JPH0326485B2 - - Google Patents

Info

Publication number
JPH0326485B2
JPH0326485B2 JP58032463A JP3246383A JPH0326485B2 JP H0326485 B2 JPH0326485 B2 JP H0326485B2 JP 58032463 A JP58032463 A JP 58032463A JP 3246383 A JP3246383 A JP 3246383A JP H0326485 B2 JPH0326485 B2 JP H0326485B2
Authority
JP
Japan
Prior art keywords
reinforcing body
conductor
compound superconducting
superconducting
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58032463A
Other languages
Japanese (ja)
Other versions
JPS59158014A (en
Inventor
Yasuzo Tanaka
Takeru Ikeda
Makoto Tawara
Takuya Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP58032463A priority Critical patent/JPS59158014A/en
Publication of JPS59158014A publication Critical patent/JPS59158014A/en
Publication of JPH0326485B2 publication Critical patent/JPH0326485B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 本発明は、化合物超電導導体の改良特にその補
強構造に関するものである。また本発明は、化合
物超電導導体の機械的強度の改善と共に可撓性、
冷却効率および臨界電流特性の改善を目的とする
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in compound superconducting conductors, and particularly to reinforcement structures thereof. In addition, the present invention improves the mechanical strength of compound superconducting conductors, as well as improves flexibility and
The purpose is to improve cooling efficiency and critical current characteristics.

従来、この種の超電導導体として第1図の如き
ものが提案されている。第1図aは、補強体1の
周囲に超電導素線2が撚線されたものである。第
1図bは、超電導素線2が予め撚線化された2次
素線3が補強体1の周囲に撚線されたものであ
る。第1図cは、補強素線1′および超電導素線
2が撚線化され、さらにそれらをテープ状補強体
1によつて巻かれたものである。第1図dは、超
電導素線2が撚線され、これらが内部に溝4を有
する補強体1の内部にハンダ50などで固められ
たものである。第1図eは、第1図bと同様の超
電導2次素線3を補強体1″の周囲に撚線化され
て後、これらを一辺が開放されたコの字型補強体
1の内に収納されたものである。第1図fは、第
1図bと同様の超電導2次素線3を予め撚線化
し、これらを側面に冷却孔5を有する補強体1の
管内に収納したものである。
Conventionally, a superconducting conductor of this type as shown in FIG. 1 has been proposed. In FIG. 1a, superconducting wires 2 are twisted around a reinforcing body 1. In FIG. In FIG. 1b, superconducting strands 2 are twisted in advance and secondary strands 3 are stranded around the reinforcing body 1. In FIG. In FIG. 1c, reinforcing strands 1' and superconducting strands 2 are twisted and then wound around a tape-shaped reinforcing body 1. In FIG. 1d, superconducting strands 2 are twisted and solidified with solder 50 inside a reinforcing body 1 having grooves 4 therein. Fig. 1e shows superconducting secondary strands 3 similar to those shown in Fig. 1b being twisted around a reinforcing body 1'' and then being placed inside a U-shaped reinforcing body 1 with one side open. Figure 1f shows a superconducting secondary wire 3 similar to that shown in Figure 1b, which has been twisted in advance and stored in a tube of a reinforcing body 1 having cooling holes 5 on the side. It is something.

これらの構造を化合物超電導導体に適用する場
合つぎに示す欠点がある。
When these structures are applied to compound superconducting conductors, there are the following drawbacks.

1 第1図aおよびbに示す超電導導体は超電導
素線2又は2次素線3が最外層に位置するため
絶縁処理工程や巻線工程などで受ける外部応力
や歪に対する保護機能がない 2 第1図cに示す超電導導体は、線材外部に不
連続に補強体1が配置されているため、長手方
向に凹凸があり、巻線工程においてコイルの隣
接ターン間でこの凹凸が無秩序に当接する結
果、その部分に不規則なギヤツプが生じ、応力
集中が起り、電流特性が劣化する。
1 The superconducting conductor shown in Figures 1a and b has the superconducting strands 2 or secondary strands 3 located in the outermost layer, so there is no protection function against external stress and strain received during the insulation treatment process, winding process, etc. 2. The superconducting conductor shown in Figure 1c has unevenness in the longitudinal direction because the reinforcing bodies 1 are disposed discontinuously outside the wire, and as a result of these unevenness coming into contact between adjacent turns of the coil in a disordered manner during the winding process. , an irregular gap occurs in that part, stress concentration occurs, and the current characteristics deteriorate.

