JPH1147954A - Method of joining titanium and steel - Google Patents

Method of joining titanium and steel

Info

Publication number
JPH1147954A
JPH1147954A JP22113897A JP22113897A JPH1147954A JP H1147954 A JPH1147954 A JP H1147954A JP 22113897 A JP22113897 A JP 22113897A JP 22113897 A JP22113897 A JP 22113897A JP H1147954 A JPH1147954 A JP H1147954A
Authority
JP
Japan
Prior art keywords
titanium
film
alloy
amolphous
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22113897A
Other languages
Japanese (ja)
Inventor
Shigeo Ota
滋夫 太田
Toshio Ishida
敏夫 石田
Takao Araki
孝雄 荒木
Minoru Nishida
稔 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Chemical Plants Co Ltd
Original Assignee
Kimura Chemical Plants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Chemical Plants Co Ltd filed Critical Kimura Chemical Plants Co Ltd
Priority to JP22113897A priority Critical patent/JPH1147954A/en
Publication of JPH1147954A publication Critical patent/JPH1147954A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a product with large joining strength and high precision by diffusion welding, with a compound insert material interposed for which a titanium group or a copper group amolphous alloy foil and a nickel foil are combined, between titanium or titanium alloy and carbon steel or stainless steel. SOLUTION: The surface to be joined of a base material 4 and a clad material 1 are ground, so that an oxide film on the surface is removed. A copper group amolphous alloy film 2 and a nickel film 3, which are a compound insert material, are also cleaned by ultrasonic cleaning and the like, so that an oil film for example is removed. A nickel film is laminated on the base material 4 of carbon steel or stainless steel, a copper group amolphous alloy film 2 is laminated over it, and a clad material 1 of titanium or a titanium alloy is further laminated over it, with diffusion welding performed inside a vacuum welding equipment. As a result, the formation of a brittle intermetallic compound or carbide is suppressed by the nickel film, in the boundary between the base material 4 and the nickel film 3 or in the area of the copper group amolphous alloy film 2, with the formation of the intermetallic compound controlled in the boundary between the copper group amolphous alloy film 2 and the clad material 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐食性、耐強度に
優れたチタンないしチタン合金に炭素鋼ないしステンレ
ス鋼を接合する方法に関する。
The present invention relates to a method for joining carbon steel or stainless steel to titanium or a titanium alloy having excellent corrosion resistance and strength.

【0002】[0002]

【従来の技術】従来、チタンは優れた耐食性から化学お
よび電気分野で使用され、また比強度が高いことからチ
タン合金としてその需要を伸ばしている。しかし、非常
に高価であること、機械加工が難しい、焼き付けやす
い、溶接および接合が難しいなどの理由から特殊分野で
のみ採用されていた。しかしながら、チタンの価格は単
純にはステンレス鋼の約10倍であるが、比重がステン
レス鋼に比べて約6割であること、腐食代を除いてサイ
ズダウンできること、長寿命でメンテナンスフリーであ
ることなど用途毎にサイクルコストの観点から評価すれ
ばむしろ割安であるので、異種金属と層状に接合し、優
れた機能と経済性を有するクラッド材料としての適用が
研究されてきた。特に、鋼の優れた強度、熱伝導性およ
び溶接性とチタンの高耐食性を兼備するチタンクラッド
鋼板が開発された。
2. Description of the Related Art Conventionally, titanium has been used in the fields of chemistry and electricity due to its excellent corrosion resistance, and its demand has been growing as a titanium alloy because of its high specific strength. However, they have been adopted only in special fields because they are very expensive, difficult to machine, easy to bake, and difficult to weld and join. However, although the price of titanium is simply about 10 times that of stainless steel, its specific gravity is about 60% of that of stainless steel, it can be reduced in size except for corrosion allowance, and it has a long life and is maintenance-free For example, since it is relatively inexpensive if evaluated from the viewpoint of cycle cost for each application, application as a clad material having excellent functions and economical properties by joining layers with different metals has been studied. In particular, a titanium clad steel sheet having excellent strength, heat conductivity and weldability of steel and high corrosion resistance of titanium has been developed.

