JP3853515B2 - Field winding of high temperature superconducting rotating electrical machine - Google Patents

Field winding of high temperature superconducting rotating electrical machine Download PDF

Info

Publication number
JP3853515B2
JP3853515B2 JP12495498A JP12495498A JP3853515B2 JP 3853515 B2 JP3853515 B2 JP 3853515B2 JP 12495498 A JP12495498 A JP 12495498A JP 12495498 A JP12495498 A JP 12495498A JP 3853515 B2 JP3853515 B2 JP 3853515B2
Authority
JP
Japan
Prior art keywords
temperature superconducting
field winding
electrical machine
rotating electrical
pancake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12495498A
Other languages
Japanese (ja)
Other versions
JPH11318071A (en
Inventor
野 精之助 宇
森 康 夫 金
田 正 人 山
西 一 夫 中
村 英 之 中
村 英 博 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Kansai Electric Power Co Inc
Original Assignee
Toshiba Corp
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Kansai Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP12495498A priority Critical patent/JP3853515B2/en
Publication of JPH11318071A publication Critical patent/JPH11318071A/en
Application granted granted Critical
Publication of JP3853515B2 publication Critical patent/JP3853515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)
  • Windings For Motors And Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高温超電導導体を適用した高温超電導回転電機の界磁巻線に関する。
【0002】
【従来の技術】
従来の超電導回転電機の界磁巻線は、金属系超電導導体からなる素線またはより線をソレノイドコイルとして巻線したものを回転子内に装着し固定している。金属系超電導導体はその臨界電流の磁界依存性にほとんど異方性がなく、導体に流す電流と直交する磁界成分の絶対値に逆比例の関係で臨界電流が小さくなるので、超電導導体の巻き方は、磁界の方向に関係なく、平巻き(フラットワイズ)でも平打巻き(エッジワイズ)でも可能である。従来のより線の金属系超電導導体を平打巻きのソレノイドコイルとして構成された、超電導回転電機の界磁巻線の横断面図を図6に示す。
【0003】
図6において、回転子4に巻装されている界磁巻線1は、より線として構成された多数の金属系超電導導体18からなっている。
【0004】
【発明が解決しようとする課題】
27Kあるいは77Kという絶対温度の下で使用できる高温超電導導体を適用した高温超電導回転電機の界磁巻線は既に知られているところである。以下に、そのような高温超電導導体を超電導回転電機の界磁巻線に適用する際の技術的課題について検討する。
【0005】
高温超電導導体はペロブスカイト結晶構造を有し、その臨界電流密度特性は結晶の配向性を高めることにより向上する。結晶の配向性を高めるには、圧延処理などにより一方向に圧縮する必要がある。そのため、工業的に量産できるような高温超電導導体は、磁気テープのような厚さが1mm以下のテープに限られているのが現状である。また、高温超電導テープの場合、ab軸はテープ平面と平行な方向に、c軸はテープ平面と垂直な方向に生じる。Bi2223系超電導導体では、77Kという温度においてab軸方向とc軸方向とでは図7に示すように臨界電流密度特性71,72が大きく異なり、たとえば0.1Tの磁界下では、c軸方向の磁界に対する臨界電流密度はab軸方向の磁界に対する臨界電流密度の半分以下となる。
【0006】
次に、従来の高温超電導回転電機の界磁巻線内部の回転子軸中央部断面で見た磁界Hの分布を図8に示す。図6に示すように、コイル横断面をX−Y座標平面で見たコイル各部の位置を、X軸方向にX1〜X2と定義し、Y軸方向にY1〜Y2と定義する。図8において、図6で定義するY軸方向の磁界成分は界磁巻線1の座標(X1,Y1)〜(Xl,Y2)の線上が最大となる。また、X軸方向の磁界成分は界磁巻線1の(Xl,Y1)〜(X2,Y1)および(Xl,Y2)〜(X2,Y2)の線上が最大となる。各々の磁界成分の最大値を比較すると、Y軸方向の磁界成分はX軸方向の磁界成分より大きく、両者の比は1.4〜l.7程度である。
【0007】
以上のことから、従来行われているように、磁界の方向に無関係に、界磁巻線1のY軸と高温超電導テープのc軸とが一致するような界磁巻線1を作ると、界磁巻線1内部の各位置における高温超電導テープの臨界電流密度の最大値と最小値の比率がほぼ4倍近くにまで拡大することになる。界磁巻線1は直列に接続された1本の高温超電導テープから構成されており、そのテープの最小の臨界電流密度で通電性能が決定されるから、界磁巻線1の電流密度は界磁巻線1の中の最小の臨界電流密度に制約され、大幅に低下してしまう。
【0008】
そこで本発明は、電流密度を大きく制約するc軸方向の磁界成分の影響を受けにくく、c軸方向の磁界成分により局部的に臨界電流密度が低下しても平均電流密度を低下させずにすむ高温超電導回転電機の界磁巻線を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本願では次の発明を提供する。
請求項1記載の発明では、高温超電導テープを平巻きしたパンケーキ型コイルを回転子の径方向に複数個積層して構成した高温超電導回転電機の界磁巻線において、