3 第1図d,eおよびfに示す超電導導体は外
部からの応力が歪に対する保護機能を有する
が、補強体が切削、型押出などの機械加工で製
作されたものであるため厚肉であり、軽量化す
ることができず過剰の占積率となつて導体全体
としての電流密度がそれだけ低下する。また、
補強体が厚肉であるため巻線工程での可撓性が
悪い。さらに、機械加工で付加された冷却孔を
多数密に分布させるには限界があることや、巻
線後のコイルは隣接導体の冷却孔同士が会合す
る確率が少ないため冷媒の液体HeやHeガスの
通路が隣接導体を連通せず冷却効率が悪い。
3 The superconducting conductors shown in Figure 1 d, e, and f have a protective function against strain caused by external stress, but because the reinforcing bodies are manufactured by machining such as cutting and extrusion, they are thick. However, the weight cannot be reduced, resulting in an excessive space factor, and the current density of the conductor as a whole decreases accordingly. Also,
Since the reinforcing body is thick, flexibility during the winding process is poor. Furthermore, there is a limit to densely distributing a large number of cooling holes added by machining, and since the coil after winding has a low probability that the cooling holes of adjacent conductors will meet each other, the refrigerant liquid He or He gas The passages do not communicate with adjacent conductors, resulting in poor cooling efficiency.

化合物超電導導体は、本来臨界温度、臨界磁
場、臨界電流密度と言つた超電導特性が優れてお
り、高磁界用巻線として有望なものである。しか
し化合物超電導導体は、合金超電導導体とは異な
り、歪を受けると超電導特性が著しく劣化すると
いう歪敏感性があり、通常0.2〜0.6%以上の歪領
域では使用に耐えない。一方、化合物超電導導体
を使用する側からの要請として、小さい曲率半径
に曲げうること、大電流容量を有すること、長尺
連続大導体であること、コイル中での補強効果が
均一に構成されていることである。
Compound superconducting conductors inherently have excellent superconducting properties such as critical temperature, critical magnetic field, and critical current density, and are promising as winding wires for high magnetic fields. However, unlike alloy superconducting conductors, compound superconducting conductors are strain-sensitive, meaning that their superconducting properties significantly deteriorate when subjected to strain, and they are usually unusable in the strain range of 0.2 to 0.6% or more. On the other hand, the requirements of the users of compound superconducting conductors are that they must be able to be bent to a small radius of curvature, have a large current capacity, be a long continuous large conductor, and have a uniform reinforcement effect in the coil. It is that you are.

これらの要請に応えるものとして素線集合型化
合物超電導導体が注目されている。素線集合型化
合物超電導導体の代表的な形態は撚線、編組線、
転位線およびこれらを圧縮成形したものである。
Wire assembly type compound superconducting conductors are attracting attention as a material that meets these demands. Typical forms of wire assembly type compound superconducting conductors are stranded wires, braided wires,
Dislocation lines and compression molding of these.

しかしながら素線集合型化合物超電導導体の本
質的な欠点は、小さな張力で容易に長手方向に
伸びかつ径方向に収縮するため導体サイズが巻線
時等で変化すること、素線間に間隙が多いので
素線の充填率が低いことおよび導体を補強体な
どで所定間隔に締め付けるなどのように素線が局
部的に拘束されるとコイルにした場合、コイルに
発生する強大な電磁力によつて非締め付部の素線
に応力や歪が集中し、その結果超電導特性が著し
く低下することである。したがつて集合型化合物
超電導導体の補強は、上述の本質的欠点を克服
し、付随的に発生する可撓性、冷却効率および電
流密度の低下を最小限にする構造でなければなら
ない。
However, the essential drawbacks of the wire assembly type compound superconducting conductor are that it easily expands in the longitudinal direction and contracts in the radial direction under small tension, so the conductor size changes during winding, etc., and there are many gaps between the wires. Therefore, if the filling rate of the strands is low and if the strands are locally restrained, such as by tightening the conductor at specified intervals with a reinforcing body, etc., when the strands are made into a coil, the strong electromagnetic force generated in the coil will cause damage. Stress and strain concentrate on the strands in the non-tightened portion, resulting in a significant deterioration of superconducting properties. Reinforcement of aggregated compound superconducting conductors must therefore be of a structure that overcomes the above-mentioned essential drawbacks and minimizes the concomitant reductions in flexibility, cooling efficiency, and current density.

