JPH03223436A - Aluminum alloy high damping material and its manufacture - Google Patents

Aluminum alloy high damping material and its manufacture

Info

Publication number
JPH03223436A
JPH03223436A JP1825090A JP1825090A JPH03223436A JP H03223436 A JPH03223436 A JP H03223436A JP 1825090 A JP1825090 A JP 1825090A JP 1825090 A JP1825090 A JP 1825090A JP H03223436 A JPH03223436 A JP H03223436A
Authority
JP
Japan
Prior art keywords
vibration damping
intergranular corrosion
depth
corrosion layer
damping material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1825090A
Other languages
Japanese (ja)
Inventor
Kunihiko Kishino
邦彦 岸野
Satoru Shoji
了 東海林
Katsutoshi Sasaki
佐々木 勝敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP1825090A priority Critical patent/JPH03223436A/en
Publication of JPH03223436A publication Critical patent/JPH03223436A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an Al alloy high damping material excellent in vibration damping capacity by forming an intergranular corrosive layer on the surface of an Al alloy contg. each specified ratio of Mg, Mn, Cu, Cr or the like into a specified depth. CONSTITUTION:An Al alloy material contg., by weight, 2 to 11% Mg, furthermore contg. one or more kinds among 0.01 to 2.5% Mn, 0.01 to 1% Cu, 0.01 to 2.0% Cr, 0.01 to 0.4% Zr, 0.005 to 1.0% Ti, 0.001 to 0.1% B, 0.05 to 3% Ni and 0.01 to 2% V and the balance Al with inevitable impurities is subjected to soln. treatment. Next, this Al alloy material is heated in the temp. range of 100 to 250 deg.C for >=1hr to precipitate beta phase precipitates in the grain boundaries and is thereafter subjected to intergranular corrosion treatment so as to form a corrosive layer into a depth of >=20mu from the surface. In this way, the Al alloy high damping material light in weight and excellent in cold workability as well as vibration damping capacity can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は優れた振動減衰性を有し、音響機器精密機器、
自動車なとの振動を嫌う構造部材として使用されるアル
ミニウム合金制振材料に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has excellent vibration damping properties and is suitable for use in audio equipment, precision equipment,
The present invention relates to an aluminum alloy vibration damping material used as a structural member that resists vibrations such as those caused by automobiles.

し従来の技術〕 一般に物体を振動させると、第1図に示すようにある周
波数(f r)で振幅が太き(なる。
BACKGROUND TECHNOLOGY Generally, when an object is vibrated, the amplitude increases (becomes) at a certain frequency (fr), as shown in FIG.

この周波数を共振周波数という。共振周波数での振幅を
AOとすると、このエネルギーに対し1/2となるのは
振幅がAo/E(dB表示ては3dB)となる周波数で
ある。この周波数幅(半値幅、3dB値幅)を△fとす
ると、損失係数ηは次式で表される。
This frequency is called the resonant frequency. If the amplitude at the resonant frequency is AO, the frequency that is 1/2 of this energy is the amplitude Ao/E (3 dB in dB). If this frequency width (half width, 3 dB value width) is Δf, the loss coefficient η is expressed by the following equation.

η=△f l f r この損失係数ηの値が大きい材料はど振動減衰性に優れ
、外力が除去された場合には振動が急速に減衰する。通
常の金属材料の損失係数ηは0.0(II以下である。
η=△f l f r A material with a large value of this loss coefficient η has excellent vibration damping properties, and vibrations are rapidly damped when external force is removed. The loss coefficient η of ordinary metal materials is 0.0 (less than II).

従来、音響機器1精密機器、自動車なとの振動を嫌う構
造部材の金属材料、所謂制振材料としては、Fe−Cr
系、Mrl−Cu系、  ZnAl系、Ni−Ti系な
どの合金が知られている。またMg、Mg−Zr系の鋳
造材も制振材として知られている。
Conventionally, Fe-Cr has been used as a so-called vibration damping material, a metal material for structural members that dislike vibrations such as audio equipment, precision equipment, and automobiles.
Alloys such as Mrl-based, Mrl-Cu based, ZnAl based, and Ni-Ti based are known. Furthermore, Mg and Mg-Zr based cast materials are also known as vibration damping materials.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

Fe−Cr系、Mn−Cu系、Zn−Al系。 Fe-Cr type, Mn-Cu type, Zn-Al type.

