JPH03264637A - Aluminum alloy high damping material and its production - Google Patents

Aluminum alloy high damping material and its production

Info

Publication number
JPH03264637A
JPH03264637A JP6204490A JP6204490A JPH03264637A JP H03264637 A JPH03264637 A JP H03264637A JP 6204490 A JP6204490 A JP 6204490A JP 6204490 A JP6204490 A JP 6204490A JP H03264637 A JPH03264637 A JP H03264637A
Authority
JP
Japan
Prior art keywords
aluminum alloy
vibration damping
damping material
treatment
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6204490A
Other languages
Japanese (ja)
Inventor
Katsutoshi Sasaki
佐々木 勝敏
Satoru Shoji
了 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP6204490A priority Critical patent/JPH03264637A/en
Publication of JPH03264637A publication Critical patent/JPH03264637A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To produce an Al alloy high damping material excellent in cold workability and vibration damping property by forming an intergranular corrosion layer of specific depth to an Al alloy having a specific composition containing Mg and Si by subjecting this Al alloy to solution treatment, to heating, and to etching treatment. CONSTITUTION:An Al alloy which has a composition consisting of, by weight, 2-11% Mg, 0.3-10% Si, and the balance Al with inevitable impurities and further containing, if necessary, one or more kinds among 0.01-2.5% Mn, 0.01-1% Cu, 0.01-2.0% Cr, 0.01-0.4% Zr, 0.005-1.0% Ti, 0.0001-0.1% B, 0.05-3% Ni, and 0.01-2% V is subjected to solution treatment. Subsequently, this alloy is heated at 100-250 deg.C for >=1hr, by which potentially base precipitates are precipitated in the grain boundary. Then, etching treatment is applied to this alloy to form an intergranular corrosion layer having a depth of >= at least 20mum from the surface, and this corrosion layer is subjected, if necessary, to resin impregnation treatment. By this method, the lightweight Al alloy high damping material excellent in cold workability and having superior vibration damping property can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は優れた振動減衰性を有し、音響機器、精密機器
、自動車などの振動を嫌う構造部材として使用されるア
ルミニウム合金制振材料に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an aluminum alloy vibration damping material that has excellent vibration damping properties and is used as a structural member that dislikes vibrations in audio equipment, precision equipment, automobiles, etc. It is something.

〔従来の技術〕[Conventional technology]

一般に物体を振動させると、ある周波数(fr )で振
幅が大きくなる(第1図)。この周波数を共振周波数と
いう。共振周波数での振幅をAoとすると、このエネル
ギーに対し1/2となるのは振幅がA。//2  (d
B表示では一3dB)となる周波数である。この周波数
幅(半値幅、3dB値幅)をΔfとすると、損失係数η
ば次式で表される。
Generally, when an object is vibrated, the amplitude increases at a certain frequency (fr) (Figure 1). This frequency is called the resonant frequency. If the amplitude at the resonance frequency is Ao, then the amplitude that is 1/2 of this energy is A. //2 (d
In B display, this is a frequency of -3 dB). If this frequency width (half width, 3dB width) is Δf, then the loss coefficient η
It is expressed by the following equation.

η−Δf / f r この損失係数ηの値が大きい材料はど振動減衰性に優れ
、外力が除去された場合には振動が急、速に減衰する。
η-Δf/f r A material with a large value of this loss coefficient η has excellent vibration damping properties, and when an external force is removed, vibrations are damped quickly and rapidly.

通常の金属材料の損失係数ηは0.001以下である。The loss coefficient η of ordinary metal materials is 0.001 or less.

従来、音響機器、精密機器、自動車などの振動を嫌う構
造部材の金属材料、所謂制振材料としては、Fe−Cr
系、Mn−Cu系、Zn−An系、N i −T i系
などの合金が知られている。またMg、Mg−Zr系の
鋳造材も制振材として知られでいる。
Conventionally, Fe-Cr has been used as a so-called vibration damping material, a metal material for structural members that dislike vibrations in audio equipment, precision equipment, automobiles, etc.
Alloys such as Mn-Cu, Zn-An, and Ni-Ti are known. Furthermore, Mg and Mg-Zr based cast materials are also known as vibration damping materials.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

Fe−Cr系、Mn−Cu系、Zn−Affi系、N 
i −T j系などの合金は振動減衰性が大きいが、比
重が大きいという共通の欠点を有し、機器の軽量化を計
ろうとする場合には不適当である。一方、Mg、Mg−
Zr系の鋳造材も大きい振動減衰性を示し、しかも比重
が小さいという長所を有するが、冷間加工が全く出来な
いという欠点がある。
Fe-Cr series, Mn-Cu series, Zn-Affi series, N
Although alloys such as the i-Tj series have high vibration damping properties, they have a common drawback of high specific gravity, making them unsuitable when attempting to reduce the weight of equipment. On the other hand, Mg, Mg-
Zr-based cast materials also have the advantage of exhibiting high vibration damping properties and low specific gravity, but have the disadvantage that they cannot be cold worked at all.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、これらを鑑み種々検討の結果、比重が小さく
しかも冷間加工が容易なアルミニウム合金制振材料とそ
の製造方法を開発したものである。
The present invention has been made based on various studies in view of the above, and has developed an aluminum alloy vibration damping material that has a low specific gravity and is easy to cold work, and a method for manufacturing the same.

即ち請求項1の発明は、Mg2〜11wt%、5iO0
3〜10wt%を含み、残部Affと不可避的不純物か
らなるアルミニウム合金に、表面から少なくとも20戸
以上の深さの粒界腐食層を形成したことを特徴とするア
ルミニウム合金制振材料であり、請求項2の発明は、M
g2〜11wt%、Si0.3〜10wt%を含み、残
部A!と不可避的不純物からなるアルミニウム合金に、
表面から少なくとも20μm以上の深さの樹脂を含浸し
た粒界腐食層を形成したことを特徴とするアルミニウム
合金制振材料である。
That is, the invention of claim 1 provides Mg2 to 11 wt%, 5iO0
An aluminum alloy vibration damping material characterized by forming an intergranular corrosion layer with a depth of at least 20 mm from the surface on an aluminum alloy containing 3 to 10 wt% and the balance Aff and unavoidable impurities. The invention of item 2 is M
Contains g2~11wt%, Si0.3~10wt%, and the balance is A! and unavoidable impurities,
This is an aluminum alloy vibration damping material characterized by forming a resin-impregnated intergranular corrosion layer at a depth of at least 20 μm or more from the surface.

