JPH03264174A - Instantaneous joining method of nickel/titanium alloy molding material - Google Patents

Instantaneous joining method of nickel/titanium alloy molding material

Info

Publication number
JPH03264174A
JPH03264174A JP2065076A JP6507690A JPH03264174A JP H03264174 A JPH03264174 A JP H03264174A JP 2065076 A JP2065076 A JP 2065076A JP 6507690 A JP6507690 A JP 6507690A JP H03264174 A JPH03264174 A JP H03264174A
Authority
JP
Japan
Prior art keywords
nickel
joined
parts
alloy
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2065076A
Other languages
Japanese (ja)
Other versions
JP2563843B2 (en
Inventor
Satoru Masunaga
悟 増永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Masunaga Menlo Park Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Masunaga Menlo Park Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2065076A priority Critical patent/JP2563843B2/en
Application filed by Furukawa Electric Co Ltd, Masunaga Menlo Park Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to PCT/JP1991/000339 priority patent/WO1991013717A1/en
Priority to US07/768,241 priority patent/US5431506A/en
Priority to DE69112553T priority patent/DE69112553T2/en
Priority to KR1019910701603A priority patent/KR960010511B1/en
Priority to AT91906272T priority patent/ATE127053T1/en
Priority to EP91906272A priority patent/EP0477375B1/en
Priority to TW080106844A priority patent/TW212207B/zh
Publication of JPH03264174A publication Critical patent/JPH03264174A/en
Application granted granted Critical
Publication of JP2563843B2 publication Critical patent/JP2563843B2/en
Priority to HK97102048A priority patent/HK1000462A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To metallurgically join and integrate the parts to be joined of both materials at an extreme speed by instantaneously heating up the parts to be joined near to the melting temp. of nickel in an inert gaseous atmosphere and pressing and joining the parts to be joined to each other by a high pressure. CONSTITUTION:The end part of a wire consisting of a titanium/nickel superelastic alloy is joined to the end part of a wire consisting of a nickel/ chromium alloy material. The part near the part to be joined of the superelastic alloy wire is subjected to high frequency heating and is partially annealed. The impurities, such as oxides, sticking to the end part to be joined are then removed. The parts to be joined are so fixed by jigs as to come into contact with each other and while these parts are kept pressed by a prescribed pressure, chromium copper is wound as a heat radiating member in the part proximate to these parts, a current is passed thereto in the inert gaseous atmosphere. Both of the parts to be joined are instantaneously heated white to a resilient state and are fused by the pressure, by which the parts to be joined are joined and integrated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ニッケル・・チタン系合金成形材の瞬間接合
方法、詳しくは、接合困難なニッケル・チタン系の形状
記憶合金や超弾性合金から威る成形材を、ニッケル基合
金材料に局部的に強固に瞬間接合一体化させることがで
きる新方法に関するものであり、ニッケル・チタン系形
状記憶合金や超弾性合金材料の用途を大きく拡張するこ
とが可能である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an instant bonding method for forming nickel-titanium alloy materials, and more specifically, a method for instantly bonding nickel-titanium-based shape memory alloys and superelastic alloys, which are difficult to bond. This relates to a new method that can locally and firmly instant-bond and integrate a powerful forming material into a nickel-based alloy material, greatly expanding the applications of nickel-titanium-based shape memory alloys and superelastic alloy materials. is possible.