本発明はかかる点に鑑み種々の研究の結果、補
強体を、その突合せ部が導体の長手方向でジグザ
グに蛇行しかつその突合せ部に間隙が生じるよう
にして導体に付加することにより、可撓性、強
度、冷却効率および電流密度に優れた化合物超電
導導体を見い出したものである。
In view of the above, and as a result of various studies, the present invention has been developed by adding a reinforcing body to a conductor in such a way that the butt part meanders in a zigzag manner in the longitudinal direction of the conductor, and a gap is created between the butt part. We have discovered a compound superconducting conductor with excellent properties, strength, cooling efficiency, and current density.

すなわち、本発明は化合物超電導素線の複数本
を集合してなる化合物超電導集合体の外周及び内
部の少なくともいずれか一方に補強体を有する化
合物超電導導体において、該補強体に蛇行した間
隙を該導体の長手方向に沿つて設けたことを特徴
とする化合物超電導導体である。
That is, the present invention provides a compound superconducting conductor having a reinforcing body on at least one of the outer periphery and the inside of a compound superconducting aggregate formed by assembling a plurality of compound superconducting strands. This is a compound superconducting conductor characterized in that it is provided along the longitudinal direction of the compound superconducting conductor.

以下、本発明を図面を参照して詳細に説明す
る。
Hereinafter, the present invention will be explained in detail with reference to the drawings.

第2図は、本発明による化合物超電導導体の一
例であり、補強体の一部を拡開した状態を示す斜
視図である。図から明らかな如く、この導体は、
化合物超電導フイラメント20を多数内蔵する所
謂、多芯超電導素線2の撚線からなる素線集合型
化合物超電導導体6の周囲に、波形部7を両縁に
有する帯状補強体1を、その波形部7が突合せ部
8で間隙9が残るようにフオーミングしたもので
ある。
FIG. 2 is an example of the compound superconducting conductor according to the present invention, and is a perspective view showing a partially expanded state of the reinforcing body. As is clear from the figure, this conductor is
A band-shaped reinforcing body 1 having corrugated portions 7 on both edges is placed around a strand-aggregated compound superconducting conductor 6 made of strands of so-called multicore superconducting strands 2, which incorporates a large number of compound superconducting filaments 20. 7 is formed so that a gap 9 remains at the abutting portion 8.

このように本発明では、集合型化合物超電導導
体6の囲りに、帯状補強体1をフオーミングによ
つて設けることができるので、帯状補強体1の肉
厚を必要最少限とすることができる。したがつて
機械加工で作られていた従来の補強体に比べて、
薄肉化、軽量化ができるため導体全体としての電
流密度を向上することができる。
In this way, in the present invention, the strip-shaped reinforcing body 1 can be provided around the aggregated compound superconducting conductor 6 by forming, so that the thickness of the strip-shaped reinforcing body 1 can be kept to the necessary minimum. Therefore, compared to conventional reinforcement bodies made by machine processing,
Since the conductor can be made thinner and lighter, the current density of the entire conductor can be improved.

さらに、本発明ではコイルなどにする際に導体
を曲げても補強体に曲げじわなどを生じることが
ない。すなわち、補強体1の突合せ部8には蛇行
した間隙9が存在するので、この突合せ部8のあ
る面の曲げの内側に来るように曲げると、突合せ
部8のある面では補強体1は長手方向に収縮力が
働くが、間隙9が蛇行しているので、この間隙9
で収縮歪が吸収されて、補強体1のこの面はしわ
を生ずることなく滑らかに湾曲することができ
る。
Furthermore, in the present invention, even if the conductor is bent when forming a coil or the like, bending wrinkles or the like will not occur in the reinforcing body. That is, since there is a meandering gap 9 in the abutting part 8 of the reinforcing body 1, if this abutting part 8 is bent so as to be on the inside of the bend on a certain surface, the reinforcing body 1 will be longitudinally A contraction force acts in the direction, but since the gap 9 is meandering, this gap 9
Shrinkage strain is absorbed by the reinforcing body 1, and this surface of the reinforcement 1 can be smoothly curved without wrinkles.