界磁巻線の横断面を回転子の径方向に内径部、中間部、および外径部に分けたとき、
前記内径部および外径部を構成するパンケーキ型コイルには、高温超電導材のc軸方向の磁界に対する臨界電流密度の高い高温超電導テープが巻線され、
中間部を構成するパンケーキ型コイルには、高温超電導材のab軸方向の磁界に対する臨界電流密度の高い高温超電導テープが巻線されている
ことを特徴とする。
【0010】
このように構成すると、高温超電導テープのab軸は界磁巻線のY軸方向と一致する。界磁巻線で最大磁界の成分はY軸方向であり、それと一致するab軸方向の磁界に対する高温超電導テープの臨界電流密度は大きい。一方、X軸方向は高温超電導テープのc軸と一致するが、その磁界成分はY軸方向の6〜7割であるから、c軸方向の磁界成分による臨界電流密度の低下を少なくすることができる。
【0011】
そして、界磁巻線の中でY軸方向とX軸方向の磁界成分が同位置で最大値をとることはなく、何れか一方の磁界成分が臨界電流密度を低下させる要因となるので、ab軸方向の磁界成分が大きく、c軸方向の磁界成分が小さい位置には、ab軸方向の磁界に対する臨界電流密度が高い高温超電導テープが巻線され、c軸方向の磁界成分が大きく、ab軸方向の磁界成分が小さい位置には、c軸方向の磁界に対するテープの臨界電流密度が高い高温超電導テープが巻線される。したがって、c軸方向の磁界に対するテープの臨界電流密度を向上させることができる。
【0012】
請求項2に係る高温超電導回転電機の界磁巻線は、請求項1に記載の高温超電導回転電機の界磁巻線において、パンケーキ型コイルが、任意枚数重ね巻きされた高温超電導テープからなり、かつパンケーキ型コイルごとに異なる枚数の高温超電導テープが重ね巻きされていることを特徴とするものである。重ね巻きした高温超電導テープは両端で並列に接続する。従来は複数のパンケーキ型コイルの中でも臨界電流密度の小さいパンケーキ型コイルで界磁巻線全体の臨界電流密度が制約されていたが、本発明に従って構成すると、臨界電流密度の小さいパンケーキ型コイルの高温超電導テープの重ね巻き枚数を増加し、それによってパンケーキ型コイルの臨界電流値は重ね巻き枚数倍に増加させることができる。したがって、界磁巻線全体の電流密度を向上させることができる。
請求項3に係る高温超電導回転電機の界磁巻線は、請求項1または2に記載の高温超電導回転電機の界磁巻線において、パンケーキ型コイルの配置位置によって高温超電導テープの断面積が異なることを特徴とするものである。
請求項5に係る高温超電導回転電機の界磁巻線は、請求項5に記載の高温超電導回転電機の界磁巻線において、高温超電導テープの厚さがどのパンケーキ型コイルにおいても同一であることを特徴とするものである。
【0013】
請求項4または5のように構成することにより、臨界電流密度の小さいパンケーキ型コイルの高温超電導テープの断面積を増やすことができるので、各々のパンケーキ型コイルの臨界電流値を一致させることができる。それにより、界磁巻線全体の電流密度を向上させることができる。また、テープ厚さを同一にし、かつ巻回数を同一にすることにより、各パンケーキ型コイルの内外径寸法を一致させることができる。このパンケーキ型コイルを積層することにより、界磁巻線の外側面の凹凸を無くすことができるので、無駄な空間を削減でき、ひいては界磁巻線の電流密度を向上させることができる。
【0014】
請求項6に係る高温超電導回転電機の界磁巻線は、請求項1に記載の高温超電導回転電機の界磁巻線において、界磁巻線の断面を回転子の径方向に内径部、中間部、および外径部に分けたときの内径部および外径部であって、かつパンケーキ型コイルの径方向に内径部、中間部、および外径部に分けたときの中間部の空間には、高温超電導テープが配置されることなく絶縁物が充填されていることを特徴とするものである。
【0015】
請求項7に係る高温超電導回転電機の界磁巻線は、請求項1に記載の高温超電導回転電機の界磁巻線において、界磁巻線の断面を回転子の径方向に内径部、中間部、および外径部に分けたときの内径部および外径部であって、かつパンケーキ型コイルの径方向に内径部、中間部、および外径部に分けたときの中間部の空間には、高温超電導テープが配置されることなく、銅またはアルミニウムまたはそれらの合金からなる常電導金属からなる導体が配置されていることを特徴とするものである。
【0016】
請求項6または7に記載の界磁巻線においては、X軸方向の磁界成分の最大値は界磁巻線の((X1+X2)/2,Y1)および((Xl+X2)/2,Y2)、すなわち回転子の径方向で内径部および外径部で、かつパンケーキ型コイルの径方向の中間部に発生し、この位置の臨界電流密度が最小値となる。したがって、この位置に高温超電導テープを巻線しなければ臨界電流密度の最小値は大きくなる。高温超電導テープの代わりに絶縁物を充填することにより、パンケーキ型コイルを所定形状に保つことができる。また、絶縁物の代わりに常電導金属からなる導体を巻線することにより、界磁巻線の電流密度を向上させることができる。
【0017】
【発明の実施の形態】
(第1の実施の形態)
図1は、本発明の第1の実施の形態による界磁巻線1Aを備えた高温超電導回転電機の回転子4の横断面図である。界磁巻線1Aは、高温超電導テープ2を平巻きコイルとして巻線したパンケーキ型コイル3を回転子4の径方向5に3層に積層したものである。
このように構成することにより、高温超電導テープ2のab軸6は界磁巻線1AのY軸方向7と一致する。界磁巻線1Aで最大磁界の成分はY軸方向7であり、それと一致するab軸6方向の磁界に対する高温超電導テープ2の臨界電流密度は大きい。
一方、X軸方向8は高温超電導テープ2のc軸9と一致するが、その磁界成分はY軸方向7の60〜70%であるから、その分、c軸9方向の磁界成分による臨界電流密度の低下を少なくすることができる。
【0018】
第1の実施の形態による高温超電導回転電機の界磁巻線は、回転子4の径方向5に内径部10、中間部11、および外径部12に分けたときの、内径部10および外径部12を構成するパンケーキ型コイル3にはc軸9方向の磁界に対するテープの臨界電流密度の高い高温超電導テープ13を巻線し、中間部11を構成するパンケーキ型コイル3にはab軸6方向の磁界に対するテープの臨界電流密度の高い高温超電導テープ14を巻線して構成する。
c軸9方向の磁界に対するテープの臨界電流密度が高い高温超電導テープ13としてはBi2223系超電導テープを、またab軸6方向の磁界に対するテープの臨界電流密度が高い高温超電導テープ14としてはBi2212系超電導テープをそれぞれ適用することができる。界磁巻線1Aの中で、Y軸方向7とX軸方向8の磁界成分が同位置で最大値をとることはなく、何れか一方の磁界成分が臨界電流密度を低下させる要因となる。