〔従来の技術、および解決すべき技術的課題〕周知のと
おり、ニッケル・チタン系の形状記憶合金は、ニチノー
ル(米国海軍兵器研究所の製品名: N<f、4noL
)に代表されるように、与えられた形状の温度履歴によ
る変形・復元の可逆性が非常に優れているところから、
医療の分野(例えば、歯列矯正用ワイヤー、整形外科用
骨接続部品、動脈層手術用クリップなど)や各種部品材
料の分野(例えば、エアコンの空気吹出角度の自動調節
器具、温室・恒温室等の窓自動開閉器具、宇宙船用のア
ンテナなど)において用途開発の努力が払われており、 また、ニッケル・チタン系の超弾性合金も、化学的に安
定で、しかも軽量であるところから機械装置において軽
量性と高度のバネ性が要求される部品の素材として、そ
の用途に期待が持たれている。
[Prior art and technical issues to be solved] As is well known, the nickel-titanium based shape memory alloy is Nitinol (product name of the U.S. Naval Ordnance Research Institute: N<f, 4noL).
), the reversibility of deformation and restoration due to the temperature history of a given shape is extremely excellent.
In the medical field (e.g., orthodontic wire, orthopedic bone connection parts, arterial layer surgery clips, etc.) and the field of various parts and materials (e.g., automatic air blowing angle adjustment devices for air conditioners, greenhouses, constant temperature rooms, etc.) Efforts are being made to develop applications for automatic window opening/closing devices, spacecraft antennas, etc.), and nickel-titanium-based superelastic alloys are also being used in mechanical devices because they are chemically stable and lightweight. It is expected to be used as a material for parts that require light weight and high elasticity.

ところが、これらニッケル・チタン系の形状記憶合金や
超弾性合金は、金属的に接合性が悪く、か\るニッケル
・チタン系合金材料を小さな接合面積で接合する場合に
はリベットや止ネジ等の止着具を用いて機械的に連結す
るか、あるいは当該ニッケル・チタン系合金材料の表面
に接合し易い金属材料をメツキして、そのメツキ金属を
介してロウ付するといった方法が採られていた。
However, these nickel-titanium-based shape memory alloys and superelastic alloys have poor metallurgical bonding properties, and when joining such nickel-titanium alloy materials with a small joint area, it is necessary to use rivets, set screws, etc. The methods used were to connect them mechanically using fasteners, or to plate the surface of the nickel-titanium alloy material with a metal material that is easy to bond to, and to braze through the plated metal. .

しかしながら、前者のリベットや止ネジを使用する止着
方式は部品接合が非常に面倒で非能率的であるのに加え
て、リベット軸や止ネジ紬を中心として接合部品が回る
という難点があり、しかも接合面積をリベット軸やネジ
軸の太さよりも小さくすることが出来ないという欠点が
あった。
However, the former method of fastening using rivets and set screws is extremely troublesome and inefficient to join parts, and has the disadvantage that the joined parts rotate around the rivet shaft and set screw pongee. Moreover, there was a drawback that the joint area could not be made smaller than the thickness of the rivet shaft or screw shaft.

また、後者の前処理メツキによるロウ付法にあっては、
接合強度がメツキ層の付着力に依存しているために余り
強い外力を受けるとメツキ層から剥離してしまうという
欠点があった。
In addition, in the latter brazing method using pre-treatment plating,
Since the bonding strength depends on the adhesion force of the plating layer, there is a drawback that it will peel off from the plating layer if too strong external force is applied to it.

本発明は、ニッケル・チタン系の形状記憶合金や超弾性
合金を異種金属に接合せしめる従来技術に前述のごとき
難点があったことに鑑みて為されたもので、ニッケル・
チタン系合金成形材を異種金属に対して非常に強固に接
合させることができる新方法を提供することを技術的課
題とするものである。
The present invention was made in view of the above-mentioned difficulties in the conventional technology for joining nickel-titanium-based shape memory alloys and superelastic alloys to dissimilar metals.
The technical objective is to provide a new method that can extremely firmly bond titanium-based alloy formed materials to dissimilar metals.

また、本発明の他の技術的課題は、ニッケル・チタン系
合金成形材を局所的に瞬間接合することができ、しかも
接合部位以外の箇所には接合熱による影響を殆ど与える
ことなく能率的に接合処理できるニッケル・チタン合金
成形材の瞬間接合方法を提供するにある。
In addition, another technical problem of the present invention is that nickel-titanium alloy formed materials can be locally instantaneously joined, and moreover, it is possible to efficiently join nickel-titanium alloy molded materials with almost no effect of joining heat on parts other than the joining site. An object of the present invention is to provide an instant joining method for nickel-titanium alloy formed materials that can be joined.