波形部7の形状は、導体のサイズ、湾曲すると
きの曲率半径、補強体の配置場所、所要冷却率な
どに応じて適宜決められる。例えば曲率半径が小
さい場合には、波形部7の波高を高くしかつ波長
(ピツチ)を短かくする。また化合物超電導導体
は許容曲げ半径よりも小さい曲率半径で曲げると
超電導特性を極度に劣化し使用不能となるので、
許容曲げ半径よりも小さくは曲がらないように、
突合せ部8の間隙9の間隔を設定しておくことも
できる。すなわち、許容曲げ半径に曲げたとき
に、突合せ部8の隣接波形部7が互に当接しこれ
がストツパーの働きをして、それ以上もはや曲げ
られないようにすることもできる。
The shape of the corrugated portion 7 is appropriately determined depending on the size of the conductor, the radius of curvature when curving, the placement location of the reinforcing body, the required cooling rate, and the like. For example, when the radius of curvature is small, the wave height of the waveform portion 7 is made high and the wavelength (pitch) is made short. In addition, if a compound superconducting conductor is bent with a radius of curvature smaller than the allowable bending radius, the superconducting properties will be severely degraded and it will become unusable.
Avoid bending smaller than the allowable bending radius.
The interval of the gap 9 between the abutting portions 8 can also be set. That is, when bent to an allowable bending radius, the adjacent corrugated portions 7 of the abutting portions 8 come into contact with each other, which acts as a stopper and prevents further bending.

このほか、本発明では間隙9は、液体ヘリウム
やヘリウムガスが導体6内外に流出入するための
冷媒流出入口としての働きをなすので、所要の冷
却率に応じてこの間隙9の間隔や蛇行の起伏を決
めることができる。
In addition, in the present invention, the gap 9 functions as a refrigerant inlet and outlet for liquid helium and helium gas to flow into and out of the conductor 6, so the spacing and meandering of the gap 9 can be adjusted according to the required cooling rate. You can decide the ups and downs.

第2図では突合せ部8は、補強体の1側面のみ
に設けた例を示しているが、これに限らず、第3
図a,b,c及びdにそれぞれ示す如く、補強体
の2面又は3面にまたがる突合せ部を設け、多方
向への導体の曲げを容易にすることもできる。第
3図はいずれも導体の囲りに設けた補強体のみを
図示し導体の図示は省略した。第3図aは、補強
体1の1側面Xから上底面Yの2面にまたがつて
蛇行する間隙9を有するものであり、側面X又は
上底面Yを曲げの内側に来るように曲げることが
できる。第3図bは、補強体1の1側面Xから上
底面Yと下底面Zとの3面にまたがつて蛇行する
間隙9を有するものであり、側面X、上底面Y又
は下底面Zを曲げの内側に来るように曲げること
ができる。第3図cは、補強体1の側面X、上底
面Y及び側面Wの3面にまたがつて蛇行する間隙
9を有するものであり、これら3面X,Y,Wの
いずれの面を曲げの内側に来るようにしても曲げ
ることができる。第3図dは第3図aと同様に補
強体1の側面X及び上底面Yにまたがつて蛇行す
る間隙9を有するものであるが、波形部7が1方
向に傾斜している点が第3図aと異なつている。
Although FIG. 2 shows an example in which the abutting portion 8 is provided only on one side of the reinforcing body, the abutting portion 8 is not limited to this, and the abutting portion 8 is provided on only one side of the reinforcing body.
As shown in Figures a, b, c and d, a butt portion spanning two or three sides of the reinforcing body may be provided to facilitate bending of the conductor in multiple directions. In each of FIGS. 3A and 3B, only the reinforcing body provided around the conductor is shown, and the illustration of the conductor is omitted. Fig. 3a shows a reinforcing body 1 having a meandering gap 9 extending from one side surface X to the upper base surface Y, and the side surface X or the upper base surface Y cannot be bent so as to be on the inside of the bend. Can be done. Fig. 3b shows a reinforcing body 1 having a gap 9 meandering from one side X to the upper bottom surface Y and the lower bottom surface Z. It can be bent so that it is on the inside of the bend. Fig. 3c shows a reinforcing body 1 having a meandering gap 9 spanning three sides X, top Y, and W, and any of these three sides X, Y, and W can be bent. It can also be bent so that it is on the inside. FIG. 3d has a meandering gap 9 spanning the side surface X and the top surface Y of the reinforcing body 1, as in FIG. 3a, but the difference is that the corrugated portion 7 is inclined in one direction. It is different from Fig. 3a.