また請求項3の発明は、M g 2〜11wt%、Si
0.3〜10wt%を含み、ざらにM n 0.01〜
2.5wt%、Cu 0.01〜1 wt%、Cr 0
.01〜2.0wt%、Zr0.01〜0.4wt%、
T i 0.005〜1.0wt%、B0.0001〜
0.1匈L%、N i 0.05〜3i+t%、V0.
01〜2wt%の元素群のうちの1種もしくは2種以上
を含み、残部Alと不可避的不純物からなるアルミニウ
ム合金に、表面から少なくとも20IIm以上の深さの
粒界腐食層を形成したことを特徴とするアルミニウム合
金制振材料であり、請求項4の発明は、Mg2〜11w
t%、S i  0.3〜10wt%を含み、さらにM
n0.01〜2.5wt%、Cu 0.01〜1 wt
%、Cr0.01〜2.0wt%、Z r0.01〜0
.4wt%、T i 0.005〜1.0wt%、80
.0001〜0.1wt%、N i 0.05〜3wt
%、V0.01〜2wt%の元素群のうちの1種もしく
は2種以上を含み、残部Al2と不可避的不純物からな
るアルミニウム合金に、表面から少なくとも20岬以上
の深さの樹脂を含浸した粒界腐食層を形成したことを特
徴とするアルミニウム合金制振材料である。
Further, the invention of claim 3 provides M g 2 to 11 wt%, Si
Contains 0.3 to 10 wt%, roughly M n 0.01 to
2.5 wt%, Cu 0.01-1 wt%, Cr 0
.. 01-2.0wt%, Zr0.01-0.4wt%,
T i 0.005~1.0wt%, B0.0001~
0.1 匈L%, N i 0.05-3i+t%, V0.
An intergranular corrosion layer with a depth of at least 20 II m or more from the surface is formed on an aluminum alloy containing one or more of the 01 to 2 wt% of the element group, the balance being Al and inevitable impurities. The invention of claim 4 is an aluminum alloy vibration damping material having Mg2-11w.
t%, S i 0.3-10wt%, and further contains M
n0.01-2.5wt%, Cu 0.01-1wt
%, Cr0.01-2.0wt%, Z r0.01-0
.. 4wt%, Ti 0.005-1.0wt%, 80
.. 0001-0.1wt%, Ni 0.05-3wt
%, V0.01 to 2 wt% of one or more of the element groups, and the remainder is Al2 and inevitable impurities, and the particles are impregnated with resin to a depth of at least 20 capes from the surface. This is an aluminum alloy vibration damping material characterized by the formation of an interfacial corrosion layer.

さらに請求項5の発明は、Mg2〜11wt%、Si 
0.3〜10wt%を含み、残部A!と不可避的不純物
からなるアルミニウム合金を、溶体化処理した後、10
0〜250℃で1時間以上加熱して結晶粒界に電位的に
卑な析出物を析出させ、しかる後腐食処理を施してその
表面から少なくとも20陣以上の深さの粒界腐食層を形
成させることを特徴とするアルミニウム合金制振材料の
製造方法であり、請求項6の発明は、Mg2〜11wt
%、Si0.3〜10wt%を含み、残部APと不可避
的不純物からなるアルミニウム合金を、溶体化処理した
後、100〜250℃で1時間以上加熱して結晶粒界に
電位的に卑な析出物を析出させ、しかる後腐食処理、樹
脂含浸処理を施してその表面から少なくとも20μm以
上の深さの樹脂を含浸した粒界腐食層を形成させること
を特徴とするアルミニウム合金制振材料の製造方法であ
る。
Furthermore, the invention of claim 5 provides that Mg2 to 11wt%, Si
Contains 0.3 to 10 wt%, the remainder is A! After solution treatment, an aluminum alloy consisting of
Heating at 0 to 250°C for 1 hour or more to precipitate potentially base precipitates at grain boundaries, followed by corrosion treatment to form an intergranular corrosion layer at least 20 depths from the surface. A method for manufacturing an aluminum alloy vibration damping material, characterized in that Mg2-11wt
After solution treatment, an aluminum alloy containing 0.3 to 10 wt% of Si and the balance AP and unavoidable impurities is heated at 100 to 250°C for more than 1 hour to form potentially base precipitation at grain boundaries. A method for producing an aluminum alloy vibration damping material, which comprises precipitating a substance and then subjecting it to corrosion treatment and resin impregnation treatment to form a resin-impregnated intergranular corrosion layer at a depth of at least 20 μm from the surface. It is.

また請求項7の発明は、Mg2〜11wt%、Si0.
3−10wt%を含み、さらにM n 0.01〜2.
5wt%、Cu 0.01〜1 wt%、Cr 0.0
1〜2.0wt%、ZrO、01〜0 、4 w t%
、T i 0.005〜1.kt%、B0.0OOI〜
0.1wt%、N i 0.05〜3 wt%、V0.
01〜2wt%の元素群のうちの1種もしくは2種以上
を含み、残部Al!、と不可避的不純物からなるアルミ
ニウム合金を、溶体化処理した後、100〜250℃で
1時間以上加熱して結晶粒界に電位的に卑な析出物を析
出させ、しかる後腐食処理を施してその表面から少なく
とも20Fm以上の深さの粒界腐食層を形成させること
を特徴とするアルミニウム合金制振材料の製造方法であ
り、請求項8の発明は、Mg2〜11 u t%、S 
i 0.3−10wt%を含み、さらにMn0.01〜
2.5wt%、Cu 0.01〜1 wt%、Cr0.
01〜2.0 wt%、Z r0.01〜0.4wt%
、T i 0.005〜1.0i%、80.0001〜
0.1すt%、Ni0.05〜3呵%、V0.01〜2
wt%の元素群のうちの1種もしくは2種以上を含み、
残部A!と不可避的不純物からなるアルミニウム合金を
、溶体化処理した後、100〜250℃で1時間以上加
熱して結晶粒界に電位的に卑な析出物を析出させ、しか
る後腐食処理、樹脂含浸処理を施してその表面から少な
くとも20戸以上の深さの樹脂を含浸した粒界腐食層を
形成させることを特徴とするアルミニウム合金制振材料
の製造方法である。
Moreover, the invention of claim 7 provides Mg2 to 11 wt%, Si0.
3-10 wt%, and M n 0.01-2.
5 wt%, Cu 0.01-1 wt%, Cr 0.0
1-2.0 wt%, ZrO, 01-0, 4 wt%
, T i 0.005-1. kt%, B0.0OOI ~
0.1 wt%, Ni 0.05-3 wt%, V0.
01 to 2 wt% of one or more of the element groups, and the remainder is Al! , and unavoidable impurities, is subjected to solution treatment, heated at 100 to 250°C for more than 1 hour to precipitate potentially base precipitates at grain boundaries, and then subjected to corrosion treatment. A method for producing an aluminum alloy vibration damping material, which is characterized by forming an intergranular corrosion layer with a depth of at least 20 Fm from the surface, and the invention according to claim 8 provides
Contains i 0.3-10wt%, and further contains Mn0.01~
2.5 wt%, Cu 0.01-1 wt%, Cr0.
01-2.0 wt%, Z r0.01-0.4 wt%
, T i 0.005-1.0i%, 80.0001-
0.1st%, Ni0.05-3%, V0.01-2
Contains one or more of the wt% element groups,
Remainder A! After solution treatment, an aluminum alloy consisting of unavoidable impurities is heated at 100 to 250°C for 1 hour or more to precipitate potentially base precipitates at grain boundaries, followed by corrosion treatment and resin impregnation treatment. This is a method for producing an aluminum alloy vibration damping material, characterized in that a resin-impregnated intergranular corrosion layer is formed to a depth of at least 20 layers from the surface of the aluminum alloy damping material.