さらに、本発明の他の慎術的課題は、接合面積を極度に
小さくできるにも拘わらず、接合強度が従来技術に比較
して格段に秀れたニッケル・チタン系合金成形材の高精
度接合方法を提供するにある。
Furthermore, another technical object of the present invention is to achieve high-precision joining of nickel-titanium alloy molded materials, which has significantly superior joining strength compared to conventional techniques, even though the joining area can be made extremely small. We are here to provide you with a method.

〔課題解決のために採用した手段〕[Means adopted to solve the problem]

本発明者は、チタン・ニッケル系の形状記憶合金や超弾
性合金を接合させるべき相手方の金属材料の多くがニッ
ケル基合金であることに着目し、この共通するニッケル
成分を何らかの方法で融合させることが出来るならば、
この両金属材料が冶金的に強固に接合するであろうとの
確信を得、これを検証すべく種々の実験を拭みた。とこ
ろが、形状記憶合金や超弾性合金は、−旦、所定以上の
高温を履歴すると、形状記憶機能や超弾性機能を劣化し
て所期の目的達成に支障が生じ、しかも接合部に金属間
化合物が発生して脆弱化し、とても、ニッケルの融点近
傍まで加熱することは許されないことが実験を通じて判
明した。こうして、ニッケル・チタン系の形状記憶合金
や超弾性合金の特性を損なうことなく、双方金属のニッ
ケル成分を溶融させ、溶融したニッケル成分を互いに融
合させて両金属を接合するための技術的な条件を求めて
試行錯誤的実験を繰返すことが余儀無くされた。そして
、偶然の成り行きから、ニッケル・チタン系の形状記憶
合金でも、また同系の超弾性合金でも、急速かつ微小の
時間内に大きな熱エネルギーを局所的に集中させるるこ
とができるならば、帯熱部が狭小な範囲に限られ、他の
部位の全肩特性に殆ど影響が出ない事実を突き止めるこ
とができた。
The present inventor focused on the fact that most of the metal materials to which titanium-nickel based shape memory alloys and superelastic alloys are to be joined are nickel-based alloys, and sought to fuse these common nickel components in some way. If it is possible,
We were confident that these two metal materials would bond strongly metallurgically, and conducted various experiments to verify this. However, when shape memory alloys and superelastic alloys are exposed to high temperatures above a certain level, their shape memory function and superelasticity deteriorate, making it difficult to achieve the intended purpose.Moreover, the formation of intermetallic compounds in the joints occurs. It was discovered through experiments that it was impossible to heat the material to a temperature close to the melting point of nickel, as this caused the material to become brittle. In this way, the technical conditions for joining both metals by melting the nickel components of both metals and fusing the molten nickel components with each other without impairing the properties of nickel-titanium-based shape memory alloys and superelastic alloys. We were forced to repeat trial-and-error experiments in search of the solution. As a result of a coincidence, if a nickel-titanium shape memory alloy or a superelastic alloy of the same type can rapidly and locally concentrate a large amount of thermal energy within a minute time, then We were able to ascertain the fact that the shoulder area is limited to a narrow range and has almost no effect on the overall shoulder characteristics of other areas.

そこで、更に進んで、本発明者は当該金属の昇温部所を
接合すべき対象部位のみに限定し、其処を瞬間的に急速
に発熱させて一時的に帯熱柔軟状態に変化させ、その柔
軟状態にある一瞬の間に両金属材料を互いに高圧で押し
合わせたところ、実に強固に両金属が接合する事実を発
見するに至った次第である。
Therefore, the inventor of the present invention went further and limited the temperature-raising part of the metal to only the target part to be joined, caused that part to instantaneously and rapidly generate heat, and temporarily changed it to a thermoplastic state. By pressing the two metal materials together under high pressure for a moment while they were in a flexible state, they discovered that the two metals were indeed firmly bonded.