N i −T i系などの合金は振動減衰性が大きいか
、比重が大きいという共通の欠点を有し、機器の軽量化
を図ろうとする場合には不適当である。一方、Mg、M
g−Zr系の鋳造材も大きい振動減衰性を示し、しかも
比重が小さいという長所を有しているが、冷間加工が全
く出来ないという欠点かある。
Alloys such as the N i -T i system have common drawbacks of high vibration damping properties or high specific gravity, making them unsuitable when attempting to reduce the weight of equipment. On the other hand, Mg, M
G-Zr cast materials also have the advantage of exhibiting high vibration damping properties and low specific gravity, but have the disadvantage that they cannot be cold worked at all.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み種々検討の結果、比重が小さくしか
も冷間加工が容易なアルミニウム合金制振材料とその製
造方法を開発したものである。
In view of this, as a result of various studies, the present invention has developed an aluminum alloy vibration damping material that has a low specific gravity and is easy to cold work, and a method for manufacturing the same.

即ち本発明制振材料の一つは、Mg2〜11W1%(以
下W(%を%と略記)を含み、更にMn0.01〜2.
5%、  Cu 0.01〜1%、Cr0.01〜20
%、Z r0.01〜0.4%、T i  0.005
〜1.0%、B 0.0001〜0.1%、Ni0.0
5〜3%、7001〜2%の範囲内で何れか1種又は2
種以上を含み、残部Alと不可避的不純物からなるアル
ミニウム合金に、表面から少なくとも20μm以上の深
さの粒界腐食層を形成したことを特徴とするものである
That is, one of the vibration damping materials of the present invention contains Mg2-11W1% (hereinafter W (% is abbreviated as %)), and further contains Mn0.01-2.
5%, Cu 0.01-1%, Cr0.01-20
%, Z r0.01-0.4%, T i 0.005
~1.0%, B 0.0001~0.1%, Ni0.0
Any one or two within the range of 5-3%, 7001-2%
The present invention is characterized in that an intergranular corrosion layer having a depth of at least 20 μm or more from the surface is formed on an aluminum alloy consisting of at least 100% Al species and the remainder Al and unavoidable impurities.

また本発明制振材料の他の一つは、Mg2〜11%を含
み、更にMn0.01〜2.5%、Cu0.01〜1%
、Cr 0.O1〜2.0%、Z r0.01〜0.4
%、Ti0.005〜10%、80.0001〜01%
、Ni005〜3%、V0.01〜2%の範囲内で何れ
か1種又は2種以上を含み、残部Alと不可避的不純物
からなるアルミニウム合金に、表面から少なくとも20
μm以上の深さの粒界腐食層を形成し、これに樹脂を含
浸して表面から少なくとも20μm以上の深さの樹脂を
含浸した粒界腐食層を形成したことを特徴とするもので
ある。
Another vibration damping material of the present invention contains 2 to 11% Mg, further 0.01 to 2.5% Mn, and 0.01 to 1% Cu.
, Cr 0. O1-2.0%, Z r0.01-0.4
%, Ti0.005-10%, 80.0001-01%
, Ni005-3%, V0.01-2%, and the remainder is Al and inevitable impurities.
The present invention is characterized by forming an intergranular corrosion layer with a depth of .mu.m or more, and impregnating this with a resin to form a resin-impregnated intergranular corrosion layer with a depth of at least 20 .mu.m or more from the surface.

また本発明製造方法の一つは、Mg2〜11%を含み、
更にMnQ、QI 〜2.5%、  Cu0.01〜1
%、Cr0.01〜2.0%、Z r 0.O1〜0.
4%、Ti0.005〜10%、B 0.0001〜0
.1%、Ni005〜3%、V0.01〜2%の箱内で
何れか1種又は2種以上を含み、残部Alと不可避的不
純物からなるアルミニウム合金を、溶体化処理した後、
100〜250℃で1時間以上加熱して結晶粒界にβ相
析出物を析出させ、これを腐食処理してその表面から少
なくとも20μm以上の深さの粒界腐食層を形成したこ
とを特徴とするものである。
Further, one of the production methods of the present invention includes Mg2 to 11%,
Furthermore, MnQ, QI ~2.5%, Cu0.01~1
%, Cr0.01-2.0%, Z r 0. O1~0.
4%, Ti 0.005-10%, B 0.0001-0
.. After solution treatment of an aluminum alloy containing one or more of the following in a box of 1% Ni0.005-3%, V0.01-2%, and the remainder consisting of Al and inevitable impurities,
It is characterized by heating at 100 to 250°C for 1 hour or more to precipitate β-phase precipitates at grain boundaries, which are then subjected to corrosion treatment to form an intergranular corrosion layer with a depth of at least 20 μm or more from the surface. It is something to do.