したがって、上記のように構成すると、ab軸6方向の磁界成分が大きく、c軸方向9の磁界成分が小さい位置には、ab軸6方向の磁界に対する臨界電流密度の高い高温超電導テープ14が巻線され、c軸9方向の磁界成分が大きくab軸方向6の磁界成分が小さい位置には、c軸9方向の磁界に対するテープの臨界電流密度の高い高温超電導テープ13が巻線される。したがって、c軸9方向の磁界に対するテープの臨界電流密度をより向上させることができる。
【0019】
(第2の実施の形態)
図2は、本発明の第2の実施の形態に係る界磁巻線1Bを備えた高温超電導回転電機の回転子を示すものである。この界磁巻線1Bにおいては、パンケーキ型コイル3に巻線する高温超電導テープ2は任意の枚数を重ね巻きし、かつパンケーキ型コイル3毎に異なる枚数を重ね巻きするように構成される。図2は、回転子4の径方向の内径部10および回転子の径方向の外径部2の高温超電導テープ2は重ね巻き枚数を2とし、回転子4の径方向の中間部11の高温超電導テープ2は重ね巻き枚数を1としたものである。重ね巻きした高温超電導テープ2は、両端で並列に接続される。
このように構成することにより、回転子4の径方向の内径部10および外径部12の通電電流は高温超電導テープ2枚の臨界電流まで増加することが可能となり、従来、この位置のc軸9方向の磁界に対するテープの臨界電流値で制限されていた界磁巻線1B全体の臨界電流値を最大その2倍まで増加することができる。その結果、大きな臨界電流密度を有する回転子4の径方向の中間部11にはその最大能力まで通電することができ、したがって、界磁巻線1全体の電流密度を向上させることができる。
【0020】
各パンケーキ型コイル3の高温超電導テープ2の重ね巻き枚数は、この第2の実施の形態のほかに、任意の枚数から選ぶことができ、それにより、界磁巻線1B全体の電流密度をさらに向上させることができる。
【0021】
(第3の実施の形態)
図3は、本発明の第3の実施の形態に係る界磁巻線1Cを備えた高温超電導回転電機の横断面図である。この界磁巻線1Cは、回転子径方向の中間部11のパンケーキ型コイル3に巻く高温超電導テープ2に対し、回転子径方向の内径部10および外径部12のパンケーキ型コイル3に巻く高温超電導テープ2の断面積が中間部11のそれよりも大きくなるように構成されている。また、断面積が異なる高温超電導テープ2のテープ厚さは、すべてのパンケーキ型コイル3で同一とする。
このように構成することにより、臨界電流密度の小さい回転子径方向の内径部10および外径部12のパンケーキ型コイル3の高温超電導テープ2の断面積を増やすことができるので、各パンケーキ型コイル3の臨界電流値を一致させることができる。それにより、界磁巻線1C全体の電流密度の向上を達成することができる。また、テープ厚さを同一にし、かつ巻回数を同一にすることにより、各パンケーキ型コイル3の内外径寸法を一致させることができる。このようなパンケーキ型コイル3を積層することにより、界磁巻線1Cの外側面15の凹凸を無くすことができるので、無効空間を低減することができ、延いては界磁巻線1Cの電流密度の向上を達成することができる。
【0022】
(第4の実施の形態)
図4および図5は、本発明の第4の実施の形態に係る界磁巻線1Dおよび1Eを備えた高温超電導回転電機の回転子の横断面図を示すものである。図4の実施の形態においては、界磁巻線1Dの断面を回転子4の径方向5に見て内径部10、中間部11、および外径部12に分けたときの内径部10および外径部12であって、かつパンケーキ型コイル3の径方向に内径部15、中間部16および外径部17に分けたときの中間部16の空間には、高温超電導テープ2を巻線しないものとする。
このパンケーキ型コイル3の径方向の中間部16には、絶縁物19を充填するか、あるいは図5に示すように、銅またはアルミニウムまたはそれらの合金で構成される常電導金属からなる導体20を巻装し、その両端を高温超電導テープ2と接続することにより、パンケーキ型コイル3を構成する。X軸方向の磁界成分の最大値は、界磁巻線1D,1Eの((X1+X2)/2,Y1)および((X1+X2)/2,Y2)、すなわち回転子4の径方向5で内径部10および外径部12で、かつパンケーキ型コイル3の径方向の中間部16に発生し、この位置の臨界電流密度が最小値となる。
したがって、この位置に高温超電導テープ2を配置しないことにより、臨界電流密度の最小値を大きくすることができる。高温超電導テープ2の代わりに絶縁物19を充填する(図4)ことにより、パンケーキ型コイル3を所定形状に保つことができる。さらにまた、絶縁物19の代わりに常電導金属からなる導体20を巻装することにより、界磁巻線1Eの電流密度を向上させることができる。
【0023】
【発明の効果】
本発明によれば、界磁巻線内部の位置による高温超電導テープに加わるc軸方向の磁界の差異による高温超電導テープの臨界電流の変動を抑制し、臨界電流の向上を達成することができる。この結果、界磁巻線全体の運転電流密度の向上を達成することができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態による高温超電導回転電機の界磁巻線の横断面図。
【図2】 本発明の第2の実施の形態による高温超電導回転電機の界磁巻線の横断面図。
【図3】 本発明の第3の実施の形態による高温超電導回転電機の界磁巻線の横断面図。
【図4】 本発明の第4の実施の形態による高温超電導回転電機の界磁巻線の横断面図。
【図5】 本発明の第5の実施の形態による高温超電導回転電機の界磁巻線の横断面図。
【図6】 従来の高温超電導回転電機の界磁巻線の斜視図およびその要部の拡大横断面図。
【図7】 超電導導体の臨界電流密度の磁界依存性を表す線図。
【図8】 従来の高温超電導回転電機の界磁巻線内部の回転子軸中央部断面の磁界分布を説明するための図。
【符号の説明】
1 界磁巻線
1A 第1の実施の形態による界磁巻線
1B 第2の実施の形態による界磁巻線
1C 第3の実施の形態による界磁巻線
1D 第4の実施の形態による界磁巻線
1E 第5の実施の形態による界磁巻線
2 高温超電導テープ
3 パンケーキ型コイル
4 回転子
6 ab軸
7 Y軸方向
8 X軸方向
9 c軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a field winding of a high-temperature superconducting rotating electrical machine to which a high-temperature superconducting conductor is applied.