〔作用] 制振材料はその振動減衰メカニズムにより、転位型、複
合相型、強磁性型、双晶型に分類される。
[Function] Damping materials are classified into dislocation type, composite phase type, ferromagnetic type, and twin type depending on their vibration damping mechanism.

本発明制振材料は上記メカニズムとは異なり、表面に形
成せしめた粒界腐食層の結晶粒同士の微小な擦れあいに
より振動エネルギーを吸収させ、振動を速やかに吸収さ
せる、あるいは表面に形成せしめた粒界腐食層に樹脂を
含浸し、粒界の微小空隙に充填された樹脂の粘弾性的変
形により振動エネルギーを吸収させ、振動を速やかに吸
収さゼるという技術的発想に基づくものである。
The vibration damping material of the present invention differs from the above-mentioned mechanism in that it absorbs vibration energy through minute friction between the crystal grains of the intergranular corrosion layer formed on the surface, and absorbs the vibration quickly, or forms a layer on the surface. This is based on the technical idea that the grain boundary corrosion layer is impregnated with resin, and vibration energy is absorbed by the viscoelastic deformation of the resin filled in the micro voids at the grain boundaries, thereby quickly absorbing the vibration.

即ち、本発明は表面から201M以上の深さまで粒界腐
食処理をしたアルミニウム合金、あるいは表面から20
μm以上の深さまで樹脂を含浸した粒界腐食層を形成し
たアルミニウム合金が極めて良好な振動減衰性を示し、
しかも比重が小さく冷間加工が容易であることを見出し
たものである。
That is, the present invention applies to aluminum alloys that have been subjected to intergranular corrosion treatment to a depth of 201M or more from the surface, or
Aluminum alloys with intergranular corrosion layers impregnated with resin to a depth of more than μm exhibit extremely good vibration damping properties.
Furthermore, it was discovered that the specific gravity is small and cold working is easy.

結晶粒界を優先的に腐食させる手段としては、結晶粒界
に腐食されやすい電位が卑な金属間化合物を析出させる
、あるいは結晶粒界近傍を粒内に比べ電位を卑にした後
に腐食処理を施すことが効果的である。
As a means to preferentially corrode grain boundaries, it is possible to precipitate an intermetallic compound with a base potential that is easily corroded at the grain boundaries, or to perform corrosion treatment after making the potential near the grain boundaries less noble compared to the inside of the grains. It is effective to apply

Mgはβ相(/M!−Mg系金属間化合金属間化合物i
と共にMgzSiを粒界に優先的に析出させ、腐食処理
により電位が卑なβ相、MgzSiを優先溶解させるた
めに添加するものである。その含有量を2〜11wt%
と限定したのは、2wt%未満ではβ相、MgzSiの
析出がおこらず、11wt%を超えるとβ相、MgzS
iが粒界だけではなく、粒内にも多量に析出するため、
粒界を優先腐食させることが困難となるためである。
Mg is in the β phase (/M!-Mg-based intermetallic compound
At the same time, it is added to preferentially precipitate MgzSi at grain boundaries, and preferentially dissolve MgzSi, the beta phase whose potential is less noble, by corrosion treatment. Its content is 2-11wt%
The reason for this limitation is that below 2 wt%, β phase and MgzSi do not precipitate, while above 11 wt%, β phase and MgzS do not precipitate.
Since a large amount of i precipitates not only at the grain boundaries but also within the grains,
This is because it becomes difficult to preferentially corrode grain boundaries.

StはMgと共にMg2Siを析出させ、材料強度を向
上させる。また熱処理条件によりM g 2S+を粒界
に優先析出させることが可能である。
St precipitates Mg2Si together with Mg, improving material strength. Further, depending on the heat treatment conditions, it is possible to preferentially precipitate M g 2S+ at grain boundaries.

Mg234を粒界に析出させた場合、腐食処理により電
位が卑なMg25 iを優先溶解され、粒界腐食層を形
成することができる。その含有量を1〜10wt%と限
定したのは、1wt%未満ではM g zSiの析出が
おこらず、104%を超えるとM g 2Siが粒界だ
けではなく、粒内にも多量に析出するため、粒界を優先
腐食させることが困難となるためである。
When Mg234 is precipitated at grain boundaries, Mg25i, which has a less noble potential, is preferentially dissolved by the corrosion treatment, and a grain boundary corrosion layer can be formed. The reason why the content is limited to 1 to 10 wt% is that if it is less than 1 wt%, precipitation of M g zSi will not occur, and if it exceeds 104%, a large amount of M g 2Si will precipitate not only at the grain boundaries but also within the grains. This is because it becomes difficult to preferentially corrode grain boundaries.

その他のMn、CuSCr、Zr、Ti、B。Others Mn, CuSCr, Zr, Ti, B.

Ni、■の元素は主として材料強度の向上に寄与すると
共に、材料の結晶粒径を調整し制振性を向上する効果が
ある。それぞれ下限未満ではこれら効果が充分ではなく
、上限を超えると粗大な化合物が形成され材料の延性を
阻害する恐れがある。
The elements Ni and (2) mainly contribute to improving the strength of the material, and also have the effect of adjusting the crystal grain size of the material and improving vibration damping properties. Below the respective lower limits, these effects will not be sufficient, while above the upper limits, coarse compounds may be formed and the ductility of the material may be inhibited.