【0003】このチタンクラッド鋼の製造方法には爆発
圧着法、圧延法、ろう接法、拡散接合法などが挙げられ
る。爆発圧着法は爆薬が爆発する際に発生する衝撃波や
高圧力を利用して金属同士を接合する方法であり、冷間
で行われるため熱的影響が少なく、また極めて短時間で
接合が完了することや、接合界面に脆弱な金属間化合物
が生成しにくいなどの特徴がある。チタンクラッド鋼は
主にこの方法により製造されてきたが、火薬類の取り扱
いや、爆薬の爆発時に発生する騒音や振動などの問題が
あつた。また、圧延法は熱間圧延により母材と合せ材と
を密着させるとともに所定の寸法まで圧下するので、製
造寸法範囲が広く、大量生産に適しているが、チタンが
活性な金属であるために、加熱によって接合界面に脆い
金属間化合物を形成し、実用化が非常に困難であった。
[0003] Examples of the method for producing the titanium clad steel include an explosion pressure bonding method, a rolling method, a brazing method, and a diffusion bonding method. Explosive crimping is a method of joining metals using the shock wave and high pressure generated when an explosive explodes. Since it is performed cold, there is little thermal effect, and the joining is completed in an extremely short time And that a brittle intermetallic compound is not easily generated at the bonding interface. Titanium clad steel has been produced mainly by this method, but there are problems such as handling explosives and noise and vibration generated when explosives explode. In addition, since the rolling method makes the base material and the composite material adhere to each other by hot rolling and reduces the size to a predetermined size, the manufacturing size range is wide and suitable for mass production, but since titanium is an active metal, In addition, a brittle intermetallic compound was formed at the bonding interface by heating, and it was very difficult to put it to practical use.

【0004】さらに、ろう接法は母材を溶融させること
なく、接合部の隙間中にろうを流入させ、冷却、凝固さ
せて接合する方法であって、チタンの表面には強固な酸
化皮膜が形成されており、ろうの濡れを促進させるため
にフラックスが必要である。このために接合手順が複雑
になり、フラックスが接合界面に不純物として残留し、
継手の耐食性と接合強さに影響を及ぼしていた。さらに
また、拡散接合法は複雑な形状部品の組立接合ができる
ことから、他の方法では構造的に製作が困難であった高
精密な製品が製作でき、製品の高品質化やコストダウン
が図れることであり、また冶金的な問題で溶融溶接が困
難な複合材料、異種材料、焼結合金、セラミックスなど
の接合ができ、チタンと鋼の接合も可能であって、母材
と合せ材とを密着させ、母材ないし合せ材の融点以下の
温度条件で、塑性変形をできるかぎり生じない程度に加
圧して、接合面間に生じる原子の拡散を利用して接合す
る方法である。
[0004] Further, the brazing method is a method in which a brazing material is flown into gaps of a joining portion without melting the base material, and cooled and solidified to join. A strong oxide film is formed on the surface of titanium. It is formed and requires flux to promote wetting of the wax. This complicates the joining procedure, leaving flux at the joining interface as an impurity,
It affected the corrosion resistance and joint strength of the joint. Furthermore, the diffusion bonding method can assemble and join complicated shaped parts, so that it is possible to manufacture high-precision products that were structurally difficult to manufacture using other methods, and to achieve higher quality and cost reduction of products. In addition, it is possible to join composite materials, dissimilar materials, sintered alloys, ceramics, etc., which are difficult to melt weld due to metallurgical problems. In this method, plasticizing is performed under temperature conditions equal to or lower than the melting point of the base material or the bonding material to such an extent that plastic deformation is not generated as much as possible, and bonding is performed by utilizing diffusion of atoms generated between bonding surfaces.