[0002]
[Prior art]
A field winding of a conventional superconducting rotating electric machine is mounted and fixed in a rotor by winding a strand made of a metallic superconducting conductor or a stranded wire as a solenoid coil. Metal superconducting conductors have almost no anisotropy in the magnetic field dependence of the critical current, and the critical current decreases in inverse proportion to the absolute value of the magnetic field component orthogonal to the current flowing through the conductor. Regardless of the direction of the magnetic field, flat winding (flatwise) or flat winding (edgewise) is possible. FIG. 6 shows a cross-sectional view of a field winding of a superconducting rotating electric machine in which a conventional stranded metal superconducting conductor is configured as a flat wound solenoid coil.
[0003]
In FIG. 6, the field winding 1 wound around the rotor 4 is composed of a number of metallic superconducting conductors 18 configured as stranded wires.
[0004]
[Problems to be solved by the invention]
A field winding of a high-temperature superconducting rotating electrical machine to which a high-temperature superconducting conductor that can be used at an absolute temperature of 27K or 77K is applied is already known. In the following, a technical problem when applying such a high-temperature superconducting conductor to a field winding of a superconducting rotating electrical machine will be examined.
[0005]
The high-temperature superconducting conductor has a perovskite crystal structure, and its critical current density characteristics are improved by increasing the crystal orientation. In order to improve the crystal orientation, it is necessary to compress in one direction by a rolling process or the like. Therefore, the high temperature superconducting conductor that can be industrially mass-produced is currently limited to a tape having a thickness of 1 mm or less such as a magnetic tape. In the case of a high temperature superconducting tape, the ab axis is generated in a direction parallel to the tape plane, and the c axis is generated in a direction perpendicular to the tape plane. In the Bi2223 superconductor, the critical current density characteristics 71 and 72 are greatly different between the ab axis direction and the c axis direction at a temperature of 77 K, as shown in FIG. 7, for example, under a magnetic field of 0.1 T, the magnetic field in the c axis direction. The critical current density for is less than half of the critical current density for the magnetic field in the ab axis direction.
[0006]
Next, FIG. 8 shows the distribution of the magnetic field H as seen in the cross section of the central portion of the rotor shaft inside the field winding of the conventional high-temperature superconducting rotating electrical machine. As shown in FIG. 6, the position of each part of the coil when the coil cross section is viewed on the XY coordinate plane is defined as X1-X2 in the X-axis direction and defined as Y1-Y2 in the Y-axis direction. In FIG. 8, the magnetic field component in the Y-axis direction defined in FIG. 6 is maximized on the line of the coordinates (X1, Y1) to (X1, Y2) of the field winding 1. Further, the magnetic field component in the X-axis direction is maximized on the lines (Xl, Y1) to (X2, Y1) and (Xl, Y2) to (X2, Y2) of the field winding 1. Comparing the maximum values of the respective magnetic field components, the magnetic field component in the Y-axis direction is larger than the magnetic field component in the X-axis direction, and the ratio of both is 1.4 to l. It is about 7.
[0007]
From the above, when the field winding 1 is made so that the Y axis of the field winding 1 and the c axis of the high-temperature superconducting tape coincide with each other regardless of the direction of the magnetic field, as conventionally performed, The ratio between the maximum value and the minimum value of the critical current density of the high-temperature superconducting tape at each position inside the field winding 1 is increased to almost four times. The field winding 1 is composed of a single high-temperature superconducting tape connected in series. The current density of the field winding 1 is determined by the minimum critical current density of the tape. It is constrained by the minimum critical current density in the magnetic winding 1 and greatly decreases.
[0008]
Therefore, the present invention is not easily affected by the magnetic field component in the c-axis direction that greatly restricts the current density, and even if the critical current density is locally decreased by the magnetic field component in the c-axis direction, the average current density is not reduced. An object is to provide a field winding of a high-temperature superconducting rotating electrical machine.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides the following invention.
In the invention according to claim 1, in the field winding of the high-temperature superconducting rotating electrical machine constituted by laminating a plurality of pancake-type coils obtained by flat winding the high-temperature superconducting tape in the radial direction of the rotor,
When the cross section of the field winding is divided into an inner diameter part, an intermediate part, and an outer diameter part in the radial direction of the rotor,
A high-temperature superconducting tape having a high critical current density with respect to the magnetic field in the c-axis direction of the high-temperature superconducting material is wound around the pancake-type coil constituting the inner diameter part and the outer diameter part,
A high temperature superconducting tape having a high critical current density with respect to the magnetic field in the ab axis direction of the high temperature superconducting material is wound around the pancake type coil constituting the intermediate portion.