なおFeなど通常のアルミ地金に含まれる不純物は0.
5wt%以下であれば特に本発明の効果を損なうことは
ない。また、鋳造組織の微細化剤として通常添加される
Ti、Bなどは0.5wt%以下であれば特に本発明の
効果を損なうことはない。
Note that impurities such as Fe contained in normal aluminum metal are 0.
If the content is 5 wt% or less, the effects of the present invention will not be impaired. Further, Ti, B, etc., which are usually added as a refiner for the casting structure, do not particularly impair the effects of the present invention if they are 0.5 wt % or less.

次に本発明製造方法においてMg2〜11wt%、Si
l〜10−1%を含み残部Alと不可避的不純物2 からなるアルミニウム合金及びMg2〜11wt%、S
 i 1〜10wt%を含み、さらにM n 0.01
〜2.5wt%、Cu 0.01〜1 wt%、Cr 
0.01〜2.0wt%、Zr0.01〜0.4wt%
、T i 0.005〜1.0wt%、B0.0001
〜0.ht%、Ni0.05〜3wt%、V0.01〜
2iyt%の元素群のうちの1種もしくは2種以上を含
み、残部A!と不可避的不純物からなるアルミニウム合
金(板、押出材、管、鍛造品、鋳物等)を、溶体化処理
後、100〜250℃で1時間以上加熱するのは、結晶
粒界にβ相およびMg2Siを析出させるためであり、
加熱温度が100℃未満あるいは250℃を超え、また
保持時間が1時間未満では、充分にβおよびMg、Si
を粒界析出させることができない。最も好適な条件は1
40〜180“Cで2時間以上保持することである。な
お溶体化処理は450〜550℃で1時間以上おこなう
のが適当であり、Mg、Siをいったん均一に固溶させ
ることにより、続く析出処理において粒界にβ相および
Mg2Siを析出させるもので、溶体化処理条件は多少
はずれていても本発明の効果を太きく損なうものではな
い。
Next, in the manufacturing method of the present invention, Mg2 to 11 wt%, Si
Aluminum alloy consisting of 1~10-1% of Mg and 2~11 wt% of Mg, the balance Al and unavoidable impurities, S
i 1 to 10 wt%, and further M n 0.01
~2.5 wt%, Cu 0.01~1 wt%, Cr
0.01-2.0wt%, Zr0.01-0.4wt%
, T i 0.005-1.0wt%, B0.0001
~0. ht%, Ni0.05-3wt%, V0.01-
Contains 2iyt% of one or more of the element groups, and the remainder is A! Heating aluminum alloys (plates, extrusions, pipes, forgings, castings, etc.) at 100 to 250°C for more than 1 hour after solution treatment, which contains unavoidable impurities, produces β phase and Mg2Si at grain boundaries. The purpose is to precipitate
If the heating temperature is less than 100°C or more than 250°C and the holding time is less than 1 hour, β, Mg, and Si
cannot be precipitated at grain boundaries. The most suitable condition is 1
The solution treatment should be maintained at 40-180"C for 2 hours or more. It is appropriate to carry out the solution treatment at 450-550"C for 1 hour or more. The β phase and Mg2Si are precipitated at the grain boundaries during the treatment, and even if the solution treatment conditions are slightly different, the effects of the present invention will not be significantly impaired.

このようにして粒界析出処理をおこなったアルミニウム
合金は続いて腐食層が表面から20−以上になるように
粒界腐食処理が施される。粒界腐食処理はNal、eな
どの塩類、HFXH(lなどの酸やNaOHなどのアル
カリなどの水溶液中またはこれらの混合溶液中に浸漬す
るか、更にはアノード電流を付加して電解することによ
りおこなわれ、何れの場合も腐食層が20tm1以上の
深さになるようにおこなえばよい。
The aluminum alloy subjected to grain boundary precipitation treatment in this manner is then subjected to grain boundary corrosion treatment so that the corrosion layer extends 20 mm or more from the surface. Intergranular corrosion treatment can be carried out by immersing the material in an aqueous solution of salts such as NAL, e, acids such as HFXH (l), alkalis such as NaOH, or a mixed solution thereof, or by electrolyzing by adding an anode current. In either case, the corrosion layer should be at a depth of 20 tml or more.

このような粒界腐食処理を施したアルミニウム合金は、
そのままでも優れた振動減衰性を示すが、更に粒界腐食
層に樹脂を含浸させると、振動減衰性は飛躍的に向上す
る。含浸させる樹脂としてはアルキド樹脂、ニトロセル
ローズ樹脂、ブチラール樹脂、ポリウレタン樹脂、ポリ
プロピレン樹脂、ポリエチレン樹脂、エポキシ樹脂、ア
ミノアルキド樹脂、アクリル樹脂、ポリエステル樹脂、
酢酸ビニル樹脂、塩化ビニル樹脂、シリコン樹脂などや
、これらの混合樹脂およびこれらを変形させたものなど
がいずれも好適に用いられるが、これらのなかでも特に
粘弾性が高いポリエステル樹脂、ポリプロピレン樹脂、
ポリエチレン樹脂、シリコン樹脂等が最も高い振動減衰
性を示す。これらの樹脂はスプレー塗装、静電塗装、T
FS塗装、浸漬、粉体塗装などの方法により粒界腐食処
理を施したアルミニウム合金に含浸される。その際少な
くとも粒界腐食層を完全に充填するまで含浸することが
望ましい。
Aluminum alloys subjected to such intergranular corrosion treatment are
Although it exhibits excellent vibration damping properties as it is, when the intergranular corrosion layer is further impregnated with resin, the vibration damping properties are dramatically improved. Examples of resins to be impregnated include alkyd resin, nitrocellulose resin, butyral resin, polyurethane resin, polypropylene resin, polyethylene resin, epoxy resin, aminoalkyd resin, acrylic resin, polyester resin,
Vinyl acetate resin, vinyl chloride resin, silicone resin, mixed resins of these resins, and modified versions of these resins are all suitable for use, but among these, polyester resins, polypropylene resins, and polypropylene resins, which have particularly high viscoelasticity, are used.
Polyethylene resin, silicone resin, etc. exhibit the highest vibration damping properties. These resins can be spray painted, electrostatically painted, T
It is impregnated into an aluminum alloy that has been subjected to intergranular corrosion treatment by methods such as FS painting, dipping, and powder coating. At this time, it is desirable to impregnate at least until the intergranular corrosion layer is completely filled.