本発明において、素線集合型化合物超電導導体
に設ける補強体は、第2図の如く導体6の囲りに
設けられる場合のほか、これとは逆に補強体の囲
りに導体を撚り合せた場合もあり、さらにこの両
方つまり導体の内部と外周の両方に設ける場合も
ある。
In the present invention, the reinforcing body provided in the wire assembly type compound superconducting conductor is not only provided around the conductor 6 as shown in FIG. In some cases, the conductor is provided in both directions, that is, in both the inside and the outer periphery of the conductor.

また本発明では、第3図に示す如く、補強体1
の外周面にAl2O3、MgOなどの無機物質皮膜10
を設けることにより、コイルにした場合の隣接タ
ーン間の電気絶縁にすることが好ましい。かかる
皮膜10は補強体1の外周面に限らず、内周面に
設けることにより導体6と補強体1とを電気絶縁
することで上記目的を達することができる。勿論
補強体の内外両周面に設けてもよい。また、この
皮膜10はwind and react法でコイルを造る場
合には隣接ターン間の焼結防止のセパレータとし
ても機能する。
Further, in the present invention, as shown in FIG.
Inorganic material film 10 such as Al 2 O 3 and MgO on the outer peripheral surface of
It is preferable to provide electrical insulation between adjacent turns when a coil is formed. The above object can be achieved by providing the film 10 not only on the outer circumferential surface of the reinforcing body 1 but also on the inner circumferential surface thereof to electrically insulate the conductor 6 and the reinforcing body 1. Of course, it may be provided on both the inner and outer circumferential surfaces of the reinforcing body. Further, this film 10 also functions as a separator to prevent sintering between adjacent turns when a coil is manufactured by the wind and react method.

補強体を構成する材質は、非磁性のものが用い
られ、例えばステンレス鋼、銅合金、アルミ合金
などがあり、その単体又は複合体が用いられる。
The material constituting the reinforcing body is non-magnetic, such as stainless steel, copper alloy, aluminum alloy, etc., and a single substance or a composite thereof can be used.

また本発明で用いる素線集合型化合物超電導導
体としては、何ら特定されるものではなく、従来
から用いられている。多芯化合物超電導素線の複
数本からなる撚線、編組線、転位線またはこれら
の圧縮成形線、さらにかかる撚線、編組線、転位
線及び圧縮成形線の芯に線又は条状の補強体を有
するもの、さらにこのほかこれらの線を1次素線
として上記と同様に撚線、編組線、転位線、圧縮
成形線などとしたもののいずれでもよい。
Further, the wire assembly type compound superconducting conductor used in the present invention is not specified in any way, but has been used conventionally. Twisted wires, braided wires, dislocation wires, or compression-molded wires made of a plurality of multicore compound superconducting strands, and wire or strip-shaped reinforcements for the cores of such stranded wires, braided wires, dislocation wires, and compression-molded wires. In addition, these wires may be used as primary wires, such as twisted wires, braided wires, dislocation wires, compression molded wires, etc. in the same manner as described above.

第2図及び第3図では導体及び補強体の断面形
状が上底面と下底面との幅が異なる、所謂キース
トーン型のものを示したが、本発明ではこれに限
らず、種々の断面形状のものであつてよい。
Although FIGS. 2 and 3 show a so-called keystone type cross-sectional shape in which the conductor and reinforcing body have different widths between the upper and lower surfaces, the present invention is not limited to this, and various cross-sectional shapes can be used. It may be something like that.

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

実施例 (内部補強体) 厚さ0.2mmのステンレステープの両縁に波長3
mmの波形部を有するものをフオーミングして第4
図に示す如く厚さ0.4mm、幅14mm、隣接波形部7
間に形成された間隙9の間隔約12μmの補強体を
得、その表面にアルミナコーテイング10を形成
して内部補強体1を得た。
Example (internal reinforcement) Wavelength 3 on both edges of 0.2 mm thick stainless steel tape
Forming the one with a waveform part of mm and forming the fourth
As shown in the figure, thickness 0.4 mm, width 14 mm, adjacent corrugated part 7
A reinforcing body with a gap 9 of about 12 μm was obtained, and an alumina coating 10 was formed on the surface of the reinforcing body to obtain an internal reinforcing body 1.

(外側補強体用テープ) 厚さ0.2mm、最大幅(両縁の波の山間の長さ)
46mm、両縁に波長5mmの波形部を有するステンレ
ステープを外側補強体用に用意した。
(Tape for outer reinforcement) Thickness 0.2mm, maximum width (length between the crests of the waves on both edges)
A stainless steel tape measuring 46 mm in length and having corrugated portions with a wavelength of 5 mm on both edges was prepared for the outer reinforcing body.

