JPH0326443Y2 - - Google Patents

Info

Publication number
JPH0326443Y2
JPH0326443Y2 JP1985196113U JP19611385U JPH0326443Y2 JP H0326443 Y2 JPH0326443 Y2 JP H0326443Y2 JP 1985196113 U JP1985196113 U JP 1985196113U JP 19611385 U JP19611385 U JP 19611385U JP H0326443 Y2 JPH0326443 Y2 JP H0326443Y2
Authority
JP
Japan
Prior art keywords
circuit
signal
peak hold
prism
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985196113U
Other languages
Japanese (ja)
Other versions
JPS62104145U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985196113U priority Critical patent/JPH0326443Y2/ja
Publication of JPS62104145U publication Critical patent/JPS62104145U/ja
Application granted granted Critical
Publication of JPH0326443Y2 publication Critical patent/JPH0326443Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は主に溶液中の糖度、可溶性固形分の濃
度等を測定するデジタル表示方式を採用したポー
タブルタイプの屈折計に関するものである。
[Detailed description of the invention] (Field of industrial application) The present invention mainly relates to a portable refractometer that uses a digital display method to measure the sugar content, soluble solid content concentration, etc. in a solution.

(従来の技術) 従来に於いてはそのほとんどが光透過方式を利
用したもので手持式の糖度測定用の屈折計の表示
はアナログ方式例えば指針メーター式等を採用し
たものが大半を占めておりその為測定に伴う誤差
が大きくサンプルの糖度又は濃度測定を迅速且つ
簡単に計測することが出来ず、装置全体が大嵩と
なり屋外使用には不向きであつた。
(Prior technology) Most of the conventional refractometers used for measuring sugar content are based on the light transmission method, and most of the hand-held refractometers used for measuring sugar content use an analog method, such as a pointer meter. Therefore, the error associated with the measurement was large, making it impossible to quickly and easily measure the sugar content or concentration of the sample, and the entire device became bulky, making it unsuitable for outdoor use.

(技術的課題) 而して、本考案は従来技術の欠点に鑑みなされ
たもので、デジタル表示方式によつてサンプルを
迅速且つ簡単に計測出来、糖度又は濃度測定と同
時に温度補正を同時に行い得るようにすると共
に、屋外使用出来るように適宜電源回路を設け、
又光源の劣化による影響及び回路上のドリフトの
影響を取り除くことを技術的課題とするものであ
る。
(Technical Issues) The present invention was developed in view of the shortcomings of the prior art, and it is possible to quickly and easily measure samples using a digital display method, and to perform temperature correction at the same time as sugar content or concentration measurement. In addition, an appropriate power supply circuit is installed so that it can be used outdoors.
Another technical challenge is to eliminate the effects of light source deterioration and circuit drift.

(技術的手段) 本考案では上記の技術的課題を解決するため
に、従来の光透過方式に替えて全反射測定方式を
採用すると共に、イメージセンサーを利用する事
により従来の目視による計測から完全にデジタル
表示計測へ改良する一方、ピークホールド回路を
内設せしめることにより光源の劣化に伴う悪影響
及び回路上のドリフトの影響を取り除いたもので
具体的には図示(第1図乃至第4図)の実施例に
示す如く下記の構成となる。
(Technical means) In order to solve the above technical problems, this invention adopts a total reflection measurement method instead of the conventional light transmission method, and uses an image sensor to completely replace the conventional visual measurement method. The system has been improved to digital display measurement, and a peak hold circuit has been built in to remove the negative effects of light source deterioration and the effects of drift on the circuit, as shown in Figures 1 to 4. As shown in the embodiment, the configuration is as follows.

1はデジタル表示を採用した糖度又は濃度を計
測するための屈折計本体であり本実施例に於いて
は後述する如く光全反射方式を採用してある。
Reference numeral 1 denotes a refractometer main body for measuring sugar content or concentration which employs a digital display, and in this embodiment, a total light reflection method is employed as will be described later.

2はサンプル滴下窓部3に付置せしめた形状〓
形のプリズムであり該プリズム2の基底面である
処のプリズム界面2A(プリズム2とサンプル溶
液との境界面)に光源Pから発せられた光を入射
すべく成してある。
2 is the shape attached to the sample dropping window 3
The prism is shaped like a prism, and is configured so that the light emitted from the light source P is incident on the prism interface 2A (the interface between the prism 2 and the sample solution), which is the base surface of the prism 2.

