cyclopentanecarboxylic acid, its production method, and anti-inflammatory and antitussive agents containing it as an active ingredient
JPH0326700B2 (en)
JPS6041670B2 (en) 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylic acid ester and its manufacturing method
JPS61158961A (en) Polycyclic vermicidal compounds, manufacture and drug containing them
JPH0326215B2 (en)
JPH0144194B2 (en)
JPS62226989A (en) Silatrane compound
JPS59170123A (en) Polysilsesquioxane
JPS62120344A (en) 4-biphenylylacetic ester-cyclodextrin clathrate
JPH0326698B2 (en)
JPH057391B2 (en)
JPS6044293B2 (en) Method for producing water-soluble derivative of 6-deoxytetracycline
JPS5920324A (en) Polysilsesquioxane
JPS644520B2 (en)
JPH0144195B2 (en)
JPS6147166B2 (en)
JPS6055031A (en) Polysilsesquioxane
JPS60152462A (en) Production of indolacetic acid amide derivative
JPH0720977B2 (en) Cilatran compound