更に本発明製造方法の他の一つは、Mg2〜11%を含
み、更にMn0.01〜2.5%、Cu0.01〜1%
、Cry、旧〜20%、Z r 0.O1〜0.4%、
Ti0.005〜10%、B 0.0001〜01%、
N1005〜3%、V0.01〜2%の範囲内で何れか
1種又は2種以上を含み、残部Alと不可避的不純物か
らなるアルミニウム合金を、溶体化処理した後、100
〜250℃で1時間以上加熱して結晶粒界にβ相析出物
を析出させ、これを腐食処理してその表面から少なくと
も20μm以上の深さの粒界腐食層を形成し、しかる後
粒界腐食層に樹脂含浸処理を施して表面から少なくとも
20μm以上の深さの樹脂を含浸した粒界腐食層を形成
したことを特徴とするものである。
Furthermore, another manufacturing method of the present invention contains 2 to 11% Mg, further 0.01 to 2.5% Mn, and 0.01 to 1% Cu.
, Cry, old ~20%, Z r 0. O1~0.4%,
Ti 0.005-10%, B 0.0001-01%,
After solution-treating an aluminum alloy containing one or more of N1005 to 3% and V0.01 to 2%, with the remainder being Al and inevitable impurities,
Beta-phase precipitates are precipitated at grain boundaries by heating at ~250°C for 1 hour or more, and this is corroded to form an intergranular corrosion layer with a depth of at least 20 μm from the surface. The corrosion layer is characterized by being subjected to resin impregnation treatment to form an intergranular corrosion layer impregnated with resin to a depth of at least 20 μm from the surface.

〔作 用〕[For production]

制振材料はその振動減衰メカニズムにより、転位型、複
合相型1強磁性型、双晶型1こ分類される。本発明制振
材料は上記メカニズムとは異なり、表面に形成せしめた
粒界腐食層の結晶粒同士の微小な擦れあいにより振動エ
ネルギーを吸収させ、振動を速やかに吸収させるか、あ
るいは表面に形成せしめた粒界腐食層に樹脂を含浸し、
粒界の微小空隙に充填された樹脂の粘弾性的変形により
振動エネルギーを吸収させ、振動を速やかに吸収させる
ものである。
Vibration damping materials are classified into dislocation type, composite phase type, ferromagnetic type, and twin type depending on their vibration damping mechanism. The vibration damping material of the present invention differs from the above-mentioned mechanism in that it absorbs vibration energy through the minute friction between the crystal grains of the intergranular corrosion layer formed on the surface, and absorbs the vibration immediately, or the vibration is formed on the surface. The intergranular corrosion layer is impregnated with resin,
Vibration energy is absorbed by the viscoelastic deformation of the resin that fills the microscopic voids in the grain boundaries, and the vibrations are quickly absorbed.

結晶粒界を優先的に腐食させる手段としては、結晶粒界
に腐食されやすい電位が卑な金属間化合物を析出させる
か、あるいは結晶粒界近傍を粒内に比べて卑にした後、
腐食処理を施すことが効果的である。
As a means to preferentially corrode the grain boundaries, either by precipitating an intermetallic compound whose potential is less noble and which is more likely to corrode the grain boundaries, or by making the vicinity of the grain boundaries less noble than the inside of the grains,
Corrosion treatment is effective.

以下本発明における合金組成範囲を上記の如く限定した
理由について述べる。
The reasons for limiting the alloy composition range in the present invention as described above will be described below.

Mg含有量を2〜11%と限定したのは、Mgはβ相(
i−Mg系金属間化合物)を粒界に優先的に析出させ、
腐食処理により電位の卑なβ相を優先溶解されるために
添加するもので、2%未満ではβ相の析出がおこらず、
11%を越えるとβ相が粒界だけでなく、粒内にも多量
に析出するため、粒界を優先腐食されることが困難とな
るためである。
The reason for limiting the Mg content to 2 to 11% is that Mg is in the β phase (
i-Mg-based intermetallic compound) is preferentially precipitated at grain boundaries,
It is added to preferentially dissolve the beta phase, which has a less common potential, during corrosion treatment, and if it is less than 2%, precipitation of the beta phase will not occur.
This is because if it exceeds 11%, a large amount of β phase precipitates not only at the grain boundaries but also inside the grains, making it difficult to preferentially corrode the grain boundaries.

その他の含有元素としてMn0.01〜2.5%。Mn is 0.01 to 2.5% as other contained elements.