【0005】また最近、耐熱超合金をろう接よりも高強
度に接合する方法として、母材や合せ材よりも低い融点
のフィラーメタルを接合面間に挿入し、所定の接合温度
で一時的に液相を生じさせ、拡散を利用して等温凝固さ
せることによって接合する液相拡散接合法が開発され
た。この接合法はろう接と拡散接合の中間的な接合方法
で、種々の母材並びに合せ材とフィラーメタルの組み合
わせに対して有効であり、また接合界面に挿入するフィ
ラーメタルとして、アモルファス合金箔が挙げられる。
このアモルファス合金箔は偏析、結晶粒、粒界などが存
在しない非晶質構造により、溶融が一様に行われ、界面
における流れも良好で、箔材内部に局部的な融点の変化
がなく、溶け分かれなどの現象が起きにくいからであ
る。アモルファス合金は液体急冷することにより薄帯の
加工が可能であり、その薄帯は剛性があるため、粉末ろ
うなどと比べて母材と合せ材の間に設置する際に簡便で
あった。
[0005] Recently, as a method of joining a heat-resistant superalloy with higher strength than brazing, a filler metal having a lower melting point than a base material or a bonding material is inserted between joining surfaces, and temporarily at a predetermined joining temperature. A liquid phase diffusion bonding method has been developed in which a liquid phase is generated and bonded by isothermal solidification using diffusion. This bonding method is an intermediate bonding method between brazing and diffusion bonding, and is effective for various base materials and combinations of fillers and filler metals.Amorphous alloy foil is used as filler metal to be inserted into the bonding interface. No.
This amorphous alloy foil is uniformly melted by the amorphous structure without segregation, crystal grains, grain boundaries, etc., the flow at the interface is good, there is no local change in melting point inside the foil material, This is because phenomena such as melting are unlikely to occur. Amorphous alloys can be processed into thin ribbons by quenching the liquid, and the thin ribbons are rigid. Therefore, they are easier to install between a base material and a composite material than powdered brazing or the like.

【0006】[0006]

【発明が解決しようとする課題】ところが、このチタン
ないしチタン合金と炭素鋼ないしステンレス鋼とフィラ
ーメタルとしてアモルファス合金箔を用いて液相拡散接
合する方法にあっては、ある狭い特定条件下で高い接合
部強さ得られたが、その接合強さはバラッキが大きく、
接合界面にTi−Fe系金属間化合物であるTiFeお
よびTiFe2、ならびに炭化物であるTiCが形成さ
れて、接合部の強さは著しく低下するという問題があっ
た。
However, in the method of liquid-phase diffusion bonding using titanium or a titanium alloy, carbon steel or stainless steel, and an amorphous alloy foil as a filler metal, the method is difficult under certain specific conditions. Although the joint strength was obtained, the joint strength was large,
TiFe and TiFe 2 , which are Ti—Fe intermetallic compounds, and TiC, which is a carbide, are formed at the bonding interface, and there is a problem that the strength of the bonding part is significantly reduced.

【0007】そこで、本発明は、このような問題を解決
することによって、チタンないしチタン合金と炭素鋼な
いしステンレス鋼との接合部に脆弱な金属間化合物を形
成することなく、接合強さを大きくすることができ、高
精密な製品が製作できる接合法を提供することにある。
Therefore, the present invention solves such a problem and increases the joining strength without forming a brittle intermetallic compound at the joint between titanium or a titanium alloy and carbon steel or stainless steel. It is an object of the present invention to provide a bonding method that can manufacture a highly precise product.

【0008】[0008]

【課題を解決するための手段】該目的を達成するために
本発明の接合法はチタンないしチタン合金と炭素鋼ない
しステンレス鋼との間にチタン基ないし銅基アモルファ
ス合金箔とニッケル箔とを組み合わせた複合インサート
材を介在させて、拡散接合する構成としたものである。
In order to achieve the above object, a bonding method according to the present invention combines a titanium-based or copper-based amorphous alloy foil and a nickel foil between titanium or a titanium alloy and carbon steel or stainless steel. The structure is such that the composite insert material is interposed and diffusion bonding is performed.

【0009】[0009]