[0010]
With this configuration, the ab axis of the high-temperature superconducting tape coincides with the Y-axis direction of the field winding. In the field winding, the component of the maximum magnetic field is in the Y-axis direction, and the critical current density of the high-temperature superconducting tape with respect to the magnetic field in the ab-axis direction that coincides with it is large. On the other hand, the X-axis direction coincides with the c-axis of the high-temperature superconducting tape, but its magnetic field component is 60 to 70% of the Y-axis direction, so that the decrease in critical current density due to the magnetic field component in the c-axis direction can be reduced. it can.
[0011]
In the field winding, the magnetic field components in the Y-axis direction and the X-axis direction do not take the maximum value at the same position, and either one of the magnetic field components causes a decrease in the critical current density. A high temperature superconducting tape having a high critical current density with respect to the magnetic field in the ab axis direction is wound at a position where the magnetic field component in the axial direction is large and the magnetic field component in the c axis direction is small, and the magnetic field component in the c axis direction is large. A high temperature superconducting tape having a high critical current density of the tape with respect to the magnetic field in the c-axis direction is wound at a position where the magnetic field component in the direction is small. Therefore, the critical current density of the tape with respect to the magnetic field in the c-axis direction can be improved.
[0012]
The field winding of the high-temperature superconducting rotating electrical machine according to claim 2 is a field winding of the high-temperature superconducting rotating electrical machine according to claim 1, wherein the pancake-type coil is made of a high-temperature superconducting tape in which an arbitrary number of layers are wound. In addition, a different number of high temperature superconducting tapes are wound on each pancake type coil. Stacked high-temperature superconducting tapes are connected in parallel at both ends. Conventionally, the critical current density of the entire field winding is restricted by a pancake type coil having a small critical current density among a plurality of pancake type coils, but when configured according to the present invention, a pancake type having a small critical current density is provided. The number of lap windings of the high-temperature superconducting tape of the coil can be increased, whereby the critical current value of the pancake coil can be increased by a factor of the number of lap windings. Therefore, the current density of the entire field winding can be improved.
The field winding of the high-temperature superconducting rotating electrical machine according to claim 3 is the field winding of the high-temperature superconducting rotating electrical machine according to claim 1 or 2, wherein the cross-sectional area of the high-temperature superconducting tape depends on the arrangement position of the pancake type coil. It is characterized by being different.
The field winding of the high-temperature superconducting rotating electrical machine according to claim 5 is the field winding of the high-temperature superconducting rotating electrical machine according to claim 5, wherein the thickness of the high-temperature superconducting tape is the same in any pancake type coil. It is characterized by this.
[0013]
Since the cross-sectional area of the high-temperature superconducting tape of the pancake type coil having a small critical current density can be increased by configuring as in claim 4 or 5, the critical current values of the respective pancake type coils should be matched. Can do. Thereby, the current density of the entire field winding can be improved. Further, by making the tape thickness the same and making the number of windings the same, the inner and outer diameters of the pancake coils can be matched. By laminating this pancake type coil, the irregularities on the outer surface of the field winding can be eliminated, so that a useless space can be reduced and the current density of the field winding can be improved.
[0014]
The field winding of the high-temperature superconducting rotating electrical machine according to claim 6 is the field winding of the high-temperature superconducting rotating electrical machine according to claim 1, wherein the field winding has a cross section of the field winding in the radial direction of the rotor and an intermediate portion. The inner diameter portion and the outer diameter portion when divided into the outer diameter portion and the inner portion space when divided into the inner diameter portion, the intermediate portion, and the outer diameter portion in the radial direction of the pancake coil Is characterized in that it is filled with an insulator without disposing a high-temperature superconducting tape.
[0015]
The field winding of the high-temperature superconducting rotating electrical machine according to claim 7 is the field winding of the high-temperature superconducting rotating electrical machine according to claim 1, wherein the field winding has a cross section of the field winding in the radial direction of the rotor and an intermediate portion. The inner diameter portion and the outer diameter portion when divided into the outer diameter portion and the inner portion space when divided into the inner diameter portion, the intermediate portion, and the outer diameter portion in the radial direction of the pancake coil Is characterized in that a conductor made of a normal conducting metal made of copper, aluminum or an alloy thereof is placed without placing a high temperature superconducting tape.
[0016]
In the field winding according to claim 6 or 7, the maximum value of the magnetic field component in the X-axis direction is ((X1 + X2) / 2, Y1) and ((Xl + X2) / 2, Y2) of the field winding. That is, it occurs at the inner diameter portion and the outer diameter portion in the radial direction of the rotor and at the intermediate portion in the radial direction of the pancake coil, and the critical current density at this position becomes the minimum value. Therefore, the minimum critical current density becomes large unless the high temperature superconducting tape is wound at this position. By filling the insulator instead of the high temperature superconducting tape, the pancake coil can be kept in a predetermined shape. Moreover, the current density of the field winding can be improved by winding a conductor made of a normal conducting metal instead of the insulator.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 is a cross-sectional view of a rotor 4 of a high-temperature superconducting rotating electrical machine equipped with a field winding 1A according to a first embodiment of the present invention. The field winding 1 </ b> A is obtained by laminating a pancake type coil 3 wound with a high-temperature superconducting tape 2 as a flat coil in three layers in the radial direction 5 of the rotor 4.
With this configuration, the ab axis 6 of the high-temperature superconducting tape 2 coincides with the Y-axis direction 7 of the field winding 1A. The maximum magnetic field component in the field winding 1A is 7 in the Y-axis direction, and the critical current density of the high-temperature superconducting tape 2 is large with respect to the magnetic field in the ab-axis 6 direction that coincides therewith.