Cu 0.01〜1%、Cr0.01〜2.0%、Zr
0.01〜 04%、Ti0.005〜1.0%、B 
0.(1001〜0.1%、N i 0.05〜3%、
V0.01〜2%の範囲内で何れか1種又は2種以上と
限定したのは、何れも材料の強度を向上するするも、下
限未満では効果が充分でなく、上限を越えると粗大な化
合物を生じ、材料の延性を阻害する恐れがあるためであ
る。
Cu 0.01-1%, Cr0.01-2.0%, Zr
0.01~04%, Ti0.005~1.0%, B
0. (1001-0.1%, Ni 0.05-3%,
Limiting the amount of one or more types within the range of V0.01 to 2% improves the strength of the material, but if it is less than the lower limit, the effect is not sufficient, and if it exceeds the upper limit, it will become coarse. This is because there is a possibility that compounds may be formed and the ductility of the material may be inhibited.

尚その他の不純物として、Si、Feはそれぞれ05%
以下、他の不純物は0.1%以下であれば特に本発明の
効果を損なうことはない。また鋳造性改良の目的でBe
を500ppm以下添加することも可能である。
In addition, as other impurities, Si and Fe each have a content of 0.5%.
Below, other impurities do not particularly impair the effects of the present invention as long as they are 0.1% or less. In addition, for the purpose of improving castability, Be
It is also possible to add 500 ppm or less.

次に本発明製造方法において、Mg2〜11%を含み、
更にMn0.01〜2.5%、  Cu 0.01〜1
%、Cr0.01〜 2.0%、Zr0.O1〜 0.
4%、Ti0.005〜 1.0%、B 0.0001
〜 0.1%、Ni0105〜3%、V0.01〜2%
のの範囲内で何れか1種又は2種以上を含み、残部Al
と不可避的不純物からなるアルミニウム合金、例えば圧
延材、板、押出材、管、鋳造品、鋳物等を、溶体化処理
後、100〜250℃で1時間以上加熱するのは、結晶
粒界に主としてβ相析出物を析出させるためであり、加
熱温度が100℃未満あるいは250℃を越え、また保
持時間が1時間未満では、充分にβ相を粒界析出させる
ことができないためである。最も好適な条件は110〜
180℃で2時間以上保持することである。尚溶体化処
理は400〜550℃で1時間以上行なうのが適当であ
り、Mgを一旦均一に固溶させることにより、続く析出
処理において粒界に均一にβ相を析出させるもので、溶
体化処理条件は多少はずれていても本発明の効果を大き
く損なうことはない。
Next, in the production method of the present invention, containing 2 to 11% of Mg,
Furthermore, Mn0.01-2.5%, Cu 0.01-1
%, Cr0.01-2.0%, Zr0. O1~0.
4%, Ti0.005-1.0%, B 0.0001
~0.1%, Ni0105~3%, V0.01~2%
Contains one or more of the following, with the remainder being Al.
Heating aluminum alloys containing unavoidable impurities, such as rolled materials, plates, extruded materials, pipes, cast products, castings, etc. at 100 to 250°C for more than 1 hour after solution treatment, mainly causes damage to the grain boundaries. This is to precipitate β-phase precipitates, and if the heating temperature is less than 100°C or higher than 250°C and the holding time is less than 1 hour, the β-phase cannot be sufficiently precipitated at grain boundaries. The most suitable condition is 110~
It is to hold at 180°C for 2 hours or more. It is appropriate to perform the solution treatment at 400 to 550°C for 1 hour or more, and once Mg is uniformly dissolved in solid solution, the β phase is uniformly precipitated at the grain boundaries in the subsequent precipitation treatment. Even if the processing conditions are slightly different, the effects of the present invention will not be significantly impaired.

このようにして粒界析出処理を行なったアルミニラム合
金は、続いて腐食層が表面から20μm以上になるよう
に粒界腐食処理が施される。
The aluminum aluminum alloy subjected to grain boundary precipitation treatment in this manner is then subjected to grain boundary corrosion treatment so that the corrosion layer is 20 μm or more from the surface.

粒界腐食処理はNaC1などの塩類、HF  HCIな
との酸や、NaOHなどのアルカリ水溶液中、又はこれ
等の混合溶液中に浸漬するか、更にはアノード電流を付
加して電解することにより行なわれ、何れの場合も腐食
層が20μm以上の深さになるように行なえばよい。
Intergranular corrosion treatment is carried out by immersion in salts such as NaCl, acids such as HF HCI, alkaline aqueous solutions such as NaOH, or mixed solutions of these, or by electrolysis by applying an anode current. In either case, the corrosion layer may be formed to a depth of 20 μm or more.