一般に振動時には物体の表面において振幅が最大となる
ので、粒界腐食と樹脂含浸は表面層に施せば有効である
が、その深さが2(b++n未満では振動減衰性が不十
分であり、制振材料として使用するには20−以上の深
さの粒界腐食層もしくは樹脂を含浸した粒界腐食層を形
成する必要がある。
Generally, during vibration, the amplitude is maximum at the surface of the object, so intergranular corrosion and resin impregnation are effective if applied to the surface layer, but if the depth is less than 2 (b++n), the vibration damping property is insufficient and the control is reduced. In order to use it as a vibration material, it is necessary to form an intergranular corrosion layer with a depth of 20 mm or more or a resin-impregnated intergranular corrosion layer.

なお、本発明アルミニウム合金制振材料は冷間加工が可
能であるが、必要に応して粒界腐食処理前もしくは樹脂
含浸処理前に冷間加工をおこなっても特に本発明の効果
を損なうものではない。
Although the aluminum alloy vibration damping material of the present invention can be cold-worked, the effects of the present invention may be particularly impaired even if cold-work is performed before intergranular corrosion treatment or resin impregnation treatment if necessary. isn't it.

〔実施例〕〔Example〕

実施例1 第1表に示す組成のアルミニウム合金鋳塊を熱間圧延と
冷間圧延により厚ざ2mmの板材とした。
Example 1 An aluminum alloy ingot having the composition shown in Table 1 was hot-rolled and cold-rolled into a plate having a thickness of 2 mm.

次に490℃で8時間の溶体化処理した後、150℃で
12時間の粒界析出処理を施し、続いて3%NaCN+
1%HCI溶液(50℃)中に浸漬し種々の深さの粒界
腐食層を形成した。また、これら粒界腐食処理材の一部
についてはポリエチレン樹脂を浸漬法により含浸し、粒
界腐食層の粒界空隙を完全に充填した。これより厚さ2
mm、幅10mm、長さ250 mmの試験片を切り出
し、片持ち梁振動法により振動減衰性(損失係数η)を
評価した。
Next, after solution treatment at 490°C for 8 hours, grain boundary precipitation treatment was performed at 150°C for 12 hours, followed by 3% NaCN+
It was immersed in a 1% HCI solution (50°C) to form intergranular corrosion layers of various depths. In addition, some of these intergranular corrosion-treated materials were impregnated with polyethylene resin by a dipping method to completely fill the intergranular voids in the intergranular corrosion layer. Thickness 2 from this
A test piece with a width of 10 mm, a width of 10 mm, and a length of 250 mm was cut out, and its vibration damping property (loss coefficient η) was evaluated using a cantilever vibration method.

即ち試験片の片側端部をチャンキングして発振器で強制
的にランダム振動を与え、それによる試験片の振動を検
出する。この入力振動と検出(出力)振動とを2チヤン
ネル高速フ一リエ変換分析器(2ch、 FFT )に
より周波数領域での入出力振幅比(周波数応答関数)を
求める。最大の振幅比を示す共振周波数(fr)および
最大振幅比より3dB低下する周波数幅(Δf)を測定
し、損失係5 6 数ηを次式により求めた(半値幅法)。
That is, one end of the test piece is chunked, an oscillator is used to forcibly apply random vibrations, and the resulting vibrations of the test piece are detected. The input-output amplitude ratio (frequency response function) in the frequency domain is determined from this input vibration and the detected (output) vibration using a 2-channel fast Fourier transform analyzer (2ch, FFT). The resonance frequency (fr) showing the maximum amplitude ratio and the frequency width (Δf) that is 3 dB lower than the maximum amplitude ratio were measured, and the loss coefficient 5 6 number η was determined by the following equation (half width method).

η−Δf / f r なお粒界腐食層の深さは、試料断面を研磨し光学顕微鏡
により測定した。これらの測定値を第1表に併記した。
η-Δf/fr The depth of the intergranular corrosion layer was measured by polishing the sample cross section and using an optical microscope. These measured values are also listed in Table 1.

第1表 第1表より明らかなように、本発明合金の組成をはずれ
る比較品No1O〜12は腐食処理を施しても粒界を優
先的に腐食させることができず、全面溶解型の腐食形態
となり、損失係数ηは低い値を示した。また本発明合金
の組成であるものの粒界腐食層が20−未満の比較品N
o13.14も損失係数ηが低い。一方樹脂を含浸させ
た材料では、粒界腐食処理のみの材料より高い損失係数
ηを示しており、特に20μ以上の粒界腐食層を形成し
た材料で顕著である。
Table 1 As is clear from Table 1, comparative products No. 10 to 12, which differ from the composition of the alloy of the present invention, were unable to preferentially corrode grain boundaries even if they were subjected to corrosion treatment, resulting in a full-scale dissolution type of corrosion. Therefore, the loss coefficient η showed a low value. Comparative product N, which has the composition of the alloy of the present invention but has a grain boundary corrosion layer of less than 20
o13.14 also has a low loss coefficient η. On the other hand, materials impregnated with resin exhibit a higher loss factor η than materials treated only with intergranular corrosion treatment, and this is particularly noticeable in materials with intergranular corrosion layers of 20μ or more.

実施例2 第1表のNo3の組成のアルミニウム合金鋳塊を熱間圧
延と冷間圧延により厚さ2mmの板材とし、490℃で
8時間の溶体化処理した後、第2表に示す各種条件の析
出処理を施し、実施例1と同様の粒界腐食処理および樹
脂含浸を施した。これらについて損失係数ηを測定し、
その結果を第2表に併記した。
Example 2 An aluminum alloy ingot having the composition No. 3 in Table 1 was hot rolled and cold rolled into a plate material with a thickness of 2 mm, and after solution treatment at 490°C for 8 hours, various conditions shown in Table 2 were applied. The same precipitation treatment as in Example 1 was performed, and the same intergranular corrosion treatment and resin impregnation as in Example 1 were performed. Measure the loss coefficient η for these,
The results are also listed in Table 2.

9 第2表より明らかなように、本発明製造法により析出処
理を施し、201M以上の粒界腐食層を形成した本発明
品No21〜25は高い損失係数ηを示す。
9 As is clear from Table 2, products Nos. 21 to 25 of the present invention, which were subjected to precipitation treatment by the production method of the present invention to form intergranular corrosion layers of 201 M or more, exhibit high loss coefficients η.

これに対し本発明製造法をはずれる析出処理の比較品N
o26〜30は粒界腐食を生じさせることができず、損
失係数ηも低い値となっている。また、実施例1同様に
樹脂を含浸させた材料では、粒界腐食処理のみの材料よ
り高い損失係数ηを示している。
On the other hand, comparative product N with precipitation treatment that deviates from the production method of the present invention
o26-30 cannot cause intergranular corrosion, and the loss coefficient η is also a low value. Furthermore, the material impregnated with resin as in Example 1 shows a higher loss factor η than the material treated only with intergranular corrosion treatment.