On the other hand, the X-axis direction 8 coincides with the c-axis 9 of the high-temperature superconducting tape 2, but the magnetic field component is 60 to 70% of the Y-axis direction 7. The decrease in density can be reduced.
[0018]
The field winding of the high-temperature superconducting rotating electrical machine according to the first embodiment is divided into an inner diameter portion 10, an outer diameter portion 12, and an inner diameter portion 10 and an outer diameter portion 12 in the radial direction 5 of the rotor 4. A high-temperature superconducting tape 13 having a high critical current density of the tape with respect to the magnetic field in the c-axis 9 direction is wound around the pancake coil 3 constituting the diameter portion 12, and ab is placed on the pancake coil 3 constituting the intermediate portion 11. The high-temperature superconducting tape 14 having a high critical current density of the tape with respect to the magnetic field in the direction of the axis 6 is wound and configured.
Bi2223-based superconducting tape is used as the high-temperature superconducting tape 13 having a high critical current density of the tape with respect to the magnetic field in the c-axis 9 direction, and Bi2212-based superconducting is used as the high-temperature superconducting tape 14 having a high critical current density of the tape with respect to the magnetic field in the ab-axis 6 direction. Each tape can be applied. In the field winding 1A, the magnetic field components in the Y-axis direction 7 and the X-axis direction 8 do not take the maximum value at the same position, and either one of the magnetic field components causes a decrease in the critical current density.
Therefore, with the above configuration, the high temperature superconducting tape 14 having a high critical current density with respect to the magnetic field in the ab axis 6 direction is wound at a position where the magnetic field component in the ab axis 6 direction is large and the magnetic field component in the c axis direction 9 is small. A high-temperature superconducting tape 13 having a high critical current density of the tape with respect to the magnetic field in the c-axis 9 direction is wound at a position where the magnetic field component in the c-axis 9 direction is large and the magnetic field component in the ab-axis direction 6 is small. Therefore, the critical current density of the tape with respect to the magnetic field in the c-axis 9 direction can be further improved.
[0019]
(Second Embodiment)
FIG. 2 shows a rotor of a high-temperature superconducting rotating electrical machine provided with a field winding 1B according to a second embodiment of the present invention. In this field winding 1B, the high-temperature superconducting tape 2 wound around the pancake-type coil 3 is configured such that an arbitrary number of the high-temperature superconducting tapes 2 are overwrapped, and different numbers of the pancake-type coils 3 are overwrapped. . 2 shows that the high-temperature superconducting tape 2 of the inner diameter portion 10 in the radial direction of the rotor 4 and the outer diameter portion 2 in the radial direction of the rotor has two lap windings and the high temperature of the intermediate portion 11 in the radial direction of the rotor 4. The superconducting tape 2 is one in which the number of lap windings is one. The high-temperature superconducting tape 2 wound in layers is connected in parallel at both ends.
With this configuration, the energization currents of the inner diameter portion 10 and the outer diameter portion 12 in the radial direction of the rotor 4 can be increased up to the critical current of two high-temperature superconducting tapes. The critical current value of the entire field winding 1B, which is limited by the critical current value of the tape with respect to the magnetic field in nine directions, can be increased up to twice the maximum. As a result, the radial intermediate portion 11 of the rotor 4 having a large critical current density can be energized to its maximum capacity, and thus the current density of the entire field winding 1 can be improved.
[0020]
In addition to the second embodiment, the number of lap windings of the high-temperature superconducting tape 2 of each pancake coil 3 can be selected from any number, and thereby the current density of the entire field winding 1B can be selected. Further improvement can be achieved.
[0021]
(Third embodiment)
FIG. 3 is a cross-sectional view of a high-temperature superconducting rotating electrical machine provided with a field winding 1C according to the third embodiment of the present invention. This field winding 1 </ b> C has a pancake type coil 3 with an inner diameter portion 10 and an outer diameter portion 12 in the rotor radial direction with respect to the high-temperature superconducting tape 2 wound around the pancake type coil 3 in the intermediate portion 11 in the rotor radial direction. The cross-sectional area of the high-temperature superconducting tape 2 wound around is larger than that of the intermediate portion 11. The tape thicknesses of the high-temperature superconducting tapes 2 having different cross-sectional areas are the same for all pancake coils 3.
By configuring in this way, the cross-sectional area of the high-temperature superconducting tape 2 of the pancake type coil 3 of the inner diameter portion 10 and the outer diameter portion 12 in the rotor radial direction having a small critical current density can be increased. The critical current values of the mold coils 3 can be matched. Thereby, the improvement of the current density of the whole field winding 1C can be achieved. Further, by making the tape thickness the same and making the number of turns the same, the inner and outer diameters of the pancake coils 3 can be made to coincide. By laminating such pancake-type coils 3, the unevenness of the outer surface 15 of the field winding 1C can be eliminated, so that the ineffective space can be reduced, and consequently the field winding 1C can be reduced. An improvement in current density can be achieved.
[0022]
(Fourth embodiment)
4 and 5 are cross-sectional views of a rotor of a high-temperature superconducting rotating electrical machine provided with field windings 1D and 1E according to a fourth embodiment of the present invention. In the embodiment of FIG. 4, when the cross section of the field winding 1 </ b> D is viewed in the radial direction 5 of the rotor 4, the inner diameter portion 10 and the outer diameter portion 12 are divided into an inner diameter portion 10, an intermediate portion 11, and an outer diameter portion 12. The high-temperature superconducting tape 2 is not wound in the space of the intermediate portion 16 that is the diameter portion 12 and divided into the inner diameter portion 15, the intermediate portion 16, and the outer diameter portion 17 in the radial direction of the pancake coil 3. Shall.