3Aは前記サンプル滴下窓部3のテーパ部分で
サンプル溶液の盛上り深さを適宜設定すべく成し
てある。Qはスタートスイツチであり、後述する
定電圧回路15と電気回路部Rに通電し光源Pを
点灯すべく成してある。
3A is a tapered portion of the sample dropping window 3, which is configured to suitably set the depth of the rise of the sample solution. Reference numeral Q designates a start switch, which is configured to energize a constant voltage circuit 15 and an electric circuit section R, which will be described later, to turn on the light source P.

4はプリズム界面2Aに対して光反射側に設置
した対物レンズであり該対物レンズ4の後方に付
置せしめた反射ミラー5に反射光線rBを結像すべ
く成してある。
Reference numeral 4 denotes an objective lens installed on the light reflection side with respect to the prism interface 2A, and is configured to image the reflected light beam r B on a reflection mirror 5 placed behind the objective lens 4.

6はイメージセンサーであり、前記反射ミラー
5によつて反射せしめられた光を該イメージセン
サー6上に結像せしめこの光信号を電気信号に変
換すべく成してある。
Reference numeral 6 denotes an image sensor, which forms an image of the light reflected by the reflecting mirror 5 on the image sensor 6, and converts this optical signal into an electrical signal.

従つて、光源Pからの入射光線r0がプリズム界
面2Aに於いてサンプル溶液とプリズム2の屈折
率で決定される全反射の臨界角によつてサンプル
溶液中を進行する屈折光rAとプリズム2側への反
射光とに分かれその反射された反射光rBの方だけ
をイメージセンサー6上に結像することとなる。
Therefore, the incident light ray r0 from the light source P travels through the sample solution at the prism interface 2A due to the critical angle of total reflection determined by the refractive index of the sample solution and the prism 2, and the refracted light rA and the prism The reflected light r B is divided into two parts, and only the reflected light r B is imaged on the image sensor 6 .

7は比較回路であつて前記イメージセンサー6
によつて変換された電気信号SAを一度、増幅回
路8によつて一定レベルの電気信号SA′に増幅せ
しめてから該比較回路7へ入力すべく成してあ
る。
7 is a comparison circuit which connects the image sensor 6
The electrical signal SA converted by the amplifier circuit 8 is once amplified into an electrical signal SA' of a constant level by the amplifier circuit 8 and then inputted to the comparison circuit 7.

9はピークホールド回路であつて前記増幅回路
8に入力した同一信号SAが或る所定のレベル値
にアツテネートされて該ピークホールド回路9へ
入力し、ピークホールドすべく成してある。
Reference numeral 9 denotes a peak hold circuit in which the same signal SA input to the amplifier circuit 8 is attenuated to a predetermined level value and input to the peak hold circuit 9 for peak holding.

更にここでピークホールドされた信号PHを前
記比較回路7に入力しここで前記増幅回路8によ
つて一定レベルに増幅せしめられた元の電気信号
SA′とピークホールド回路9によつてアツテネー
トされたピークホールド信号PHとが比較され元
の電気信号SA′がピークホールド信号PHのレベ
ルを越えた時を全反射点即ち臨界点としてその信
号SをCPU回路10へ伝えるようにしてある。
Further, the peak-held signal PH is inputted to the comparison circuit 7, where it is amplified to a constant level by the amplifier circuit 8, and then the original electrical signal is amplified to a constant level.
SA' and the peak hold signal PH attenuated by the peak hold circuit 9 are compared, and when the original electrical signal SA' exceeds the level of the peak hold signal PH, that signal S is set as the total reflection point, that is, the critical point. The information is transmitted to the CPU circuit 10.

換言すればピークホールド回路9を採用して2
サイクルの計測で1回目の信号をホールドし、2
回目の信号と比較することによつて、イメージセ
ンサー6上に生ずる各ビツトの光量の境界位置を
特定せしめることになる。
In other words, by employing the peak hold circuit 9,
Hold the first signal during cycle measurement, and then
By comparing the signal with the second signal, the boundary position of the amount of light of each bit generated on the image sensor 6 can be specified.