実施例3 第3表に示す組成のアルミニウム合金鋳塊を熱間圧延と
冷間圧延により厚さ2mmの板材とした。
Example 3 An aluminum alloy ingot having the composition shown in Table 3 was hot-rolled and cold-rolled into a plate material with a thickness of 2 mm.

次に490℃で8時間の溶体化処理した後、150’C
で12時間の粒界析出処理を施し、続いて3%Na(1
+1%HCj2溶液(50℃)中に浸漬し種々の深さの
粒界腐食層を形成した。また、これら粒界腐食処理材の
一部についてはポリエチレン樹脂を浸漬法により含浸し
、粒界腐食層の粒界空隙を完全に充填した。これより厚
さ2mm、幅10mm、長さ250 mmの試験片を切
り出し、実施例1と同様の方法により振動減衰性(損失
係数η)を評価した。
Next, after solution treatment at 490°C for 8 hours, 150'C
grain boundary precipitation treatment for 12 hours, followed by 3% Na (1
It was immersed in +1% HCj2 solution (50°C) to form intergranular corrosion layers of various depths. In addition, some of these intergranular corrosion-treated materials were impregnated with polyethylene resin by a dipping method to completely fill the intergranular voids in the intergranular corrosion layer. A test piece with a thickness of 2 mm, a width of 10 mm, and a length of 250 mm was cut out from this, and its vibration damping property (loss coefficient η) was evaluated in the same manner as in Example 1.

なお粒界腐食層の深さは、試料断面を研磨し光学顕微鏡
により測定した。これらの測定値を第3表に併記した。
The depth of the intergranular corrosion layer was measured by polishing a cross section of the sample and using an optical microscope. These measured values are also listed in Table 3.

第3表より明らかなように、本発明合金の組成をはずれ
る比較品No39〜41は腐食処理を施しても粒界を優
先的に腐食させることができず、全面溶解型あるいは孔
食型の腐食形態となり、損失係数ηは低い値を示した。
As is clear from Table 3, comparative products Nos. 39 to 41, which differ from the composition of the alloy of the present invention, were unable to preferentially corrode the grain boundaries even if they were subjected to corrosion treatment, resulting in full-scale dissolution type or pitting type corrosion. The loss coefficient η showed a low value.

なお、No42は厚さ2mmまでの圧延をおこなえなか
った。また本発明合金の組成であるものの粒界腐食層が
20μm未満の比較品N。
Note that No. 42 could not be rolled to a thickness of 2 mm. Comparative product N has the composition of the alloy of the present invention but has an intergranular corrosion layer of less than 20 μm.

43も損失係数ηが低い。一方樹脂を含浸させた材料で
は、粒界腐食処理のみの材料より高い損失係数ηを示し
ており、特に20μm以上の粒界腐食層を形成した材料
で顕著である。
No. 43 also has a low loss coefficient η. On the other hand, materials impregnated with resin exhibit a higher loss factor η than materials treated only with intergranular corrosion treatment, and this is particularly noticeable in materials with intergranular corrosion layers of 20 μm or more.

実施例4 第3表のNo32の組成のアルミニウム合金鋳塊を熱間
圧延と冷間圧延により厚さ2mmの板材とし、490℃
で8時間の溶体化処理した後、第4表に示す各種条件の
析出処理を施し、実施例3と同様の粒界腐食処理および
樹脂含浸処理を施した。これらについて損失係数ηを測
定し、その結果を第4表に併記した。
Example 4 An aluminum alloy ingot having composition No. 32 in Table 3 was hot-rolled and cold-rolled into a 2 mm thick plate material, and heated at 490°C.
After solution treatment for 8 hours, precipitation treatment was performed under the various conditions shown in Table 4, and the same intergranular corrosion treatment and resin impregnation treatment as in Example 3 were performed. The loss coefficient η was measured for these, and the results are also listed in Table 4.

4 第4表より明らかなように、本発明製造法により析出処
理を施し、20p以上の粒界腐食層を形成した本発明品
NoA=Eは高い損失係数ηを示す。
4 As is clear from Table 4, the product NoA=E of the present invention, which was subjected to precipitation treatment by the production method of the present invention to form an intergranular corrosion layer of 20 p or more, exhibits a high loss coefficient η.

これに対し本発明製造法をはずれる析出処理の比較品N
oF〜Jは粒界腐食を生じさせることができず、損失係
数ηも低い値となっている。また、実施例3同様に樹脂
を含浸させた材料では、粒界腐食処理のみの材料より高
い損失係数ηを示している。
On the other hand, comparative product N with precipitation treatment that deviates from the production method of the present invention
In oF to J, intergranular corrosion cannot occur, and the loss coefficient η is also a low value. Further, as in Example 3, the material impregnated with resin shows a higher loss factor η than the material treated only with intergranular corrosion treatment.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、アルミをヘースとするため
軽量で、冷間加工性に優れ、しかも優れた振動減衰性を
有するアルミニウム合金制振材料を得ることができるも
ので、工業上顕著な効果を奏するものである。
As described above, according to the present invention, it is possible to obtain an aluminum alloy vibration damping material that is lightweight, has excellent cold workability, and has excellent vibration damping properties because it uses aluminum as its base, and is an industrially outstanding material. It is effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は振動の共振曲線。 Figure 1 shows the vibration resonance curve.

Claims (8)