かくして、本発明者は、ニッケル・チタン系合金から成
る成形材の所定局部をニッケル基合金材料に接合するに
あたり、不活性雰囲気中で前記両材の接合対象部位を瞬
間的にニッケルの溶融温度近くにまで昇温させて帯熱柔
軟状態の当該接合対象部位同士を高圧で押し合わせると
いう冶金学的手段を採用することによって、非常な速度
で前記両金属材料を冶金的に接合一体化せしめることが
できるニッケル・チタン系合金成形材の瞬間接合方法に
到達し、前述の技術的課題の解決に成功したのである。
Thus, when joining a predetermined local part of a molded material made of a nickel-titanium alloy to a nickel-based alloy material, the present inventor instantaneously heats the part of the two materials to be joined in an inert atmosphere near the melting temperature of nickel. By employing metallurgical means of heating the parts to be joined together under high pressure in a thermally flexible state by raising the temperature to a temperature of They achieved a method for instantly joining nickel-titanium alloy molded materials, and succeeded in solving the technical problems mentioned above.

〔実施例〕〔Example〕

以下、本発明の具体的内容に関し、実施例を挙げて、更
に詳しく説明する。
Hereinafter, the specific contents of the present invention will be explained in more detail by giving examples.

実施例■ チタン・ニッケル系超弾性合金(組成:Ni50〜51
%、Ti 49〜50 %、不可避的不純物o、s %
以下) ノ線材(φ1.4:長さ 7cm)を、ニッケ
ル・クロム合金材料(Ni 80%、Cr 13L不可
避的不純物残余)の線材(φ2:長さ 10an)に端
部同士を接合する。
Example ■ Titanium-nickel superelastic alloy (composition: Ni50-51
%, Ti 49-50%, unavoidable impurities o, s%
(below) A wire rod (φ1.4: length 7cm) is joined at its ends to a wire rod (φ2: length 10an) made of a nickel-chromium alloy material (Ni 80%, Cr 13L residual unavoidable impurities).

まず、上記超弾性合金の線材における接合対象部位(本
実施例では、端部)付近に高周波加熱を施して部分的に
焼鈍し、次いで、当該線材の接合すべき端部に付着して
いる酸化物や油脂等の如き不純物を除去して清浄にして
おく。ニッケル・クロム合金の線材も、同様に接合すべ
き部位の表面の酸化物や油脂等の如き不純物を除去して
清浄にしておく。
First, high-frequency heating is applied to the vicinity of the part of the wire of the superelastic alloy to be joined (in this example, the end) to partially anneal it, and then the oxidation that has adhered to the end of the wire to be joined is Keep it clean by removing impurities such as dirt, oil, etc. Similarly, the nickel-chromium alloy wire is cleaned by removing impurities such as oxides and oil from the surface of the parts to be joined.

次に、上記超弾性合金線材とニッケル・クロム合金線材
の接合対象部位同士(接触面積:2mm”)が当接する
ように配置して治具により固定し、当該部位同士を20
kg/mm”の圧力で押圧しながら、当該部位に近接す
る部分には放熱部材としてクロム飼を巻付けて不活性ガ
ス(アルゴンガス)雰囲気中において、電圧3■で3サ
イクルの電流(1,0OOA ’)を0.05秒間流し
たところ、前記接合対象部位は双方共に瞬間的に白熱化
して柔軟状態となり圧力により融合して接合一体化した
。ちなみに、このときの接合対象部位の発熱温度は13
00〜1450℃であった。
Next, the superelastic alloy wire rod and the nickel-chromium alloy wire rod are arranged so that the parts to be joined (contact area: 2 mm) are in contact with each other and fixed with a jig, and the parts are
While pressing with a pressure of 1.5 kg/mm'', a chrome film was wrapped around the part close to the area as a heat dissipation member, and in an inert gas (argon gas) atmosphere, 3 cycles of current (1, 0OOA') was flowed for 0.05 seconds, both of the parts to be welded instantaneously became incandescent, became flexible, and were fused under pressure to become a joined body.Incidentally, the heat generation temperature of the parts to be welded at this time was 13
The temperature was 00-1450°C.