The intermediate portion 16 in the radial direction of the pancake coil 3 is filled with an insulator 19 or, as shown in FIG. 5, a conductor 20 made of a normal conducting metal made of copper, aluminum, or an alloy thereof. Is connected, and the both ends thereof are connected to the high-temperature superconducting tape 2 to form a pancake-type coil 3. The maximum value of the magnetic field component in the X-axis direction is ((X1 + X2) / 2, Y1) and ((X1 + X2) / 2, Y2) of the field windings 1D, 1E, that is, the inner diameter portion in the radial direction 5 of the rotor 4 10 and the outer diameter portion 12 and at the radial intermediate portion 16 of the pancake coil 3, the critical current density at this position becomes the minimum value.
Therefore, the minimum value of the critical current density can be increased by not arranging the high temperature superconducting tape 2 at this position. By filling the insulator 19 instead of the high temperature superconducting tape 2 (FIG. 4), the pancake coil 3 can be kept in a predetermined shape. Furthermore, the current density of the field winding 1E can be improved by winding the conductor 20 made of a normal conducting metal instead of the insulator 19.
[0023]
【The invention's effect】
According to the present invention, it is possible to suppress the variation of the critical current of the high-temperature superconducting tape due to the difference in the magnetic field in the c-axis direction applied to the high-temperature superconducting tape depending on the position inside the field winding, thereby achieving an improvement in the critical current. As a result, an improvement in the operating current density of the entire field winding can be achieved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a field winding of a high-temperature superconducting rotating electrical machine according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a field winding of a high temperature superconducting rotating electrical machine according to a second embodiment of the present invention.
FIG. 3 is a cross-sectional view of a field winding of a high temperature superconducting rotating electrical machine according to a third embodiment of the present invention.
FIG. 4 is a cross-sectional view of a field winding of a high temperature superconducting rotating electrical machine according to a fourth embodiment of the present invention.
FIG. 5 is a transverse sectional view of a field winding of a high temperature superconducting rotating electrical machine according to a fifth embodiment of the present invention.
FIG. 6 is a perspective view of a field winding of a conventional high-temperature superconducting rotating electric machine and an enlarged cross-sectional view of the main part thereof.
FIG. 7 is a diagram showing the magnetic field dependence of the critical current density of a superconducting conductor.
FIG. 8 is a view for explaining the magnetic field distribution in the cross section of the central portion of the rotor shaft inside the field winding of the conventional high-temperature superconducting rotating electrical machine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Field winding 1A Field winding 1B by 1st Embodiment Field winding 1C by 2nd Embodiment Field winding 1D by 3rd Embodiment Field by 4th Embodiment Magnetic winding 1E Field winding 2 according to the fifth embodiment High temperature superconducting tape 3 Pancake type coil 4 Rotor 6 Ab axis 7 Y axis direction 8 X axis direction 9 c axis

Claims (7)

高温超電導テープを平巻きしたパンケーキ型コイルを回転子の径方向に複数個積層して構成した高温超電導回転電機の界磁巻線において、
界磁巻線の横断面を回転子の径方向に内径部、中間部、および外径部に分けたとき、
前記内径部および前記外径部を構成するパンケーキ型コイルには、高温超電導材のc軸方向の磁界に対する臨界電流密度の高い高温超電導テープが巻線され、
前記中間部を構成するパンケーキ型コイルには、高温超電導材のab軸方向の磁界に対する臨界電流密度の高い高温超電導テープが巻線されている
ことを特徴とする高温超電導回転電機の界磁巻線。
In the field winding of a high-temperature superconducting rotating electrical machine, which is formed by laminating a plurality of pancake-type coils with a flat roll of high-temperature superconducting tape in the radial direction of the rotor,
When the cross section of the field winding is divided into an inner diameter part, an intermediate part, and an outer diameter part in the radial direction of the rotor,
A high-temperature superconducting tape having a high critical current density with respect to the magnetic field in the c-axis direction of the high-temperature superconducting material is wound around the pancake-type coil constituting the inner diameter part and the outer diameter part,
A high temperature superconducting tape having a high critical current density with respect to the magnetic field in the ab axis direction of the high temperature superconducting material is wound around the pancake type coil constituting the intermediate portion. line.
請求項1に記載の高温超電導回転電機の界磁巻線において、
前記内径部および前記外径部を構成するパンケーキ型コイルはBi2223系高温超電導テープからなり、前記中間部を構成するパンケーキ型コイルはBi2212系高温超電導テープからなっていることを特徴とする高温超電導回転電機の界磁巻線。
In the field winding of the high-temperature superconducting rotating electrical machine according to claim 1,
The pancake type coil constituting the inner diameter part and the outer diameter part is made of Bi2223 series high temperature superconducting tape, and the pancake type coil constituting the intermediate part is made of Bi2212 series high temperature superconducting tape. Field winding of superconducting rotating electrical machine.
請求項1または2に記載の高温超電導回転電機の界磁巻線において、
前記パンケーキ型コイルが、任意枚数重ね巻きされた高温超電導テープからなり、かつ前記パンケーキ型コイルそれぞれに異なる枚数の高温超電導テープが重ね巻きされていることを特徴とする高温超電導回転電機の界磁巻線。
In the field winding of the high-temperature superconducting rotating electrical machine according to claim 1 or 2,
A field of a high-temperature superconducting rotating electrical machine, wherein the pancake-type coil is made of a high-temperature superconducting tape wound in an arbitrary number of layers, and a different number of high-temperature superconducting tapes are wound around each of the pancake-type coils. Magnetic winding.