このような粒界腐食処理を施したアルミニウム合金は、
そのままでも優れた振動減衰性を示すが、更に粒界腐食
層に樹脂を含浸させると、振動減衰性は飛躍的に向上す
る。含浸させる樹脂としては、アルキド樹脂、ニトロセ
ルローズ樹脂、ブチラール樹脂、ポリウレタン樹脂、ポ
リプロピレン樹脂、ポリエチレン樹脂、エボキン樹脂、
アミノアルキド樹脂、アクリル樹脂。
Aluminum alloys subjected to such intergranular corrosion treatment are
Although it exhibits excellent vibration damping properties as it is, when the intergranular corrosion layer is further impregnated with resin, the vibration damping properties are dramatically improved. Examples of resins to be impregnated include alkyd resin, nitrocellulose resin, butyral resin, polyurethane resin, polypropylene resin, polyethylene resin, Evoquin resin,
Amino alkyd resin, acrylic resin.

ポリエステル樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、
シリコン樹脂などや、これ等の混合樹脂及びこれ等を変
形させたものなど何れも好適に用いられるが、これらの
なかでも特に粘弾性が高いポリエステル樹脂、ポリプロ
ピレン樹脂シリコン樹脂等が最も高い振動減衰性を示す
Polyester resin, vinyl acetate resin, vinyl chloride resin,
Silicone resins, mixed resins of these resins, and modified versions of these resins are all suitable for use, but among these, polyester resins, polypropylene resins, silicone resins, etc., which have particularly high viscoelasticity, have the highest vibration damping properties. shows.

これ等の樹脂はスプレー塗装、静電塗装、TFS塗装、
浸漬、粉体塗装なとの方法により、粒界腐食処理を施し
たアルミニウム合金に含浸される。その際少なくとも粒
界腐食層を完全に充土眞するまで含浸することが望まし
い。
These resins can be spray painted, electrostatically painted, TFS painted,
It is impregnated into an aluminum alloy that has been subjected to intergranular corrosion treatment by methods such as dipping and powder coating. At this time, it is desirable to impregnate at least the intergranular corrosion layer until it is completely filled with soil.

一般に振動時には物体の表面において振幅が最大となる
ので、粒界腐食と樹脂含浸を表面層に施せば有効である
が、その深さが20μm未満では振動減衰性が不十分で
あり、制振材料として使用するには20μm以上の深さ
の粒界腐食層もしくは樹脂を含浸した粒界腐食層を形成
する必要がある。
Generally, during vibration, the amplitude is maximum at the surface of an object, so it is effective to apply intergranular corrosion and resin impregnation to the surface layer, but if the depth is less than 20 μm, the vibration damping property is insufficient, and vibration damping materials In order to use the material as a material, it is necessary to form an intergranular corrosion layer with a depth of 20 μm or more or a resin-impregnated intergranular corrosion layer.

尚本発明アルミニウム合金制振材料は冷間加工が可能で
あるが、必要に応じて粒界腐食処理前もしくは樹脂含浸
処理前に冷間加工を行なっても、特に本発明の効果を損
なうことはない。
Although the aluminum alloy vibration damping material of the present invention can be cold-worked, the effects of the present invention will not be impaired even if cold-worked as necessary before intergranular corrosion treatment or resin impregnation treatment. do not have.

〔実施例〕〔Example〕

以下本発明を実施例について説明する。 The present invention will be described below with reference to Examples.

実施例1 第1表に示す組成のアルミニウム合金鋳塊を熱間圧延と
冷間圧延により摩さ2 mmの板材とした。次に491
1”C:て8時間溶体化処理した後、150℃て12時
間粒界析出処理を施し、続いて3%Na(1+1%HC
/水溶液(50℃)中に浸漬し、種々の深さの粒界腐食
層を形成した。これより厚さ2mm、幅10M、長さ2
50mmの試験片を切り出し、片持ち梁振動法により振
動減衰性(損失係数η)を評価した。
Example 1 An aluminum alloy ingot having the composition shown in Table 1 was hot-rolled and cold-rolled into a plate material with a grinding thickness of 2 mm. Next 491
1"C: After solution treatment for 8 hours at 150°C, grain boundary precipitation treatment was performed at 150°C for 12 hours, followed by 3% Na (1 + 1% HC).
/ immersed in an aqueous solution (50°C) to form intergranular corrosion layers of various depths. From this thickness 2mm, width 10M, length 2
A 50 mm test piece was cut out, and its vibration damping property (loss coefficient η) was evaluated by the cantilever beam vibration method.