実施例■ チタン・ニッケル系形状記憶合金(組成:Ni40〜8
0%、Ti 60〜40%、Cu 3%、不可避的不純
物0.5%以下)の線材(φ1.4=長さ70)とニッ
ケル・銅合金材料=moneL metaLcNi 6
3 %以上、Cu 2111以上)の線材(φ2:長さ
10cm )とを、上記実施例■の場合とは電流値のみ
1,500Aに変更して、他は同一条件にて接合した結
果、極めて強固な接合効果が得られた。
Example ■ Titanium-nickel shape memory alloy (composition: Ni40-8
0%, Ti 60-40%, Cu 3%, unavoidable impurities 0.5% or less) wire rod (φ1.4 = length 70) and nickel-copper alloy material = moneL metaLcNi 6
3% or more, Cu 2111 or more) wire rod (φ2: length 10 cm) was bonded with the current value changed to 1,500 A from the case of Example ① above, and the other conditions were the same. A strong bonding effect was obtained.

本発明方法の概要は概ね上記実施例のおよび■に示すと
おりであるが、本発明は前述の実施例に限定されるもの
では決してなく、「特許請求の範囲」の記載内で種々の
工程的付加または削除が可能であって、例えば上記実施
例■および■においてはニッケル・チタン系合金成形材
に対し高周波加熱による部分的焼鈍を施したが、これは
後の接合工程での加圧による折損を配慮したからであり
、形状的またはサイズ的に耐え得るものであれば不要で
あり、また、接合すべき金属材料双方の接合対象部位を
や\突起状に膨出させて熱集中を促進することも自由で
あり、何れの場合も本発明の技術的範囲に属するものと
云うべきである。
Although the outline of the method of the present invention is generally as shown in the above embodiments and (2), the present invention is by no means limited to the above-mentioned embodiments, and various process steps may be modified within the scope of the claims. For example, in Examples ① and ② above, the nickel-titanium alloy molded material was partially annealed by high-frequency heating, but this may cause breakage due to pressure during the subsequent joining process. It is not necessary if it can withstand the shape or size, and the parts to be joined of both metal materials to be joined are made to bulge out in a slightly protruding shape to promote heat concentration. It should be said that any of these cases falls within the technical scope of the present invention.

〔強度試験〕〔Strength test〕

上記の実施例■で得た試料のと実施例■で得た試料■と
を用いて、次の試験を行った。
The following test was conducted using the sample obtained in Example (1) and the sample (2) obtained in Example (2) above.

(1)屈曲試験 試料■および試料■の接合部位を中心にして前後に90
’ずつ(計180°)の角度範囲で1分間に30回の速
度で、240回往復的に繰り返して屈曲させたが、試料
■および試料■は何れも、原形・状に復元し目視上何ら
の変形も生じず、また何らの弾性劣化も起こらなかった
(1) Bending test sample ■ and sample ■ back and forth 90 degrees around the joint site
Although the bending was repeated 240 times at a rate of 30 times per minute in an angular range of No deformation occurred, and no elastic deterioration occurred.