第3図に示す如くサンプル溶液の屈折率の変化
に対応するa点、b点、c点(屈折率a<b<
c)と夫々イメージセンサー6上の全反射点の移
動が表示されており例えばd点なるものは光がサ
ンプル溶液中へ屈折するため光がイメージセンサ
ー6上に到達していないことを示すものとなる。
As shown in Figure 3, points a, b, and c correspond to changes in the refractive index of the sample solution (refractive index a<b<
c) and the movement of the total reflection point on the image sensor 6 are displayed, and for example, point d indicates that the light does not reach the image sensor 6 because the light is refracted into the sample solution. Become.

10Aは実質的にはプリズム2の温度を計測す
る温度センサーでありその温度変化ΔTは先ず抵
抗電圧変換回路11によつて抵抗変化ΔRTから
電圧変化ΔVTに変換され更に電圧周波数変換回
路12によつてデジタル信号DSに変換すべく成
してあり該デジタル信号DSを前記CPU回路10
へ伝えるようにしてある。
10A is a temperature sensor that essentially measures the temperature of the prism 2, and the temperature change ΔT is first converted by the resistance voltage conversion circuit 11 from the resistance change ΔRT to the voltage change ΔVT, and then by the voltage frequency conversion circuit 12. The CPU circuit 10 is configured to convert the digital signal DS into a digital signal DS.
I am trying to convey this to you.

このCPU回路10に於いては前記イメージセ
ンサー6のビツト数から糖度に変換するプログラ
ムと、前記電圧周波数変換回路12によるデジタ
ル信号DSを糖度の温度補正に変換するプログラ
ムが設定されておりその結果を砂糖の重量パーセ
ント即ちBrix%でもつて表示器13へ伝えるよ
うにしてある。14はサンプル滴下窓部3へ水を
滴下した際にその水のビツト位置をCPU回路1
0内へ保持するための零スイツチであり以後次に
零スイツチ14が押されるまでそのビツト位置が
保持し続けることにより本装置の較正が行われる
ようにしてある。
In this CPU circuit 10, a program for converting the number of bits of the image sensor 6 into sugar content, and a program for converting the digital signal DS from the voltage frequency conversion circuit 12 into temperature correction of sugar content are set, and the results are The weight percent of sugar, ie Brix%, is also transmitted to the display 13. 14 indicates the bit position of the water when it is dropped into the sample dropping window 3 in the CPU circuit 1.
This is a zero switch for holding the bit within 0, and the device is calibrated by continuing to hold that bit position until the next time the zero switch 14 is pressed.

15は定電圧回路であり各回路部への電圧を供
給するものである。又、定電圧回路15は測定が
終了した際には表示器13とCPU回路10だけ
に電圧が供給され更に一定時間経過するとCPU
回路10だけにその電圧が供給するようにしてあ
る。
15 is a constant voltage circuit that supplies voltage to each circuit section. Further, when the measurement is completed, the constant voltage circuit 15 supplies voltage only to the display 13 and the CPU circuit 10, and after a certain period of time, the voltage is supplied to the CPU circuit 10.
Only the circuit 10 is supplied with that voltage.

前記CPU回路10は微少電流によつて駆動す
べく成してあるため前述した如き較正に於いて零
スイツチ14を押さないかぎり水のビツト位置
(セツト値)は乾電池16が消耗するまで保持す
ることとなる。17はA.Cアダプター端子であ
る。
Since the CPU circuit 10 is configured to be driven by a minute current, the water bit position (set value) will be held until the dry battery 16 is exhausted unless the zero switch 14 is pressed during the calibration as described above. becomes. 17 is an AC adapter terminal.

(作用) 上記の技術的手段は下記の如く作用する。(effect) The above technical means works as follows.

先ず試料であるサンプル溶液をサンプル滴下窓
部3上へ滴下しスタートスイツチQを押し光源P
を点灯する。
First, drop a sample solution, which is a sample, onto the sample dropping window 3, press the start switch Q, and turn on the light source P.
lights up.

この時、光源Pから発した入射光線r0はプリズ
ム2を通つてプリズム界面2Aに於いて、サンプ
ル溶液とプリズム2の屈折率で定まる全反射の臨
界角によつてサンプル中に進入する屈折光rAと反
射光rBとに分離される。
At this time, the incident light ray r0 emitted from the light source P passes through the prism 2, and at the prism interface 2A, refracted light enters the sample due to the critical angle of total reflection determined by the refractive index of the sample solution and the prism 2. The light is separated into r A and reflected light r B.