即ち試験片の片側端部をチャッキングして発振器により
強制的にう:・ダム振動を与え、それによる試験片の振
動を検出し、入力振動と検出(出力)振動とを2チヤン
ネル高速フーリエ変換器(2ch、FFT)により周波
数領域での入出力振幅比(周波数応答関数)を求め、最
大の振幅比を示す共振周波数(fr)及び最大の振幅比
より3dB低下する周波数幅(△f)を測定し、次式に
より損失係数ηを求めた。
In other words, one end of the test piece is chucked and the oscillator is used to force it: ・A dam vibration is applied, the resulting vibration of the test piece is detected, and the input vibration and detected (output) vibration are subjected to two-channel fast Fourier transform. Find the input/output amplitude ratio (frequency response function) in the frequency domain using a 2ch FFT, and find the resonance frequency (fr) that shows the maximum amplitude ratio and the frequency width (△f) that is 3 dB lower than the maximum amplitude ratio. The loss coefficient η was determined using the following equation.

η=△f / f r 尚粒界腐食層の深さは試験片の断面を研磨し、光学顕微
鏡により測定した。
η=△f/f r The depth of the intergranular corrosion layer was measured by polishing the cross section of the test piece and using an optical microscope.

第1表から明らかなように、本発明例Nα1〜5は損失
係数ηが0.012以上の高い値を示す。
As is clear from Table 1, Examples Nα1 to Nα5 of the present invention exhibit high loss coefficients η of 0.012 or more.

これに対し本発明制振材料より合金組成がはずれる比較
何階6〜7は腐食処理を施しても粒界を優先的に腐食さ
せることができず、全面溶解型の腐食形態となり、損失
係数ηは低い値を示す。また本発明制振材料の合金組成
であっても粒界腐食層が20μm以下の比較例Nα8で
は損失係数ηが低いことが判る。
On the other hand, in comparison levels 6 to 7, where the alloy composition deviates from that of the vibration damping material of the present invention, grain boundaries cannot be preferentially corroded even if corrosion treatment is performed, resulting in a full-scale dissolution type of corrosion, resulting in loss coefficient η shows a low value. Furthermore, it can be seen that even with the alloy composition of the vibration damping material of the present invention, the loss coefficient η is low in Comparative Example Nα8 in which the intergranular corrosion layer is 20 μm or less.

実施例2 第1表中Nα2の組成のアルミニウム合金鋳塊を熱間圧
延により厚さ3mmの板に仕上げ、490℃で8時間溶
体化処理した後、第2表に示す各種条件の析出処理を施
し、実施例1と同様の粒界腐食処理を施し、その一部試
料にポリエチレン樹脂を粒界腐食層に含浸させた。これ
らについて実施例1と同様にして損失係数ηを測定した
。その結果を第2表に併記した。
Example 2 An aluminum alloy ingot having a composition of Nα2 in Table 1 was hot rolled into a plate with a thickness of 3 mm, solution treated at 490°C for 8 hours, and then subjected to precipitation treatment under various conditions shown in Table 2. The samples were subjected to the same intergranular corrosion treatment as in Example 1, and the intergranular corrosion layer of some of the samples was impregnated with polyethylene resin. The loss coefficient η of these samples was measured in the same manner as in Example 1. The results are also listed in Table 2.

第2表 第2表から明らかなように、本発明製造方法により析出
処理を施して20μm以上の粒界腐食層を形成した本発
明何階′9〜11は、高い損失係数ηを示し、樹脂を含
浸したものは特に高い損失係数を示す。
Table 2 As is clear from Table 2, the layers '9 to 11 of the present invention, which were subjected to precipitation treatment by the production method of the present invention to form a grain boundary corrosion layer of 20 μm or more, exhibited a high loss coefficient η, and Those impregnated with have a particularly high loss factor.

これに対し本発明製造方法をはずれる析出処理の比較例
Nα12〜14は粒界腐食を生じさせることができず、
損失係数ηも低い値となっていることが判る。
On the other hand, Comparative Examples Nα12 to Nα14, which were subjected to precipitation treatment that differed from the production method of the present invention, were unable to cause intergranular corrosion.
It can be seen that the loss coefficient η is also a low value.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、アルミをベースとするため
軽量で、冷間加工性に優れ、しかも優れた振動減衰性を
有するアルミニウム合金制振材料を得ることができるも
ので、工業上顕著な効果を奏するものである。
As described above, according to the present invention, it is possible to obtain an aluminum alloy vibration damping material that is lightweight because it is based on aluminum, has excellent cold workability, and has excellent vibration damping properties, and is an industrially outstanding material. It is effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は物体の振動共振曲線の説明図である。 fr、共振周波数 AO:共振周波数での振幅 △f:周波数幅 FIG. 1 is an explanatory diagram of a vibration resonance curve of an object. fr, resonant frequency AO: amplitude at resonant frequency △f: frequency width