(2次素線) Cu−Snブロンズマトリツクスロツド中に505本
のNbコアを埋込み、その外側に拡散障壁層とし
てTa管を被覆し、さらにその外側に安定化銅と
して高純度銅管を被覆したものに減面加工を施し
て安定化銅の占積率50%の外径0.37mmの素線を得
た。次にこの素線7本を撚線し、外径1.1mmの2
次素線を得た。
(Secondary strand) 505 Nb cores are embedded in a Cu-Sn bronze matrix rod, and a Ta tube is coated on the outside as a diffusion barrier layer, and a high-purity copper tube is further coated on the outside as a stabilizing copper. The coated wire was subjected to surface reduction processing to obtain a strand with an outer diameter of 0.37 mm and a stabilized copper space factor of 50%. Next, we twisted these 7 strands and made 2 wires with outer diameter of 1.1mm
The next strand was obtained.

(化合物超電導導体とヘリウムの製造) 次に、上記内部補強体の周囲に、上記2次素線
30本を撚り合せ、さらにロールで圧縮成形し、外
寸法(断面で上底2.0mm、下底2.5mm、両底間の高
さ16.5mm)のキーストン型成形撚線を得た。次
に、この成形撚線の外側に上記外側補強体用テー
プをフオーミングし、外寸法(断面で上底2.4mm、
下底2.9mm、両底間の高さ16.9mm)及び突合せ部
に形成された蛇行間隙の間隔約12.5μmの補強体
付複合線を得、その外表面にアルミナコーコイン
グを施した。
(Production of compound superconducting conductor and helium) Next, the secondary strands are placed around the internal reinforcing body.
Thirty wires were twisted together and compression molded using a roll to obtain a keystone-shaped stranded wire with external dimensions (upper base 2.0 mm, lower base 2.5 mm in cross section, height between both bases 16.5 mm). Next, form the above-mentioned outer reinforcing body tape on the outside of this formed stranded wire, and
A reinforced composite wire with a lower base of 2.9 mm, a height between both bases of 16.9 mm) and a meandering gap formed at the butt part with a spacing of approximately 12.5 μm was obtained, and alumina corrugated wire was applied to the outer surface of the wire.

次にこの複合線を最小曲げ半径25mmの鞍型枠に
巻線、固定後650℃で10日間拡散熱処理を行い、
各素線内のブロンズマトリツクスとニオブ芯との
界面にNb3Sn4化合物層を形成させた。しかる後、
鞍型コイルの外部より金属製カラーでコイルを固
定した。
Next, this composite wire was wound around a saddle form with a minimum bending radius of 25 mm, and after fixing, diffusion heat treatment was performed at 650℃ for 10 days.
A Nb 3 Sn 4 compound layer was formed at the interface between the bronze matrix and the niobium core in each strand. After that,
The coil was fixed with a metal collar from the outside of the saddle-shaped coil.

次にこのコイルを液体ヘリウム(4.2〓)中で
通電実験を行つた結果、磁界10テスラーで
15500Aの電流値が測定された。尚この値は、外
径0.37mmの上記素線単独について上記と同様の拡
散熱処理を行つて得たNb3Sn化合物超電導素線単
独の臨界電流値73A(at 10テスラー)から算出し
た値(15330A)と良好な一致であることが確認
された。
Next, we conducted an experiment to energize this coil in liquid helium (4.2〓), and found that the magnetic field was 10 Tesla.
A current value of 15500A was measured. This value is calculated from the critical current value of 73A (at 10 Tesla) of the Nb 3 Sn compound superconducting wire obtained by performing the same diffusion heat treatment on the wire with an outer diameter of 0.37 mm (15330A). ) was confirmed to be in good agreement.

以上の測定結果、本発明による化合物超電導導
体は金属製カラーなどによる局部的な締付けや電
磁力による応力・歪に対しても十分耐えうる構造
であることが判つた。
As a result of the above measurements, it was found that the compound superconducting conductor according to the present invention has a structure that can sufficiently withstand local tightening by a metal collar or the like and stress and strain caused by electromagnetic force.

また、本発明の導体で作られた上記超電導マグ
ネツトコイルの冷却特性を知るために次の試験を
行つた。
Further, the following tests were conducted to determine the cooling characteristics of the superconducting magnet coil made of the conductor of the present invention.