【特許請求の範囲】[Claims] (1)Mg2〜11wt%、Si0.3〜10wt%を
含み、残部Alと不可避的不純物からなるアルミニウム
合金に、表面から少なくとも20μm以上の深さの粒界
腐食層を形成したことを特徴とするアルミニウム合金制
振材料。
(1) An aluminum alloy containing 2 to 11 wt% of Mg and 0.3 to 10 wt% of Si, with the remainder being Al and inevitable impurities, is characterized by forming an intergranular corrosion layer with a depth of at least 20 μm or more from the surface. Aluminum alloy vibration damping material.
(2)Mg2〜11wt%、Si0.3〜10wt%を
含み、残部Alと不可避的不純物からなるアルミニウム
合金に、表面から少なくとも20μm以上の深さの樹脂
を含浸した粒界腐食層を形成したことを特徴とするアル
ミニウム合金制振材料。
(2) An intergranular corrosion layer impregnated with resin to a depth of at least 20 μm from the surface is formed on an aluminum alloy containing 2 to 11 wt% Mg and 0.3 to 10 wt% Si, with the remainder being Al and unavoidable impurities. An aluminum alloy vibration damping material featuring:
(3)Mg2〜11wt%、Si0.3〜10wt%を
含み、さらにMn0.01〜2.5wt%、Cu0.0
1〜1wt%、Cr0.01〜2.0wt%、Zr0.
01〜0.4wt%、Ti0.005〜1.0wt%、
B0.0001〜0.1Wt%、Ni0.05〜3wt
%、V0.01〜2wt%の元素群のうちの1種もしく
は2種以上を含み、残部Alと不可避的不純物からなる
アルミニウム合金に、表面から少なくとも20μm以上
の深さの粒界腐食層を形成したことを特徴とするアルミ
ニウム合金制振材料。
(3) Contains Mg2-11wt%, Si0.3-10wt%, and further includes Mn0.01-2.5wt%, Cu0.0
1 to 1 wt%, Cr0.01 to 2.0 wt%, Zr0.
01-0.4wt%, Ti0.005-1.0wt%,
B0.0001~0.1wt%, Ni0.05~3wt
%, V0.01 to 2 wt% of one or more of the element groups, and the balance is Al and unavoidable impurities, forming an intergranular corrosion layer with a depth of at least 20 μm from the surface. An aluminum alloy vibration damping material characterized by:
(4)Mg2〜11wt%、Si0.3〜10wt%を
含み、さらにMn0.01〜2.5wt%、Cu0.0
1〜1wt%、Cr0.01〜2.0wt%、Zr0.
01〜0.4wt%、Ti0.005〜1.0wt%、
B0.0001〜0.1wt%、Ni0.05〜3wt
%、V0.01〜2wt%の元素群のうちの1種もしく
は2種以上を含み、残部Alと不可避的不純物からなる
アルミニウム合金に、表面から少なくとも20μm以上
の深さの樹脂を含浸した粒界腐食層を形成したことを特
徴とするアルミニウム合金制振材料。
(4) Contains Mg2-11wt%, Si0.3-10wt%, and further includes Mn0.01-2.5wt%, Cu0.0
1 to 1 wt%, Cr0.01 to 2.0 wt%, Zr0.
01-0.4wt%, Ti0.005-1.0wt%,
B0.0001~0.1wt%, Ni0.05~3wt
%, V0.01 to 2 wt% of the element group, and the balance is Al and inevitable impurities, and the aluminum alloy is impregnated with resin at a depth of at least 20 μm from the surface. An aluminum alloy vibration damping material characterized by the formation of a corrosion layer.
(5)Mg2〜11wt%、Si0.3〜10wt%を
含み、残部Alと不可避的不純物からなるアルミニウム
合金を、溶体化処理した後、100〜250℃で1時間
以上加熱して結晶粒界に電位的に卑な析出物を析出させ
、しかる後腐食処理を施してその表面から少なくとも2
0μm以上の深さの粒界腐食層を形成させることを特徴
とするアルミニウム合金制振材料の製造方法。
(5) After solution-treating an aluminum alloy containing 2 to 11 wt% Mg and 0.3 to 10 wt% Si, with the remainder being Al and unavoidable impurities, the aluminum alloy is heated at 100 to 250°C for over 1 hour to form grain boundaries. Potentially base precipitates are precipitated and then subjected to corrosion treatment to remove at least 20% from the surface.
A method for producing an aluminum alloy vibration damping material, characterized by forming an intergranular corrosion layer with a depth of 0 μm or more.
(6)Mg2〜11wt%、Si0.3〜10wt%を
含み、残部Alと不可避的不純物からなるアルミニウム
合金を、溶体化処理した後、100〜250℃で1時間
以上加熱して結晶粒界に電位的に卑な析出物を析出させ
、しかる後腐食処理、樹脂含浸処理を施してその表面か
ら少なくとも20μm以上の深さの樹脂を含浸した粒界
腐食層を形成させることを特徴とするアルミニウム合金
制振材料の製造方法。
(6) An aluminum alloy containing 2 to 11 wt% Mg, 0.3 to 10 wt% Si, and the remainder Al and unavoidable impurities is solution-treated and then heated at 100 to 250°C for over 1 hour to form grain boundaries. An aluminum alloy characterized by precipitating electrically base precipitates, followed by corrosion treatment and resin impregnation treatment to form a resin-impregnated intergranular corrosion layer at a depth of at least 20 μm from the surface. Method of manufacturing vibration damping material.
(7)Mg2〜11wt%、Si0.3〜10wt%を
含み、さらにMn0.01〜2.5wt%、Cu0.0
1〜1wt%、Cr0.01〜2.0wt%、Zr0.
01〜0.4wt%、Ti0.005〜1.0wt%、
B0.0001〜0.1wt%、Ni0.05〜3wt
%、V0.01〜2wt%の元素群のうちの1種もしく
は2種以上を含み、残部Alと不可避的不純物からなる
アルミニウム合金を、溶体化処理した後、100〜25
0℃で1時間以上加熱して結晶粒界に電位的に卑な析出
物を析出させ、しかる後腐食処理を施してその表面から
少なくとも20μm以上の深さの粒界腐食層を形成させ
ることを特徴とするアルミニウム合金制振材料の製造方
法。
(7) Contains Mg2-11wt%, Si0.3-10wt%, and further includes Mn0.01-2.5wt%, Cu0.0
1 to 1 wt%, Cr0.01 to 2.0 wt%, Zr0.
01-0.4wt%, Ti0.005-1.0wt%,
B0.0001~0.1wt%, Ni0.05~3wt
%, V0.01-2wt% of an aluminum alloy containing one or more of the element groups, and the remainder consisting of Al and unavoidable impurities.
Heating at 0°C for 1 hour or more to precipitate potentially base precipitates at grain boundaries, followed by corrosion treatment to form an intergranular corrosion layer with a depth of at least 20 μm from the surface. A method for producing a featured aluminum alloy vibration damping material.
(8)Mg2〜11wt%、Si0.3〜10wt%を
含み、さらにMn0.01〜2.5wt%、Cu0.0
1〜1wt%、Cr0.01〜2.0wt%、Zr0.
01〜0.4wt%、Ti0.005〜1.0wt%、
B0.0001〜0.1wt%、Ni0.05〜3wt
%、V0.01〜2wt%の元素群のうちの1種もしく
は2種以上を含み、残部Alと不可避的不純物からなる
アルミニウム合金を、溶体化処理した後、100〜25
0℃で1時間以上加熱して結晶粒界に電位的に卑な析出
物を析出させ、しかる後腐食処理、樹脂含浸処理を施し
てその表面から少なくとも20μm以上の深さの樹脂を
含浸した粒界腐食層を形成させることを特徴とするアル
ミニウム合金制振材料の製造方法。
(8) Contains Mg2-11wt%, Si0.3-10wt%, and further includes Mn0.01-2.5wt%, Cu0.0
1 to 1 wt%, Cr0.01 to 2.0 wt%, Zr0.
01-0.4wt%, Ti0.005-1.0wt%,
B0.0001~0.1wt%, Ni0.05~3wt
%, V0.01-2wt% of an aluminum alloy containing one or more of the element groups, and the remainder consisting of Al and unavoidable impurities.
Grains heated at 0°C for 1 hour or more to precipitate potentially base precipitates at grain boundaries, and then subjected to corrosion treatment and resin impregnation treatment to be impregnated with resin to a depth of at least 20 μm from the surface. A method for producing an aluminum alloy vibration damping material, the method comprising forming an interfacial corrosion layer.
JP6204490A 1990-03-13 1990-03-13 Aluminum alloy high damping material and its production Pending JPH03264637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6204490A JPH03264637A (en) 1990-03-13 1990-03-13 Aluminum alloy high damping material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6204490A JPH03264637A (en) 1990-03-13 1990-03-13 Aluminum alloy high damping material and its production