Claims (4)

【特許請求の範囲】[Claims] (1)Mg2〜11wt%を含み、更にMn0.01〜
2.5wt%、Cu0.01〜1wt%、Cr0.01
〜2.0wt%、Zr0.01〜0.4wt%、Ti0
.005〜1.0wt%、B0.0001〜0.1wt
%、Ni0.05〜3wt%、V0.01〜2wt%の
範囲内で何れか1種又は2種以上を含み、残部Alと不
可避的不純物からなるアルミニウム合金に、表面から少
なくとも20μm以上の深さの粒界腐食層を形成したこ
とを特徴とするアルミニウム合金制振材料。
(1) Contains Mg2~11wt%, and further includes Mn0.01~
2.5wt%, Cu0.01-1wt%, Cr0.01
~2.0wt%, Zr0.01~0.4wt%, Ti0
.. 005-1.0wt%, B0.0001-0.1wt
%, Ni 0.05 to 3 wt%, V 0.01 to 2 wt%, and the remainder is Al and inevitable impurities, to a depth of at least 20 μm from the surface. An aluminum alloy vibration damping material characterized by forming an intergranular corrosion layer.
(2)Mg2〜11wt%を含み、更にMn0.01〜
2.5wt%、Cu0.01〜1wt%、Cr0.01
〜2.0wt%、Zr0.01〜0.4wt%、Ti0
.005〜1.0wt%、B0.0001〜0.1wt
%、Ni0.05〜3wt%、V0.01〜2wt%の
範囲内で何れか1種又は2種以上を含み、残部Alと不
可避的不純物からなるアルミニウム合金に、表面から少
なくとも20μm以上の深さの粒界腐食層を形成し、こ
れに樹脂を含浸して表面から少なくとも20μm以上の
深さの樹脂を含浸した粒界腐食層を形成したことを特徴
とするアルミニウム合金制振材料。
(2) Contains Mg2 to 11 wt%, and further includes Mn0.01 to
2.5wt%, Cu0.01-1wt%, Cr0.01
~2.0wt%, Zr0.01~0.4wt%, Ti0
.. 005-1.0wt%, B0.0001-0.1wt
%, Ni 0.05 to 3 wt%, V 0.01 to 2 wt%, and the remainder is Al and inevitable impurities, to a depth of at least 20 μm from the surface. 1. An aluminum alloy vibration damping material, characterized in that the intergranular corrosion layer is impregnated with a resin to form a intergranular corrosion layer at a depth of at least 20 μm from the surface.
(3)Mg2〜11wt%を含み、更にMn0.01〜
2.5wt%、Cu0.01〜1wt%、Cr0.01
〜2.0wt%、Zr0.01〜0.4wt%、Ti0
.005〜1.0wt%、B0.0001〜0.1wt
%、Ni0.05〜3wt%、V0.01〜2wt%の
範囲内で何れか1種又は2種以上を含み、残部Alと不
可避的不純物からなるアルミニウム合金を、溶体化処理
した後、100〜250℃で1時間以上加熱して結晶粒
界にβ相析出物を析出させ、これを腐食処理してその表
面から少なくとも20μm以上の深さの粒界腐食層を形
成したことを特徴とするアルミニウム合金制振材料の製
造方法。
(3) Contains Mg2 to 11 wt%, and further includes Mn0.01 to
2.5wt%, Cu0.01-1wt%, Cr0.01
~2.0wt%, Zr0.01~0.4wt%, Ti0
.. 005-1.0wt%, B0.0001-0.1wt
%, Ni 0.05 to 3 wt%, V 0.01 to 2 wt%, and the remainder is Al and unavoidable impurities. Aluminum that is heated at 250°C for 1 hour or more to precipitate β-phase precipitates at grain boundaries, and then undergoes corrosion treatment to form an intergranular corrosion layer with a depth of at least 20 μm from the surface. Method for manufacturing alloy vibration damping material.
(4)Mg2〜11wt%を含み、更にMn0.01〜
2.5wt%、Cu0.01〜1wt%、Cr0.01
〜2.0wt%、Zr0.01〜0.4wt%、Ti0
.005〜1.0wt%、B0.0001〜0.1wt
%、Ni0.05〜3wt%、V0.01〜2wt%の
範囲内で何れか1種又は2種以上を含み、残部Alと不
可避的不純物からなるアルミニウム合金を、溶体化処理
した後、100〜250℃で1時間以上加熱して結晶粒
界にβ相を析出させ、これを腐食処理してその表面から
少なくとも20μm以上の深さの粒界腐食層を形成し、
しかる後粒界腐食層に樹脂含浸処理を施して表面から少
なくとも20μm以上の深さの樹脂を含浸した粒界腐食
層を形成したことを特徴とするアルミニウム合金制振材
料の製造方法。
(4) Contains Mg2~11wt%, and further includes Mn0.01~
2.5wt%, Cu0.01-1wt%, Cr0.01
~2.0wt%, Zr0.01~0.4wt%, Ti0
.. 005-1.0wt%, B0.0001-0.1wt
%, Ni 0.05 to 3 wt%, V 0.01 to 2 wt%, and the remainder is Al and unavoidable impurities. Heating at 250° C. for 1 hour or more to precipitate β phase at grain boundaries, and corroding this to form an intergranular corrosion layer with a depth of at least 20 μm from the surface,
A method for producing an aluminum alloy vibration damping material, characterized in that the intergranular corrosion layer is then impregnated with a resin to form a resin-impregnated intergranular corrosion layer at a depth of at least 20 μm from the surface.
JP1825090A 1990-01-29 1990-01-29 Aluminum alloy high damping material and its manufacture Pending JPH03223436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1825090A JPH03223436A (en) 1990-01-29 1990-01-29 Aluminum alloy high damping material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1825090A JPH03223436A (en) 1990-01-29 1990-01-29 Aluminum alloy high damping material and its manufacture