(2)  引張強度試験 試料■および試料■の接合部分の引張強度を、引張試験
機(姪島津製作所:^as−A型ンによって計測したと
ころ、次のような結果が得られた。なお、試験は、試料
■および試料■の両端を試験機のクランプで挾み、接合
部分を中心にして上下に引っ張ることによって実施した
(2) Tensile strength test The tensile strength of the bonded portion of sample ■ and sample ■ was measured using a tensile tester (Meio Shimadzu Corporation: ^as-A type), and the following results were obtained. The test was carried out by clamping both ends of sample (1) and sample (2) with the clamps of the testing machine and pulling them up and down centering on the joint.

i、試料■について、 引張荷重が82.7]arfに達したところで、超弾性
金属線の部分で破断した。この強度は、実用上、有効に
して十分なものである。
Regarding sample (i), when the tensile load reached 82.7] arf, the superelastic metal wire broke. This strength is practically effective and sufficient.

土、試料■について、 引張荷重が55.1 kg fに達したところで、ニッ
ケル・銅合金(moneL metal)線材の部分で
破断した。
Regarding soil and sample (2), when the tensile load reached 55.1 kg f, the nickel-copper alloy (moneL metal) wire broke.

この強度も、実用上、有効にして十分なものである。This strength is also effective and sufficient for practical use.

C本発明の効果〕 以上実施例をもって説明したとおり、本発明方法によれ
ば、ニッケル・チタン系合金成形材に含まれるニッケル
成分とニッケル基合金材料に含まれるニッケル成分とが
帯熱柔軟化した状態の下に高圧で押圧されることになる
ので、共通するニッケル成分がベースとなって相互の組
織が融合して冶金的に一体化すること\なり、従来接合
が困難であると信じられていたニッケル・チタン系合金
成形材を異種のニッケル基合金材料とでも非常に強固に
接合させることが可能となった。
C. Effects of the present invention] As explained above using the examples, according to the method of the present invention, the nickel component contained in the nickel-titanium alloy molded material and the nickel component contained in the nickel-based alloy material were softened by heating. Since they are pressed under high pressure under such conditions, the common nickel component becomes the base, and the mutual structures fuse and become metallurgically integrated, which was previously believed to be difficult to join. This makes it possible to extremely firmly bond nickel-titanium alloy molded materials to dissimilar nickel-based alloy materials.

また、本発明においては、ニッケル・′チタン系合金成
形材およびニッケル基合金材料をニッケルの溶融温度近
くまでに昇温させはするが、温度上昇部位が局所的な接
合対象部位に限られ、しかも非常に微小時間の温度上昇
であるので、接合部位以外の箇所には接合熱による影響
を殆ど与えることなく、かつ、非常な高速度で能率的に
接合処理することが可能となった。
In addition, in the present invention, although the temperature of the nickel/titanium alloy molded material and the nickel-based alloy material is raised to near the melting temperature of nickel, the temperature increase is limited to the local welding target region. Since the temperature rise occurs over a very short period of time, it has become possible to perform the bonding process efficiently at a very high speed, with almost no effect of bonding heat on areas other than the bonding site.

さらに、本発明によれば、従来異種金属との接合が困難
視されていたニッケル・チタン合金成形材を、ニッケル
基の異種合金にでも迅速かつ強固に接合することが可能
となり、しかも接合面積も極度に小さくできるので、ニ
ッケル・チタン系の形状記憶合金や超弾性合金の用途を
産業用・軍需用から衣食住の各分野に渡る日常生活の分
野に迄大きく拡張することが可能となった。
Furthermore, according to the present invention, it is now possible to quickly and firmly join nickel-titanium alloy molded materials, which have conventionally been considered difficult to join with dissimilar metals, even to nickel-based dissimilar alloys, while reducing the joining area. Because they can be made extremely small, it has become possible to greatly expand the uses of nickel-titanium-based shape memory alloys and superelastic alloys from industrial and military applications to everyday life, including clothing, food, and housing.