次いでプリズム界面2Aで反射された反射光rB
は対物レンズ4を通過して反射ミラー5によつて
反射した後、イメージセンサー6上に結像されそ
こで光信号である反射光rが電気信号SAに変換
される。
Next, the reflected light r B reflected at the prism interface 2A
passes through the objective lens 4 and is reflected by the reflecting mirror 5, and then is imaged on the image sensor 6, where the reflected light r, which is an optical signal, is converted into an electrical signal SA.

電気信号SAは増幅回路8によつて一定レベル
の電気信号SA′に増幅され比較回路7に入る。
The electric signal SA is amplified by the amplifier circuit 8 to an electric signal SA' of a constant level and then enters the comparator circuit 7.

更に増幅回路8からの同一電気信号SAが或る
レベル値にアツテネートされてピークホールド回
路9へ入力されそこでピークホールドされたピー
クホールド信号PHは前記電気信号SA′と共に比
較回路7に入る。
Further, the same electric signal SA from the amplifier circuit 8 is amplified to a certain level value and inputted to the peak hold circuit 9, where the peak hold signal PH is peak held and input to the comparison circuit 7 together with the electric signal SA'.

然る際、元の増幅された電気信号SA′とアツテ
ネートされたピークホールド信号SHとが比較さ
れ元の電気信号SA′がピークホールド信号PHの
敷居値レベルを越えた時を全反射点即ち臨界点と
してCPU回路10へ伝達される。
At this time, the original amplified electrical signal SA' and the attenuated peak hold signal SH are compared, and the point when the original electrical signal SA' exceeds the threshold level of the peak hold signal PH is determined as the total reflection point, that is, the critical point. It is transmitted to the CPU circuit 10 as a point.

このイメージセンサー6上の全反射点の移動即
ちサンプル溶液の屈折率の変化は第3図に示す如
くなる。又、温度センサー10Aはプリズム2の
温度を計測しその温度変化ΔTは抵抗変化ΔRTに
変えられ抵抗電圧変換回路11により電圧変化
ΔVTに変換され更に電圧周波数変換回路12に
よつてデジタル信号DSに変換された後、CPU回
路10へ伝達される。このCPU回路10にはイ
メージセンサー6のビツト数から糖度に変換する
プログラムと前記電圧周波数変換回路12による
デジタル信号DSを温度補正するプログラムが設
定されておりそれによつて温度補正された糖液
100g中の砂糖の重量を示す糖度値を重量パーセ
ント即ちBrix%でもつて表示器13へ伝えるこ
とになる。
The movement of the total reflection point on the image sensor 6, that is, the change in the refractive index of the sample solution, is as shown in FIG. Further, the temperature sensor 10A measures the temperature of the prism 2, and the temperature change ΔT is converted into a resistance change ΔRT, which is converted into a voltage change ΔVT by the resistance voltage conversion circuit 11, and further converted into a digital signal DS by the voltage frequency conversion circuit 12. After that, it is transmitted to the CPU circuit 10. This CPU circuit 10 is set with a program for converting the number of bits of the image sensor 6 into sugar content and a program for temperature-correcting the digital signal DS from the voltage-frequency conversion circuit 12.
The sugar content value indicating the weight of sugar in 100 g is transmitted to the display 13 in weight percent, ie, Brix%.

尚、本装置によつてバツテリー液の比重測定
や、インク等の濃度又は粘度を測定することも出
来る。
Note that this device can also be used to measure the specific gravity of battery liquid and the concentration or viscosity of ink.

次に本装置の較正方法について説明する。 Next, a method for calibrating this device will be explained.

先ず、サンプル滴下窓部3上に真水を滴下せし
めてから零スイツチ14を押すことによりその水
のビツト位置をCPU回路10内へ保持せしめ以
後次に零スイツチ14が押されるまで保持し続け
ることが出来る。然る際、定電圧回路15は測定
終了後に表示器13とCPU回路10だけに電圧
を供給し更に一定時間経過後にCPU回路だけに
電圧を供給することとなる。
First, fresh water is dropped onto the sample dropping window 3, and then the zero switch 14 is pressed to hold the bit position of the water in the CPU circuit 10. From then on, the bit position of the water can be held until the next time the zero switch 14 is pressed. I can do it. In this case, the constant voltage circuit 15 supplies voltage only to the display 13 and the CPU circuit 10 after the measurement is completed, and further supplies voltage only to the CPU circuit after a certain period of time has elapsed.

従つてCPU回路10自体は微少な電流によつ
て駆動されるので較正時に於いて零スイツチ14
を押さないかぎり水のビツト位置(セツト値)は
乾電池16が消耗するまで保持することが出来
る。
Therefore, since the CPU circuit 10 itself is driven by a minute current, the zero switch 14 must be turned off during calibration.
As long as the button is not pressed, the water bit position (set value) can be maintained until the dry battery 16 is exhausted.

更に又、前述した如き構成及び作用により次の
ような一般的な特徴を有するものである。
Furthermore, the structure and operation described above provide the following general features.

乾電池16駆動のためコンパクト化され屋外で
の利用が可能であり又光源Pとしての発光ダイオ
ード及び電気回路類はスタートスイツチQを押し
て計測中約3秒間のみ通電され計測終了後には自
動的に内部電源が遮断され又計測終了後約5分間
スイツチの操作を行なわなければ自動的に表示が
消えるように設定したので省エネに最適なる効果
をもたらすものである。
It is compact and can be used outdoors as it is powered by 16 dry batteries, and the light emitting diode as the light source P and electric circuits are energized for about 3 seconds during measurement by pressing the start switch Q, and are automatically turned off from the internal power supply after the measurement is completed. The display is set so that it automatically disappears if the switch is not operated for about 5 minutes after the measurement is completed, resulting in the optimum effect for energy saving.

(効果) 而して、本考案は下記の如き特有の効果を有す
るものである。
(Effects) The present invention has the following unique effects.

特に、ピークホールド回路を採用したので光源
の劣化に伴う悪影響及びドリフトの影響を取り除
くことができ、その補償が完全に行い得る。
In particular, since a peak hold circuit is employed, it is possible to eliminate the adverse effects and drift effects associated with deterioration of the light source, and to completely compensate for the effects.

又、プリズムとCPU回路のプログラムを適宜
変更することで可溶性固形分の濃度を直視するこ
とが出来る。
In addition, by appropriately changing the prism and CPU circuit programs, the concentration of soluble solids can be directly observed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本考案の実施例を示すもの
で、第1図は屈折計本体の各構成配置を示す縦断
側面図であり、第2図は本装置のブロツクダイヤ
グラムであり、第3図は縦軸各ビツトの光量、横
軸にイメージセンサーのビツト数を採つたイメー
ジセンサー上の全反射点の移動を示したグラフで
あり、第4図は同じくCPU回路へ伝える時の臨
界点を表わしたグラフである。 2……プリズム、2A……プリズム界面、3…
…サンプル滴下窓部、6……イメージセンサー、
9……ピークホールド回路、10……CPU回路、
10A……温度センサー、13……表示器、15
……定電圧回路、17……ACアダプター端子。
1 to 4 show an embodiment of the present invention. FIG. 1 is a longitudinal sectional side view showing the arrangement of each component of the refractometer body, FIG. 2 is a block diagram of the device, and FIG. Figure 3 is a graph showing the movement of the total reflection point on the image sensor, with the vertical axis representing the amount of light for each bit and the horizontal axis representing the number of bits of the image sensor. Figure 4 also shows the critical point when transmitting light to the CPU circuit. This is a graph showing the following. 2...prism, 2A...prism interface, 3...
...Sample dropping window, 6...Image sensor,
9...Peak hold circuit, 10...CPU circuit,
10A... Temperature sensor, 13... Display, 15
... Constant voltage circuit, 17 ... AC adapter terminal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 光源Pから発した光をサンプル滴下窓部3に設
置したプリズム2のプリズム界面2Aから対物レ
ンズ4側へ全反射せしめ且つ該全反射光線をイメ
ージセンサー6上に結像せしめて電気信号に変換
し、適宜プログラムを設定したCPU回路10に
よつてそのサンプル溶液の糖度等をデジタル表示
化せしめた屈折計本体1に於いて、前記CPU回
路10及び比較回路7と増幅回路8との間にピー
クホールド回路9を並列接続して前記増幅回路8
によつて一定レベルに増幅せしめられた元の電気
信号SA′と、ピークホールド回路9によつてアツ
テネートされたピークホールド信号PHとを比較
せしめ、該元の電気信号SA′がピークホールド信
号PHのレベルを越えた時を全反射点として該信
号Sを前記CPU回路10へ伝えるように成した
ことを特徴とする糖度測定等のデジタル屈折計。
The light emitted from the light source P is totally reflected from the prism interface 2A of the prism 2 installed in the sample dropping window 3 toward the objective lens 4, and the totally reflected light is imaged on the image sensor 6 and converted into an electrical signal. In the refractometer main body 1, which digitally displays the sugar content, etc. of the sample solution by a CPU circuit 10 with an appropriately programmed setting, a peak hold circuit is connected between the CPU circuit 10, the comparator circuit 7, and the amplifier circuit 8. The circuits 9 are connected in parallel to form the amplifier circuit 8.
The original electrical signal SA' amplified to a certain level by the peak hold circuit 9 is compared with the peak hold signal PH attenuated by the peak hold circuit 9. A digital refractometer for measuring sugar content, etc., characterized in that the signal S is transmitted to the CPU circuit 10 by using the point at which the signal S exceeds the level as a total reflection point.
JP1985196113U 1985-12-20 1985-12-20 Expired JPH0326443Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985196113U JPH0326443Y2 (en) 1985-12-20 1985-12-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985196113U JPH0326443Y2 (en) 1985-12-20 1985-12-20