Publications (1)

Publication Number Publication Date
JPH03223436A true JPH03223436A (en) 1991-10-02

Family

ID=11966436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1825090A Pending JPH03223436A (en) 1990-01-29 1990-01-29 Aluminum alloy high damping material and its manufacture

Country Status (1)

Country Link
JP (1) JPH03223436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104046857A (en) * 2014-07-03 2014-09-17 钟小武 High-damping aluminium alloy with wide frequency band and preparation method thereof
US10072322B2 (en) 2014-11-19 2018-09-11 Hyundai Motor Company Aluminum alloy having excellent formability and elasticity and method of producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104046857A (en) * 2014-07-03 2014-09-17 钟小武 High-damping aluminium alloy with wide frequency band and preparation method thereof
CN104046857B (en) * 2014-07-03 2016-08-17 钟小武 A kind of wide-band high damping aluminium alloy and preparation method thereof
US10072322B2 (en) 2014-11-19 2018-09-11 Hyundai Motor Company Aluminum alloy having excellent formability and elasticity and method of producing the same
US10184163B2 (en) 2014-11-19 2019-01-22 Hyundai Motor Company Aluminum alloy having excellent formability and elasticity and method of producing the same

Similar Documents

Publication Publication Date Title
JP6316511B2 (en) Magnetic disk substrate
CA2352333C (en) Method for the manufacturing of an aluminium-magnesium-lithium alloy product
US6056835A (en) Superplastic aluminum alloy and process for producing same
JPH06503854A (en) Aluminum alloy suitable for can manufacturing
US4110132A (en) Improved copper base alloys
KR900007975B1 (en) Aluminium alloy substrate for disk having superior suitability to plating
US4047978A (en) Processing copper base alloys
US3844774A (en) Corrosion-resistant alloys
JPH03264637A (en) Aluminum alloy high damping material and its production
JPH03223436A (en) Aluminum alloy high damping material and its manufacture
JPH03221450A (en) High strength aluminum alloy damping material
JP2020510760A (en) High performance 3000 series aluminum alloy
JPH03215647A (en) Aluminum alloy high damping material and its manufacture
JPH03264635A (en) Aluminum alloy high damping material
JPH03264638A (en) Aluminum alloy high damping material
JPH02205651A (en) Aluminum alloy for magnetic disk base
JPH03264632A (en) Aluminum alloy high damping material
JPS6339661B2 (en)
JPH01255654A (en) Manufacture of high damping aluminum alloy member
JPH03215648A (en) Aluminum alloy high damping material
JPH04387A (en) Production of vibration suppressing aluminum alloy material
JPS6410584B2 (en)
JPH02104676A (en) Vibration damping aluminum alloy material
JPH0257658A (en) High damping material of mg and its manufacture
Saroja et al. Ti–5Ta–1.8 Nb: an advanced structural material for high performance application in aggressive oxidising environments