このように本発明は、従来、接合技術が隘路となって用
途が不可避的に限定されていたニッケル・チタン系合金
材料の利用分野を飛躍的に広げ得るものであり、その産
業上の利用優値は頗る高いものと云える。
In this way, the present invention can dramatically expand the field of application of nickel-titanium alloy materials, whose applications have traditionally been unavoidably limited due to the bottleneck in bonding technology, and improve its industrial application advantages. The value can be said to be extremely high.

Claims (4)

【特許請求の範囲】[Claims] (1)ニッケル・チタン系合金から成る成形材の所定局
部をニッケル基合金材料に接合するにあたり、不活性雰
囲気中で前記両材の接合対象部位を瞬間的にニッケルの
溶融温度近くにまで急速に昇温させて帯熱柔軟状態の当
該接合対象部位同士を高圧で押し合わせることにより、
両金属材料を冶金的に接合一体化せしめることを特徴と
したニッケル・チタン系合金成形材の瞬間接合方法。
(1) When joining a predetermined local part of a formed material made of a nickel-titanium alloy to a nickel-based alloy material, the part to be joined of both materials is rapidly brought to a temperature close to the melting temperature of nickel in an inert atmosphere. By raising the temperature and pressing the parts to be joined together in a thermo-flexible state under high pressure,
An instant bonding method for nickel-titanium alloy formed materials, which is characterized by metallurgically joining and integrating both metal materials.
(2)ニッケル・チタン系合金が、Ni含有率が60〜
40%およびTi含有率が40〜60%の形状記憶合金
または超弾性合金であり、これを接合すべきニッケル基
合金材料が、Ni−Cu系合金、Ni−Mo系合金、N
i−Cr系合金、またはNi−Cr−Fe系合金である
請求項(1)記載の、ニッケル・チタン系合金成形材の
瞬間接合方法。
(2) The nickel-titanium alloy has a Ni content of 60~
It is a shape memory alloy or a superelastic alloy with a Ti content of 40% and 40% to 60%, and the nickel-based alloy material to which it is to be joined is a Ni-Cu alloy, a Ni-Mo alloy, a N
The instant joining method for a nickel-titanium alloy molded material according to claim 1, which is an i-Cr alloy or a Ni-Cr-Fe alloy.
(3)ニッケル・チタン系合金から成る成形材の接合対
象部位を予じめ部分的に焼鈍処理を施しておく請求項(
1)または(2)記載の、ニッケル・チタン系合金成形
材の瞬間接合方法。
(3) A claim in which the part of the formed material made of a nickel-titanium alloy to be joined is partially annealed in advance (
1) or (2), the instant joining method for nickel-titanium alloy molded materials.
(4)ニッケル・チタン系合金から成る成形材の接合対
象部位に近接する部位とニッケル基合金材料の接合対象
部位に近接する部位とを伝熱性金属材で被包することに
よって放熱部を形成し、接合対象部位以外の過熱を抑制
しつゝ接合対象部位のみをニッケル溶融温度近くにまで
瞬間的に急速に昇温させて冶金的に接合一体化せしめる
請求項(1)〜(3)の何れか一つに記載の、ニッケル
・チタン系合金成形材の瞬間接合方法。
(4) A heat dissipation part is formed by covering the part of the formed material made of a nickel-titanium alloy close to the part to be welded and the part of the nickel-based alloy material close to the part to be welded with a heat conductive metal material. , any one of claims (1) to (3), wherein only the parts to be joined are heated rapidly and instantaneously to near the nickel melting temperature while suppressing overheating of parts other than the parts to be joined, thereby metallurgically joining and integrating the parts. A method for instant joining of nickel-titanium alloy molded materials as described in one of the above.
JP2065076A 1990-03-14 1990-03-14 Instant joining method for nickel / titanium alloy moldings Expired - Lifetime JP2563843B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2065076A JP2563843B2 (en) 1990-03-14 1990-03-14 Instant joining method for nickel / titanium alloy moldings
US07/768,241 US5431506A (en) 1990-03-14 1991-03-13 Property of bonded metal, including forming material of nickel-titatium alloy, and the method of manufacturing the same
DE69112553T DE69112553T2 (en) 1990-03-14 1991-03-13 METAL WORKPIECE THAT CONTAINS ELEMENTS OF NICKEL-TITANIUM ALLOY AND THEIR PRODUCTION.
KR1019910701603A KR960010511B1 (en) 1990-03-14 1991-03-13 Property of bonded metal including forming meterial of ni-ti alloy, and the method of manufacturing the same
PCT/JP1991/000339 WO1991013717A1 (en) 1990-03-14 1991-03-13 Joined metallic work containing shaped member of nickel-titanium alloy and production thereof
AT91906272T ATE127053T1 (en) 1990-03-14 1991-03-13 METALLIC WORKPIECE CONTAINING NICKEL-TITANIUM ALLOY ELEMENTS AND THE PRODUCTION THEREOF.
EP91906272A EP0477375B1 (en) 1990-03-14 1991-03-13 Joined metallic work containing shaped member of nickel-titanium alloy and production thereof
TW080106844A TW212207B (en) 1990-03-14 1991-08-28
HK97102048A HK1000462A1 (en) 1990-03-14 1997-10-29 Joined metallic work containing shaped member of nickel-titanium alloy and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2065076A JP2563843B2 (en) 1990-03-14 1990-03-14 Instant joining method for nickel / titanium alloy moldings