Publications (1)

Publication Number Publication Date
JPH03264637A true JPH03264637A (en) 1991-11-25

Family

ID=13188770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6204490A Pending JPH03264637A (en) 1990-03-13 1990-03-13 Aluminum alloy high damping material and its production

Country Status (1)

Country Link
JP (1) JPH03264637A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439523A (en) * 1994-02-14 1995-08-08 Memc Electronic Materials, Inc. Device for suppressing particle splash onto a semiconductor wafer
CN103898378A (en) * 2014-04-21 2014-07-02 黑龙江工程学院 High magnesium aluminum alloy cold draw bar material and preparation method thereof
WO2014104037A1 (en) * 2012-12-25 2014-07-03 日本軽金属株式会社 METHOD FOR MANUFACTURING ALUMINUM ALLOY IN WHICH Al-Fe-Si-BASED COMPOUND IS MINIATURIZED
CN103981405A (en) * 2014-05-09 2014-08-13 曹帅 Low-density high-damping aluminum based damping alloy and preparation method thereof
WO2017083701A1 (en) * 2015-11-13 2017-05-18 Illinois Tool Works Inc. Aluminum welding filler metal
US10590518B2 (en) 2014-02-11 2020-03-17 Brunel University London High strength cast aluminium alloy for high pressure die casting
US11267081B2 (en) 2013-11-11 2022-03-08 Stephen L. Anderson Aluminum welding filler composition suitable for formation into wire used for fusion welding

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439523A (en) * 1994-02-14 1995-08-08 Memc Electronic Materials, Inc. Device for suppressing particle splash onto a semiconductor wafer
WO2014104037A1 (en) * 2012-12-25 2014-07-03 日本軽金属株式会社 METHOD FOR MANUFACTURING ALUMINUM ALLOY IN WHICH Al-Fe-Si-BASED COMPOUND IS MINIATURIZED
US9657372B2 (en) 2012-12-25 2017-05-23 Nippon Light Metal Company, Ltd. Manufacturing method of aluminum alloy in which Al—Fe—Si compound is refined
US11267081B2 (en) 2013-11-11 2022-03-08 Stephen L. Anderson Aluminum welding filler composition suitable for formation into wire used for fusion welding
US10590518B2 (en) 2014-02-11 2020-03-17 Brunel University London High strength cast aluminium alloy for high pressure die casting
CN103898378A (en) * 2014-04-21 2014-07-02 黑龙江工程学院 High magnesium aluminum alloy cold draw bar material and preparation method thereof
CN103981405A (en) * 2014-05-09 2014-08-13 曹帅 Low-density high-damping aluminum based damping alloy and preparation method thereof
CN103981405B (en) * 2014-05-09 2015-05-13 曹帅 Low-density high-damping aluminum based damping alloy and preparation method thereof
WO2017083701A1 (en) * 2015-11-13 2017-05-18 Illinois Tool Works Inc. Aluminum welding filler metal
CN108472770A (en) * 2015-11-13 2018-08-31 伊利诺斯工具制品有限公司 Aluminium welding filling metal

Similar Documents

Publication Publication Date Title
JP6316511B2 (en) Magnetic disk substrate
US6056835A (en) Superplastic aluminum alloy and process for producing same
JP2001049371A (en) Al-Zn ALLOY EXCELLENT IN VIBRATION ABSORBING CAPACITY AND ITS PRODUCTION
KR900007975B1 (en) Aluminium alloy substrate for disk having superior suitability to plating
KR20160044569A (en) Non-grain-oriented electrical steel strip or electrical steel sheet, component produced therefrom, and method for producing a non-grain-oriented electrical steel strip or electrical steel sheet
JPH03264637A (en) Aluminum alloy high damping material and its production
JP6427290B1 (en) Aluminum alloy substrate for magnetic disk, method of manufacturing the same, and magnetic disk using the aluminum alloy substrate for magnetic disk
JP2001049375A (en) Al ALLOY HAVING EXCELLENT VIBRATION ABSORBABILITY AND ITS PRODUCTION
JP2020510760A (en) High performance 3000 series aluminum alloy
JP3369627B2 (en) Method of manufacturing fine crystal grain super heat resistant alloy member
JP6466316B2 (en) Aluminum alloy hard foil and method for producing the same
JPH03221450A (en) High strength aluminum alloy damping material
JPH04120237A (en) Aluminum base high damping material and its manufacture
JPH03264638A (en) Aluminum alloy high damping material
JPH03215647A (en) Aluminum alloy high damping material and its manufacture
JPH03223436A (en) Aluminum alloy high damping material and its manufacture
JPH03264635A (en) Aluminum alloy high damping material
US5160557A (en) Method for improving low temperature ductility of directionally solidified iron-aluminides
Singer et al. Deformation-induced microstructural instability in a θ′-hardened aluminum alloy at high temperature
JPH03264632A (en) Aluminum alloy high damping material
JPH03294445A (en) High strength aluminum alloy having good formability and its manufacture
USH845H (en) Advanced vanadium alloys for magnetic fusion applications
JPH03215648A (en) Aluminum alloy high damping material
JPH04387A (en) Production of vibration suppressing aluminum alloy material
JPS586773B2 (en) Japanese staghorn stork