上記コイルにエポキシ樹脂を含浸し、全素線
間、素線と補強体との間などのすべての間隙を充
填密封したコイルについて、上記と全く同様な条
件(液体ヘリウム4.2〓中、磁界10テスラー)下
で通電試験を行つたところ、7200Aの電流値が測
定された。このことから本発明の化合物超電導導
体の冷却特性が著しく優れていることが判明し
た。
The above coil was impregnated with epoxy resin, filling and sealing all the gaps between all the wires and between the wires and the reinforcing body under exactly the same conditions as above (liquid helium 4.2〓, magnetic field 10 Tesla ), a current value of 7200A was measured. This indicates that the compound superconducting conductor of the present invention has extremely excellent cooling properties.

次に、上記試験後に樹脂含浸コイルを切断し観
察したところ、導体は内外両補強体のいずれと
も、最小曲げ半径近傍においても良好に密着して
おり、かつ湾曲による両補強体の局部的なシワや
隆起は見られなかつた。したがつてコイル巻時等
に湾曲を与えても補強体は良好に曲げられている
ことが判り、素線性のすぐれていることが判つ
た。尚上記実施例では超電導コイルをwind and
react法によつて造つたが、本発明はこれに限ら
ず、react and wind法によつても造ることがで
きる。
Next, after the above test, the resin-impregnated coil was cut and observed, and it was found that the conductor was in good contact with both the inner and outer reinforcing bodies, even near the minimum bending radius, and there were local wrinkles on both reinforcing bodies due to curvature. No bumps or bumps were observed. Therefore, it was found that the reinforcing body could be bent well even if it was curved during coil winding, and it was found that the wire properties were excellent. In the above embodiment, the superconducting coil is wind and
Although it was produced by the react method, the present invention is not limited to this, and can also be produced by the react and wind method.

以上説明した如く、本発明による化合物超電導
導体は、化合物超電導導体の機械的補強を簡単な
補強体で容易に行えるのみならず、可撓性、巻線
性および冷却特性を著しく改善し、さらに簡単な
補強体であるため必要最小限の厚さの補強体を用
いることができるので導体の電流密度がそれだけ
向上し、さらにその上に、短尺導体で測定して得
られた所謂短尺電流特性と同じ特性がコイルにし
た場合にも確実に保持されているので、コイル全
体としての電流密度を大幅に改善できるなど極め
て優れた利点を有するものである。
As explained above, the compound superconducting conductor according to the present invention not only facilitates mechanical reinforcement of the compound superconducting conductor with a simple reinforcing body, but also significantly improves flexibility, windability, and cooling properties, and Since it is a reinforcing material, it is possible to use a reinforcing material with the minimum necessary thickness, which improves the current density of the conductor accordingly.In addition, it has the same characteristics as the so-called short current characteristics obtained by measuring short conductors. Since it is reliably held even when it is made into a coil, it has extremely excellent advantages such as being able to significantly improve the current density of the coil as a whole.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,b,d,e,fはいずれも従来の素
線集合型化合物超電導導体の断面図、第1図cは
従来の素線集合型化合物超電導導体の斜視図、第
2図は本発明による化合物超電導導体の一例であ
り、補強体の一部を拡開した状態を示す斜視図、
第3図a,b,c,dは本発明に用いる補強体の
種々の例を示す斜視図、及び第4図は本発明実施
例で用いた内部補強体を示す斜視図である。 1:補強体、2:超電導素線、3:2次素線、
4:溝、5:冷却孔、6:化合物超電導導体、
7:波形部、8:突合せ部、9:間隙、10:無
機物質皮膜、20:化合物超電導フイラメント、
X:側面、Y:上底面、Z:下底面。
Figures 1a, b, d, e, and f are all cross-sectional views of conventional wire assembly type compound superconducting conductors, Figure 1c is a perspective view of a conventional wire assembly type compound superconducting conductor, and Figure 2 is a cross-sectional view of a conventional wire assembly type compound superconducting conductor. A perspective view showing a partially expanded state of the reinforcing body, which is an example of the compound superconducting conductor according to the present invention,
FIGS. 3a, b, c, and d are perspective views showing various examples of reinforcing bodies used in the present invention, and FIG. 4 is a perspective view showing an internal reinforcing body used in the embodiments of the present invention. 1: Reinforcement body, 2: Superconducting strand, 3: Secondary strand,
4: Groove, 5: Cooling hole, 6: Compound superconductor,
7: Corrugated portion, 8: Butt portion, 9: Gap, 10: Inorganic material film, 20: Compound superconducting filament,
X: side surface, Y: upper base surface, Z: lower base surface.