Publications (2)

Publication Number Publication Date
JPH03264174A true JPH03264174A (en) 1991-11-25
JP2563843B2 JP2563843B2 (en) 1996-12-18

Family

ID=13276502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2065076A Expired - Lifetime JP2563843B2 (en) 1990-03-14 1990-03-14 Instant joining method for nickel / titanium alloy moldings

Country Status (1)

Country Link
JP (1) JP2563843B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163379A (en) * 1984-09-06 1986-04-01 Kawasaki Steel Corp Manufacture of clad steel plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163379A (en) * 1984-09-06 1986-04-01 Kawasaki Steel Corp Manufacture of clad steel plate

Also Published As

Publication number Publication date
JP2563843B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
EP0477375B1 (en) Joined metallic work containing shaped member of nickel-titanium alloy and production thereof
US5368661A (en) Method for joining parts of Ni-Ti alloys with different metals
JPS59209498A (en) Method of combining metallic part
CN105834540B (en) A kind of method of Ti-Ni high-temp solder soldering TZM alloy
JPS63214716A (en) Metallic spectacle frame
JPH03264174A (en) Instantaneous joining method of nickel/titanium alloy molding material
JPS6045696B2 (en) Copper-based shape memory alloy
JP2006130559A (en) Method for repairing sheet metal and pulling-out member used for it
JP3119906B2 (en) Joint of carbon material and metal
JPH07150369A (en) Composite wire made of shape memory alloy
US5950906A (en) Reversible brazing process
JPS59170246A (en) Production of titanium nickel alloy parts having reversible shape memory effect
JPH0523871A (en) Joined body and joining method of titanium or titanium alloy and gold alloy
JPS61227141A (en) Niti shape memory alloy wire
Blue Rapid Infrared Joining of Ti) 6 Al) 4 V
KR20170141031A (en) Metal sheets spot welding with inoculation agents
JPS63177959A (en) Aluminum alloy brazing method without bonding metal
Wang et al. Microstructure and Mechanical Properties of Resistance Spot Welds for Fe-based Metallic Glass
JPH031459A (en) Wiring connector using shape memory alloy
JPH01179768A (en) Method for bonding ceramic material and metallic material
JPS6042283A (en) Method of bonding oxide ceramics and active metal
JPH05185251A (en) Joint part of ni-ti alloy and joining method therefor
JPS5895670A (en) Method of bonding silicon nitride ceramic and metal
JPH04367382A (en) High-strength tial joined body and joining method thereof
Pierce et al. Reversible brazing process

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14