請求項1ないし3の何れかに記載の高温超電導回転電機の界磁巻線において、
前記パンケーキ型コイルの配置位置によって前記高温超電導テープの断面積が異なることを特徴とする高温超電導回転電機の界磁巻線。
In the field winding of the high temperature superconducting rotating electrical machine according to any one of claims 1 to 3,
A field winding of a high-temperature superconducting rotating electrical machine, wherein a cross-sectional area of the high-temperature superconducting tape varies depending on an arrangement position of the pancake-type coil.
請求項4に記載の高温超電導回転電機の界磁巻線において、
前記高温超電導テープの厚さが前記パンケーキ型コイルのどれにおいても同一であることを特徴とする高温超電導回転電機の界磁巻線。
In the field winding of the high temperature superconducting rotating electrical machine according to claim 4,
A field winding for a high temperature superconducting rotating electrical machine, wherein the thickness of the high temperature superconducting tape is the same in any of the pancake type coils.
請求項1に記載の高温超電導回転電機の界磁巻線において、
前記界磁巻線の断面を前記回転子の径方向に内径部、中間部、および外径部に分けたときの内径部および外径部であって、かつ前記パンケーキ型コイルの径方向に内径部、中間部、および外径部に分けたときの中間部の空間には、前記高温超電導テープが配置されることなく絶縁物が充填されていることを特徴とする高温超電導回転電機の界磁巻線。
In the field winding of the high-temperature superconducting rotating electrical machine according to claim 1,
An inner diameter portion and an outer diameter portion when a cross section of the field winding is divided into an inner diameter portion, an intermediate portion, and an outer diameter portion in the radial direction of the rotor, and in the radial direction of the pancake coil A space of the high temperature superconducting rotating electrical machine characterized in that the space of the intermediate portion when divided into the inner diameter portion, the intermediate portion, and the outer diameter portion is filled with an insulator without the high temperature superconducting tape being disposed. Magnetic winding.
請求項1に記載の高温超電導回転電機の界磁巻線において、
前記界磁巻線の断面を前記回転子の径方向に内径部、中間部、および外径部に分けたときの内径部および外径部であって、かつ前記パンケーキ型コイルの径方向に内径部、中間部、および外径部に分けたときの中間部の空間には、前記高温超電導テープが配置されることなく、銅またはアルミニウムまたはそれらの合金からなる常電導金属からなる導体が配置されていることを特徴とする高温超電導回転電機の界磁巻線。
In the field winding of the high-temperature superconducting rotating electrical machine according to claim 1,
An inner diameter portion and an outer diameter portion when a cross section of the field winding is divided into an inner diameter portion, an intermediate portion, and an outer diameter portion in the radial direction of the rotor, and in the radial direction of the pancake coil In the space of the intermediate portion when divided into the inner diameter portion, the intermediate portion, and the outer diameter portion, a conductor made of a normal conducting metal made of copper, aluminum, or an alloy thereof is arranged without the high-temperature superconducting tape being arranged. A field winding of a high-temperature superconducting rotating electrical machine, characterized in that
JP12495498A 1998-05-07 1998-05-07 Field winding of high temperature superconducting rotating electrical machine Expired - Fee Related JP3853515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12495498A JP3853515B2 (en) 1998-05-07 1998-05-07 Field winding of high temperature superconducting rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12495498A JP3853515B2 (en) 1998-05-07 1998-05-07 Field winding of high temperature superconducting rotating electrical machine

Publications (2)

Publication Number Publication Date
JPH11318071A JPH11318071A (en) 1999-11-16
JP3853515B2 true JP3853515B2 (en) 2006-12-06

Family

ID=14898334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12495498A Expired - Fee Related JP3853515B2 (en) 1998-05-07 1998-05-07 Field winding of high temperature superconducting rotating electrical machine

Country Status (1)

Country Link
JP (1) JP3853515B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039964A1 (en) 2000-08-16 2002-03-07 Siemens Ag Superconducting device with a cooling unit for cooling a rotating, superconducting winding

Also Published As

Publication number Publication date
JPH11318071A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
KR101782177B1 (en) Multifilament conductor and method for producing same
JP4657921B2 (en) Superconducting wire and superconducting coil using the same
JP5402518B2 (en) Oxide superconducting coil, oxide superconducting coil body and rotating machine
JP4558517B2 (en) Superconducting coil
JP5192741B2 (en) Superconducting conductor and superconducting cable with superconducting conductor
CN105283933B (en) Superconducting coil device and manufacture method with coil wound body
MXPA01008327A (en) A cable, a method of constructing a cable, and use of a cable.
US5604473A (en) Shaped superconducting magnetic coil
US7567157B2 (en) Rectangular coil made of strip-shaped superconductors containing high-Tc-superconductor material and use thereof
JP2007305386A (en) Superconducting wire rod, superconductor, superconducting apparatus, manufacturing method of the superconducting wire rod, and manufacturing method of the superconductor
US7566684B1 (en) Machinery windings of yttrium barium copper oxide and related coated conductor
JP5397994B2 (en) Superconducting cable
JP4774494B2 (en) Superconducting coil
JP3853515B2 (en) Field winding of high temperature superconducting rotating electrical machine
Sumption et al. AC losses of coated conductors in perpendicular fields and concepts for twisting
JP2012114230A (en) Superconducting coil
JP2001307917A (en) Method for connecting superconducting wire
JP2011014830A (en) Method of manufacturing superconductive coil body, and superconductive coil body
JP2012256508A (en) Superconductive wire rod and superconductive cable
JP5407448B2 (en) Rotating equipment
CN213461273U (en) Band winding structure for integer slot motor
JPH06260335A (en) High temperature superconducting magnet
US20210375541A1 (en) Electrical machine and method for fabrication of a coil of an electrical machine
JP2008282566A (en) Bismuth oxide superconducting element wire, bismuth oxide superconductor, superconducting coil, and manufacturing method of them
JP4674457B2 (en) Superconducting coil

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees