JPH03264179A - Welded structure - Google Patents

Welded structure

Info

Publication number
JPH03264179A
JPH03264179A JP2061083A JP6108390A JPH03264179A JP H03264179 A JPH03264179 A JP H03264179A JP 2061083 A JP2061083 A JP 2061083A JP 6108390 A JP6108390 A JP 6108390A JP H03264179 A JPH03264179 A JP H03264179A
Authority
JP
Japan
Prior art keywords
copper
package
welded
substrate
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2061083A
Other languages
Japanese (ja)
Inventor
Kozo Shimizu
浩三 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2061083A priority Critical patent/JPH03264179A/en
Publication of JPH03264179A publication Critical patent/JPH03264179A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/323Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • B23K2101/35Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To prevent the generation of cracking by welding a substrate consisting of a copper metal subjected to gold plating and a package consisting of a ferrous metal together with a sheet consisting of a copper metal. CONSTITUTION:The substrate 26 is made of phosphor bronze essentially consisting of copper and is subjected to the gold plating 34 after nickel plating 32. The package 28 is made of an iron/nickel alloy and is subjected to nickel plating 36. The sheet 38 consisting of the copper is inserted between the substrate 26 and the package 28. An X-Y moving device 18 supports these members and moves the parts to be welded when applied with a laser beam 12 in such a manner that the angle part formed of the substrate 26 to be welded and the package 28 is applied with the laser beam 12. The welded structure free from cracking is obtd. and the need for peeling the gold plating film of a welding member which is heretofore required is eliminated. This structure is optimum for working of precision parts.

Description

【発明の詳細な説明】 〔概 要〕 金メッキを施した銅系金属からなる基板と、鉄系金属か
らなるパッケージとの溶接構造に関し、クラックが発生
しないように溶接できる溶接構造を提供することを目的
とし、 金メッキを施した銅系金属からなる基板と、鉄系金属か
らなるパッケージと、該基板と該パッケージとの間に挿
入された銅系金属のシートとからなり、該基板と該パッ
ケージとが該銅系金属のシートとともに溶接されている
構成とする。
[Detailed Description of the Invention] [Summary] It is an object of the present invention to provide a welding structure that can be welded without cracking, regarding a welding structure between a substrate made of a gold-plated copper-based metal and a package made of an iron-based metal. The purpose of the invention is to consist of a board made of copper-based metal plated with gold, a package made of iron-based metal, and a sheet of copper-based metal inserted between the board and the package. is welded together with the copper-based metal sheet.

〔産業上の利用分野〕[Industrial application field]

本発明は金メッキを施した銅系金属からなる第1の部材
と、鉄系金属からなる第2の部材とを溶接によって固定
した溶接構造に関する。
The present invention relates to a welded structure in which a first member made of gold-plated copper-based metal and a second member made of iron-based metal are fixed by welding.

近年小型化が進んでいる光ファイバを用いた光伝送シス
テムパッケージにおいては、光半導体素子を基板に搭載
し、この基板をパッケージに固定するようになっている
。このような基板は搭載した光半導体素子の温度上昇を
想定して熱伝導率の高い銅系合金で作られている。また
、光半導体素子は通常基板にグイボンディングによって
固定され、グイボンディングを容易にするために銅系合
金の基板には金メッキを施しである。一方、パッケージ
は鉄系合金で作られていた。また、鉄系合金のパッケー
ジにははんだ付は性をよくするための表面処理として金
メッキを施すことが多かった。
In optical transmission system packages using optical fibers, which have been becoming smaller in size in recent years, optical semiconductor elements are mounted on a substrate, and this substrate is fixed to the package. Such substrates are made of a copper-based alloy with high thermal conductivity, assuming that the temperature of the mounted optical semiconductor elements will rise. Further, an optical semiconductor element is usually fixed to a substrate by a bonding process, and a copper-based alloy substrate is plated with gold to facilitate the bonding process. The package, on the other hand, was made of iron-based alloy. In addition, iron-based alloy packages were often plated with gold as a surface treatment to improve soldering properties.

〔従来の技術〕[Conventional technology]

このような銅−系合金の基板を鉄系金属のパッケージに
固定するために、従来ははんだ付けを行っていた。しか
し、はんだ付けの場合には、使用の過程においてクリー
プが発生し、基板の位置ずれが生じる可能性があった。
Conventionally, soldering has been used to fix such a copper-based alloy substrate to a ferrous metal package. However, in the case of soldering, creep occurs during the process of use, and there is a possibility that the position of the board may shift.

特に、光ファイバを用いた光伝送システムパッケージに
おいては、光ファイバの口径は数μm程度と小さいので
、光ファイバに対する光半導体素子の位置も数μmのオ
ーダー以上にずれないようにすることが必要であるが、
はんだ付けでは上記クリープによる基板の位置ずれが大
きくなる可能性があり、長期信頼性の点で問題があった
。このような観点から、はんだ付けの代わりに信頼性の
高いレーザ溶接を行うことが考えられた。
In particular, in optical transmission system packages using optical fibers, the diameter of the optical fiber is small, on the order of several micrometers, so it is necessary to ensure that the position of the optical semiconductor element relative to the optical fiber does not deviate by more than a few micrometers. Yes, but
In soldering, there is a possibility that the positional deviation of the board due to the above-mentioned creep becomes large, which poses a problem in terms of long-term reliability. From this point of view, it was considered to use highly reliable laser welding instead of soldering.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

溶接によれば、接合強度が向上し、基板の位置ずれの問
題を解決することができる。しかし、パッケージ材料は
通常鉄系合金を用いているのに対して、パッケージ及び
基板には金めつきが施しであるので、通常の溶接方法で
は溶接部に多量の金が混入し、冷却時に鉄と金の合金が
生成される。
Welding improves the bonding strength and solves the problem of substrate misalignment. However, while the package material usually uses an iron-based alloy, the package and substrate are plated with gold, so in the usual welding method, a large amount of gold gets mixed into the welded part, and the iron is removed during cooling. and gold alloys are produced.

鉄と金の合金は包晶系の合金であり、溶接部の凝固温度
幅が非常に大きくなる。すなわち、包晶系の合金では溶
接後に溶接部が凝固しはじめる温度と、凝固し終わる温
度との間の幅が大きい。このため、溶接部にクラックが
発生するという問題が生じた。そこで、従来は、このク
ラックを防止する方法として、クラックの原因となる金
が溶接部に混入しないように、被溶接個所の金メッキを
機械加工によって研削するか、または化学的に剥離する
かし、あるいは部分メッキなどの処理を行って、溶接を
行っていた。
The alloy of iron and gold is a peritectic alloy, and the solidification temperature range of the weld is extremely large. That is, in peritectic alloys, there is a large range between the temperature at which the weld zone begins to solidify after welding and the temperature at which solidification ends. Therefore, a problem occurred in that cracks were generated in the welded portion. Conventionally, methods to prevent this cracking include grinding the gold plating at the welded area by mechanical processing or chemically peeling it off to prevent the gold that causes cracks from entering the welded area. Alternatively, treatments such as partial plating were performed and welding was performed.

このような従来の溶接構造では、金メッキを取り除くた
めの余計な工程が必要であり、また金メッキを剥離する
ためにエツチングや研削などヲ行うと、基板のエツチン
グ液残渣による腐食や応力増大による部品の寸法精度の
低下等の欠点を生じていた。
Such conventional welded structures require an extra process to remove the gold plating, and if etching or grinding is performed to remove the gold plating, the parts may be damaged due to corrosion due to etching solution residue on the board or increased stress. This resulted in drawbacks such as a decrease in dimensional accuracy.

そこで、本発明は金メッキを施した銅系金属からなる第
1の部材と、鉄系金属からなる第2の部材とをクラック
が発生しないように溶接できる溶接構造を提供すること
を目的とするものである。
Therefore, an object of the present invention is to provide a welding structure that can weld a first member made of gold-plated copper-based metal and a second member made of iron-based metal without generating cracks. It is.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による溶接構造は、金メッキを施した銅系金属か
らなる第1の部材と、鉄系金属からなる第2の部材と、
該第1の部材と該第2の部材との間に挿入された銅系金
属のシートとからなり、該第1の部材と該第2の部材と
が該銅系金属のシートとともに溶接されていることを特
徴とするものである。
The welded structure according to the present invention includes a first member made of gold-plated copper-based metal, a second member made of iron-based metal,
A sheet of copper-based metal is inserted between the first member and the second member, and the first member and the second member are welded together with the sheet of copper-based metal. It is characterized by the presence of

〔作 用〕[For production]

上記構成においては、溶接後の溶接部は、金と銅が全率
固溶型の合金を形成し、この合金と鉄とが共存した状態
となる。この結果、溶接部全体が全率固溶型の合金とな
り、凝固温度幅が小さくなり、液体から固体への変態が
瞬時に起こるので、クラックが成長する前に凝固が終了
する。従って、クラックの発生が防止される。
In the above structure, in the welded part after welding, gold and copper form a solid solution alloy, and this alloy and iron coexist. As a result, the entire weld zone becomes a solid solution type alloy, the solidification temperature range becomes small, and the transformation from liquid to solid occurs instantaneously, so solidification ends before cracks grow. Therefore, generation of cracks is prevented.

〔実施例〕〔Example〕

第1図は本発明により使用するレーザ溶接装置及び溶接
部材を示し、レーザ光源10を備えている。レーザ光源
10はレーザビーム12を発生し、レーザビーム12を
集光する集光レンズ14と、レーザ保護管兼シールドガ
ス用ノズル16とを含む。X−Y移動装置18がレーザ
光源10の下方に配置され、X−Y移動装置18に溶接
部材2゜を支持させるようになっている。
FIG. 1 shows a laser welding device and a welding member used in accordance with the present invention, and is equipped with a laser light source 10. In FIG. The laser light source 10 generates a laser beam 12 and includes a condensing lens 14 that focuses the laser beam 12, and a laser protection tube and shielding gas nozzle 16. An X-Y moving device 18 is disposed below the laser light source 10, and the X-Y moving device 18 is configured to support the welding member 2°.

第1図の溶接部材20は例えば第4図に示すような光伝
送システムパッケージ22の一部として簡略化して示し
である。第4図の光伝送システムパッケージ22は、光
半導体素子24を基板26に搭載し、この基板26をパ
ッケージ28に固定したものである。光ファイバ30が
光半導体素子24に近接して配置され、光半導体素子2
4は光ファイバ30の光信号を電気信号に変換して処理
する。これらの各部品のうち、光半導体素子24はグイ
ボンディングによって基板26に固定され、第1図の溶
接装置によってこの基板26をパッケージ28に溶接に
より固定するものである。
The welding member 20 of FIG. 1 is shown in simplified form as part of an optical transmission system package 22, such as that shown in FIG. 4, for example. The optical transmission system package 22 shown in FIG. 4 has an optical semiconductor element 24 mounted on a substrate 26, and this substrate 26 fixed to a package 28. An optical fiber 30 is placed close to the optical semiconductor element 24 and
4 converts the optical signal of the optical fiber 30 into an electrical signal and processes it. Among these parts, the optical semiconductor element 24 is fixed to the substrate 26 by bonding, and the substrate 26 is welded to the package 28 using the welding apparatus shown in FIG.

第1図に示されるように、基板26は銅を主成分とした
リン青銅で作られ、ニッケルメッキ32を施した後で金
メッキ34を施しである。また、パッケージ28は鉄−
42パ一セントニツケル合金(42アロイ〉で作られ、
ニッケルメッキ36を施しである。各メッキはそれぞれ
2μmの厚さであった。さらに、銅のシート38がこれ
ら基板26とパッケージ28との間に挿入されている。
As shown in FIG. 1, the substrate 26 is made of phosphor bronze containing copper as a main component, and is plated with gold 34 after being plated with nickel 32. As shown in FIG. Moreover, the package 28 is made of iron.
Made of 42% nickel alloy (42 alloy),
Nickel plating 36 is applied. Each plating was 2 μm thick. Additionally, a sheet of copper 38 is inserted between the substrates 26 and the package 28.

銅のシート38は基板26の底面と同じ面積を持ち、か
つ厚さ0.1〜0.5mm程度のものであった。
The copper sheet 38 had the same area as the bottom surface of the substrate 26 and had a thickness of about 0.1 to 0.5 mm.

第1図においては、X−Y移動装置18は溶接すべき基
板26とパッケージ28とのなす角部にレーザビーム1
2が当たるようにこれらの部材を支持し、レーザビーム
12が当たったら被溶接部を移動させるようになってい
る。このようにして、基板26の全周に沿って溶接を行
うことができる。
In FIG. 1, the X-Y moving device 18 applies a laser beam 1 to the corner of the package 28 and the substrate 26 to be welded.
These members are supported so that they are hit by the laser beam 12, and the parts to be welded are moved when the laser beam 12 hits them. In this way, welding can be performed along the entire circumference of the substrate 26.

あるいは、スポット溶接を行うこともできる。Alternatively, spot welding can also be performed.

第2図はこのようにして溶接した溶接構造を示し、基板
26とパッケージ28とが溶接部40によって接合され
る。溶接後の溶接部40は、基板26の金メッキ34の
金と中間に挿入した銅のシート38の銅が全率固溶型の
合金を形成し、この合金とパッケージ28の鉄とが共存
した全率固溶型の合金である。この全率固溶型の合金の
凝固温度幅は小さく、液体から固体への変態が瞬時に起
こるので、溶接部40にクラックは発生しない。
FIG. 2 shows a welded structure in which the substrate 26 and the package 28 are joined by a weld 40. As shown in FIG. The welded part 40 after welding is formed by the gold of the gold plating 34 of the board 26 and the copper of the copper sheet 38 inserted in the middle forming a solid solution alloy, and this alloy and the iron of the package 28 coexisting. It is a solid solution type alloy. The solidification temperature range of this all-solid solution type alloy is small, and the transformation from liquid to solid occurs instantaneously, so no cracks occur in the welded portion 40.

第5図は金と銅の合金の一般に認められた状態図であり
、凝固温度幅の小さい全率固溶型の合金を形成すること
を示している。
FIG. 5 is a generally accepted phase diagram of an alloy of gold and copper, showing that a solid solution type alloy is formed with a narrow solidification temperature range.

第3図は基板26とパッケージ28との間に銅のシート
38を挿入せず、基板26とパッケージ28とを直接に
溶接した従来の例を示している。
FIG. 3 shows a conventional example in which a copper sheet 38 is not inserted between the board 26 and the package 28, and the board 26 and the package 28 are directly welded.

この場合、基板26とパッケージ28とが溶接部42に
よって接合されるが、この溶接部42は鉄と金の合金は
包晶系の合金であり、溶接部42の凝固温度幅が非常に
大きいのでクラック44が発生する場合がある。本発明
では、銅のシート38を挿入することによってクラック
44の発生を防止することができた。
In this case, the substrate 26 and the package 28 are joined by a weld 42, but the weld 42 is a peritectic alloy of iron and gold, and the solidification temperature range of the weld 42 is very large. Cracks 44 may occur. In the present invention, the occurrence of cracks 44 could be prevented by inserting the copper sheet 38.

溶接に用いたレーザはNd−YAGレーザであり、溶接
条件はパルス幅2ms、焦点はずし量Omm、平均出力
200W、パルスレート6oppS1溶接速度500m
m/min、レンズ焦点距離10・Qmm、シールドガ
スはアルゴン、ガス圧1.5kg/cm2、ガス流量3
01/minであった。
The laser used for welding was a Nd-YAG laser, and the welding conditions were a pulse width of 2 ms, a defocus amount of Omm, an average output of 200 W, a pulse rate of 6 opp, S1, and a welding speed of 500 m.
m/min, lens focal length 10・Qmm, shielding gas is argon, gas pressure 1.5kg/cm2, gas flow rate 3
It was 01/min.

第6図は、このようなレーザの条件の下で、挿入する銅
のシート38の厚さを変えて溶接部の銅の含有量及び溶
接部40にクラックが発生するどうかを実験した結果を
示す図である。この条件下では、溶接部40の銅含有量
は銅のシート38の厚さにほぼ比例することを示し、ま
た、銅のシート38の厚さがQ、5mmまではクランク
が発生せず、良好な溶接を行うことができるが、厚さが
0.6mmになると良好な溶接ができなくなることを示
している。このように銅のシート38の厚さが大きくな
ると良好な溶接ができなくなる理由は、レーザビーム1
2が銅のシート38にだけあたり、熱伝導率の高い銅が
溶けなかったためによると思われる。なお、銅は熱伝導
率が大きいので、銅のシート38を挿入すると比較的に
大きな溶接エネルギーが必要になる。従って、銅のシー
ト38の代わりに、銅とニッケルの合金、例えばキュプ
ロニッケルを用いると熱伝導率が小さいので、溶接エネ
ルギーを低減できる。
FIG. 6 shows the results of an experiment to determine the copper content of the weld and whether or not cracks would occur in the weld 40 by varying the thickness of the inserted copper sheet 38 under these laser conditions. It is a diagram. Under this condition, the copper content of the weld 40 is approximately proportional to the thickness of the copper sheet 38, and cranking does not occur until the thickness of the copper sheet 38 is Q, 5 mm, which is good. However, when the thickness becomes 0.6 mm, it becomes impossible to perform good welding. The reason why good welding cannot be achieved when the thickness of the copper sheet 38 becomes large is that the laser beam 1
This is thought to be due to the fact that 2 hit only the copper sheet 38 and the copper, which has high thermal conductivity, did not melt. Note that since copper has a high thermal conductivity, inserting the copper sheet 38 requires relatively large welding energy. Therefore, if an alloy of copper and nickel, such as cupronickel, is used instead of the copper sheet 38, the welding energy can be reduced since the thermal conductivity is low.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、金メッキを施し
た銅系金属からなる第1の部材と、鉄系金属からなる第
2の部材とを銅系金属のシートを介挿して溶接した構成
としたので、クラックのない溶接構造が得られ、従来の
ように溶接部材の金メッキ皮膜を剥離する必要がなくな
り、金メッキ剥離に必要であった研削を行わないことか
ら、部品の寸法変化もなく、精密部品の加工に最適であ
る。
As explained above, according to the present invention, the first member made of gold-plated copper-based metal and the second member made of iron-based metal are welded with a sheet of copper-based metal interposed therebetween. As a result, a welded structure without cracks can be obtained, there is no need to peel off the gold plating film of the welded parts as in the past, and there is no dimensional change in the parts because the grinding required to remove the gold plating is not performed. Ideal for processing precision parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により使用するレーザ溶接装置及び溶接
部材を示す図、第2図は本発明により得られた溶接構造
を示す図、第3図は従来技術の溶接構造を示す図、第4
図は本発明で溶接する光伝送システムパッケージの構成
要素を示す図、第5図は金と銅の合金の状態図、第6図
は銅のシートの厚さを変えたときの溶接部の銅の含有量
及びクラックの発生を示す図である。 10・・・レーザ光源、 12・・・レーザビーム、 18・・・x−y移動装置、 24・・・光半導体素子、 26・・・基板、 28・・・パッケージ、 30・・・光ファイバ、 32・36・・・ニッケルメッキ、 34・・・金メッキ、 38・・・銅のシート、 40・・・溶接部。 本発明により使用するレーザ溶接装置及び溶接部材を示
す図第1図 40:溶接部 本発明で溶接する光伝送システムパッケージの構成要素
を示す図第4図 本発明により得られた溶接構造を示す図従来技術の溶接
構造を示す図 Au原子%→ 箪3図 Au−Cu系状m図 第5図
FIG. 1 is a diagram showing a laser welding device and a welded member used according to the present invention, FIG. 2 is a diagram showing a welded structure obtained by the present invention, FIG. 3 is a diagram showing a welded structure according to the prior art, and FIG.
The figure shows the components of the optical transmission system package to be welded according to the present invention, Figure 5 is a state diagram of the gold-copper alloy, and Figure 6 shows the copper of the welded part when the thickness of the copper sheet is changed. FIG. 2 is a diagram showing the content and occurrence of cracks. DESCRIPTION OF SYMBOLS 10... Laser light source, 12... Laser beam, 18... x-y moving device, 24... Optical semiconductor element, 26... Substrate, 28... Package, 30... Optical fiber , 32, 36... Nickel plating, 34... Gold plating, 38... Copper sheet, 40... Welded part. A diagram showing a laser welding device and a welding member used according to the present invention. Figure 1. Figure 40: A diagram showing the components of the optical transmission system package to be welded according to the present invention. Figure 4 A diagram showing a welded structure obtained according to the present invention. Diagram showing the welding structure of conventional technology Au atomic %→ Kan 3 Diagram Au-Cu system m diagram Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 金メッキを施した銅系金属からなる第1の部材(26)
と、鉄系金属からなる第2の部材(28)と、該第1の
部材と該第2の部材との間に挿入された銅系金属のシー
ト(38)とからなり、該第1の部材と該第2の部材と
が該銅系金属のシートとともに溶接されていることを特
徴とする溶接構造。
A first member (26) made of copper-based metal plated with gold
, a second member (28) made of iron-based metal, and a sheet (38) of copper-based metal inserted between the first member and the second member; A welded structure characterized in that the member and the second member are welded together with the sheet of copper-based metal.
JP2061083A 1990-03-14 1990-03-14 Welded structure Pending JPH03264179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2061083A JPH03264179A (en) 1990-03-14 1990-03-14 Welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2061083A JPH03264179A (en) 1990-03-14 1990-03-14 Welded structure

Publications (1)

Publication Number Publication Date
JPH03264179A true JPH03264179A (en) 1991-11-25

Family

ID=13160864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2061083A Pending JPH03264179A (en) 1990-03-14 1990-03-14 Welded structure

Country Status (1)

Country Link
JP (1) JPH03264179A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081138A1 (en) * 2001-04-03 2002-10-17 The Regents Of The University Of Michigan Alloy based laser welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081138A1 (en) * 2001-04-03 2002-10-17 The Regents Of The University Of Michigan Alloy based laser welding

Similar Documents

Publication Publication Date Title
AU634441B2 (en) A fluxless soldering process
AU610974B2 (en) Laser bonding apparatus and method
US5499668A (en) Process for making electronic device
US4281235A (en) Method for welding ferrous alloys to aluminum and aluminum alloys or refractory metals
US4042725A (en) Solder alloy and soldering process
JP3194553B2 (en) Method for manufacturing semiconductor device
US7400460B2 (en) Method for connection of an optical element to a mount structure
JPH03264179A (en) Welded structure
JP2010253493A (en) Method and apparatus for parallel seam welding
US5616258A (en) Process and apparatus for micro-arc welding
US5785234A (en) Method of surface-contacting electronic components
Spletter et al. A laser based system for tape automated bonding to integrated circuits
Hong et al. Plasma reflow bumping of Sn-3.5 Ag solder for flux-free flip chip package application
JPH0437488A (en) Welding process and welding jig of package
Frear et al. Fluxless soldering for microelectronic applications
JPH03189073A (en) Method for sealing casing of electronic device
WO2022224627A1 (en) Manufacturing method for member having laser build-up layer
Wang et al. Direct evidence of Au segregation in laser welded Au-coated Invar material
US5845838A (en) Process for remelting a contact surface metallization
JP3412108B2 (en) Lead frame
Choe et al. Fluxless Sn-Bi-Au bonding process using multilayer design
JPH02142691A (en) Welding method
JPH05160550A (en) Method of reparing printed circuit board
JP2644294B2 (en) How to fix optical circuit components
Glasmacher et al. Laser beam micro welding as a new interconnection technique