Publications (2)

Publication Number Publication Date
JPS62104145U JPS62104145U (en) 1987-07-02
JPH0326443Y2 true JPH0326443Y2 (en) 1991-06-07

Family

ID=31154631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985196113U Expired JPH0326443Y2 (en) 1985-12-20 1985-12-20

Country Status (1)

Country Link
JP (1) JPH0326443Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294228A (en) * 2009-09-18 2009-12-17 Atago:Kk Refractometer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014209B1 (en) * 2008-09-02 2011-02-14 주식회사 지원하이텍 Food sugar measuring device using light quantity measurement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124977A (en) * 1975-04-25 1976-10-30 Hitachi Ltd Automatic refractometer
JPS531582B2 (en) * 1975-10-01 1978-01-20

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131376U (en) * 1975-04-10 1976-10-22
JPS531582U (en) * 1976-06-24 1978-01-09

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124977A (en) * 1975-04-25 1976-10-30 Hitachi Ltd Automatic refractometer
JPS531582B2 (en) * 1975-10-01 1978-01-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294228A (en) * 2009-09-18 2009-12-17 Atago:Kk Refractometer

Also Published As

Publication number Publication date
JPS62104145U (en) 1987-07-02

Similar Documents

Publication Publication Date Title
JP2004150923A (en) Refractometer
AU2002329569A1 (en) Non-invasive glucose-meter
CN103630514B (en) A kind of Multifunctional digital display refractometer
EP0911001A3 (en) Apparatus for measuring an optical characteristic parameter
JPH0326443Y2 (en)
JPS6425030A (en) Photometry
GB2008793A (en) Refractometers
CN209416914U (en) Forward scattering visibility meter linearity detection device
CN208110042U (en) Laser range finder intelligence instrument
CN201373833Y (en) Reflection portable color density meter based on three color filter density measuring method
JPS56117151A (en) Measuring apparatus of content and purity of cane sugar
US7295295B2 (en) Paste solids measurement in real time
CN216284904U (en) Portable chlorine dioxide concentration detection device
JPH1062349A (en) Optical system with temperature sensor
JPS5550582A (en) Device for measuring electrolyte leakage of battery
JPH01277740A (en) Submerged turbidity meter
CN110824169B (en) Pig farm biological safety assessment detection kit and detection method
JPS57151807A (en) Distance measuring device
JPS6148763A (en) Biochemical measuring instrument
JPS595855B2 (en) Refractometer or similar device
CN1065531A (en) Neonatal percutaneous bilirubin monitor
JPS5822867B2 (en) Electrolyte concentration detector for lead-acid batteries
JPS55411A (en) Surface roughness measurement with laser beam
JPS5690243A (en) Refraction index meter for liquid
FR2425637A1 (en) METHOD FOR MEASURING THE ABSORPTION OF OPTICAL FIBERS