Claims (1)

【特許請求の範囲】 1 化合物超電導素線の複数本を集合してなる化
合物超電導集合体の外周及び内部の少なくともい
ずれか一方に補強体を有する化合物超電導導体に
おいて、該補強体に蛇行した間隙を該導体の長手
方向に沿つて設けたことを特徴とする化合物超電
導導体。 2 上記間隙が上記化合物超電導導体の巻線の曲
げの内側に位置するように設けられていることを
特徴とする特許請求の範囲第1項記載の化合物超
電導導体。 3 上記補強体のすくなくとも片面に無機物質皮
膜を有することを特徴とする特許請求の範囲第1
項記載の化合物超電導導体。 4 上記補強体が非磁性材からなることを特徴と
する特許請求の範囲第1項記載の化合物超電導導
体。
[Scope of Claims] 1. In a compound superconducting conductor having a reinforcing body on at least one of the outer periphery and inside of a compound superconducting assembly formed by collecting a plurality of compound superconducting strands, a meandering gap is provided in the reinforcing body. A compound superconducting conductor, characterized in that it is provided along the longitudinal direction of the conductor. 2. The compound superconducting conductor according to claim 1, wherein the gap is provided so as to be located inside the bend of the winding of the compound superconducting conductor. 3. Claim 1, characterized in that the reinforcing body has an inorganic material coating on at least one side.
The compound superconducting conductor described in Section 1. 4. The compound superconducting conductor according to claim 1, wherein the reinforcing body is made of a non-magnetic material.
JP58032463A 1983-02-28 1983-02-28 Compound superconductive conductor Granted JPS59158014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58032463A JPS59158014A (en) 1983-02-28 1983-02-28 Compound superconductive conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58032463A JPS59158014A (en) 1983-02-28 1983-02-28 Compound superconductive conductor

Publications (2)

Publication Number Publication Date
JPS59158014A JPS59158014A (en) 1984-09-07
JPH0326485B2 true JPH0326485B2 (en) 1991-04-11

Family

ID=12359659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58032463A Granted JPS59158014A (en) 1983-02-28 1983-02-28 Compound superconductive conductor

Country Status (1)

Country Link
JP (1) JPS59158014A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2597551B2 (en) * 1986-07-03 1997-04-09 株式会社東芝 Superconducting stranded wire

Also Published As

Publication number Publication date
JPS59158014A (en) 1984-09-07

Similar Documents

Publication Publication Date Title
US4611390A (en) Method of manufacturing superconducting compound stranded cable
CA1134422A (en) Dynamoelectric machine stator having articulated amorphous metal components
US4078299A (en) Method of manufacturing flexible superconducting composite compound wires
JPH07169343A (en) Superconducting cable conductor
US4568900A (en) Forced-cooled superconductor
US9171660B2 (en) Superconducting coil, superconducting magnet, and method for manufacturing superconducting coil
JP6567451B2 (en) Superconducting coil and superconducting coil manufacturing method
US3470508A (en) Superconducting winding
EP1804337A1 (en) Superconducting cable connection structure
US5929385A (en) AC oxide superconductor wire and cable
US20070056158A1 (en) Method for manufacturing second-generation superconducting wire for transposition and superconducting coil manufactured using the same
JP5397994B2 (en) Superconducting cable
JPH0326485B2 (en)
US6718618B2 (en) Method of manufacturing superconducting cable
JP4716160B2 (en) Superconducting cable
JP2003158010A (en) Terminal structure for superconducting coil
JPH0452569B2 (en)
JP4566576B2 (en) Dislocation segment conductor
JP2009059652A (en) BRONZE PROCESS Nb3Sn SUPERCONDUCTING WIRE ROD AND ITS PRECURSOR
JPH05804B2 (en)
JP2645721B2 (en) Superconducting coil
JP3853515B2 (en) Field winding of high temperature superconducting rotating electrical machine
JP2005116234A (en) Dislocation segment conductor
JPH01147811A (en) Conductor for superconducting coil and manufacture thereof
JPS602726B2 (en) Superconducting wire and superconducting magnet using this wire