【発明の実施の形態】以下本発明について説明する。本
発明にあっては、合せ材のチタンないしチタン合金と母
材の炭素鋼ないしステンレス鋼とを液相拡散接合により
接合するのであるが、先ずこの母材および合せ材の被接
合面を研磨して表面の酸化皮膜を除去する。また複合イ
ンサート材である銅基アモルファス合金箔とニッケル箔
も超音波洗浄等によって洗浄し油膜等を除去して供す
る。図1に示すように、炭素鋼ないしステンレス鋼の母
材4の上にニッケル箔3を、このニッケル箔3の上に銅
基アモルファス合金箔2を、さらにこの銅基アモルファ
ス合金箔2の上にチタンないしチタン合金の合せ材1を
順次積層している。この積層材を真空接合装置内で85
0〜980℃の接合温度、1〜10分間の保持時間、
0.5〜0.7kgf/mm2負荷の接合圧力にて拡散接合して
いる。これにより、炭素鋼ないしステンレス鋼とニッケ
ル箔との界面あるいは銅基アモルファス合金領域に脆弱
な金属間化合物や炭化物の生成がニッケル箔により抑制
され、さらに銅基アモルファス合金箔とチタンないしチ
タン合金との界面での金属間化合物の生成をを適切に制
御することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below. In the present invention, titanium or titanium alloy as a joining material and carbon steel or stainless steel as a base material are joined by liquid phase diffusion bonding. First, the surfaces to be joined of the base material and the joining material are polished. To remove the oxide film on the surface. Further, the copper-based amorphous alloy foil and the nickel foil, which are composite insert materials, are also cleaned by ultrasonic cleaning or the like to remove an oil film or the like. As shown in FIG. 1, a nickel foil 3 is placed on a base material 4 of carbon steel or stainless steel, a copper-based amorphous alloy foil 2 is placed on the nickel foil 3, and a nickel-based amorphous alloy foil 2 is placed on the copper-based amorphous alloy foil 2. A composite material 1 of titanium or a titanium alloy is sequentially laminated. The laminated material is placed in a vacuum bonding apparatus for 85
A bonding temperature of 0 to 980 ° C., a holding time of 1 to 10 minutes,
Diffusion bonding is performed at a bonding pressure of 0.5 to 0.7 kgf / mm 2 load. As a result, the formation of intermetallic compounds and carbides that are fragile at the interface between carbon steel or stainless steel and the nickel foil or in the copper-based amorphous alloy region is suppressed by the nickel foil. The formation of intermetallic compounds at the interface can be appropriately controlled.

【0010】[0010]

【実施例】合せ材であるチタンは厚み3mmの純度99.
5%の工業用純チタンとし、母材である炭素鋼は厚み9
mmのSS400鋼を用いた。インサート材は厚み50μ
mmの銅基アモルファス合金箔および厚み20mmのニッケ
ル箔とした。これらの材料をチタン、銅基アモルファス
合金箔、ニッケル箔、炭素鋼の順で積層する。この積層
試料を初期真空度約7×10-4torrの真空接合装置
内で1分間に180℃の加熱速度で接合温度まで加熱
し、所定温度において所定の時間保持して行った後、ア
ルゴン雰囲気中で冷却した。この接合温度は850〜9
30℃、保持時間は1〜10分間、接合圧力は0.5〜
0.7kgf/mm2と変化させた。
[Example] Titanium as a bonding material has a thickness of 3 mm and a purity of 99.
5% industrial pure titanium, carbon steel as the base material having a thickness of 9
mm SS400 steel was used. Insert material is 50μ thick
mm based copper alloy foil and a 20 mm thick nickel foil. These materials are laminated in the order of titanium, copper-based amorphous alloy foil, nickel foil, and carbon steel. The laminated sample is heated to a bonding temperature at a heating rate of 180 ° C. per minute in a vacuum bonding apparatus having an initial degree of vacuum of about 7 × 10 −4 torr, and is held at a predetermined temperature for a predetermined time. Cooled in. This bonding temperature is 850-9
30 ° C., holding time 1-10 minutes, bonding pressure 0.5-
It was changed to 0.7 kgf / mm 2 .

【0011】接合した試料を852℃、877℃、92
7℃の各接合温度において保持時間を10分間として接
合させた接合部組織は図2(a)、(b)、(c)に示すよう
に、上部からチタン原質部、Ti−マトリックス中に析出
物が緻密に存在する領域(析出層)、ニッケル箔を含む
接合界面部分および炭素鋼原質領域に大別された。この
結果、接合温度852℃ではせん断強さは、保持時間が
長くなるにしたがい徐々に増加し、保持時間が20分間
以上では平均で約18kgf/mm2程度あった。接合温度8
77℃では保持時間1分間でせん断強さは約18kgf/mm
2と高い値を示したが、保持時間が10分間になると急
に低下し、その後保持時間が増加してもせん断強さはほ
ぼ一定で、約13kgf/mm2であった。さらに接合温度9
27℃と高くなるとせん断強さは、保持時間によらず約
13kgf/mm2の一定であり、強度のバラツキがほとんど
なかった。
The joined sample was heated at 852 ° C., 877 ° C., 92
As shown in FIGS. 2 (a), (b), and (c), the joint structure obtained by joining with a holding time of 10 minutes at each joining temperature of 7 ° C. was placed in the titanium original part and the Ti-matrix from the top. It was roughly classified into a region where precipitates exist densely (precipitation layer), a bonding interface portion including a nickel foil, and a carbon steel raw material region. As a result, at a joining temperature of 852 ° C., the shear strength gradually increased as the holding time was increased, and was about 18 kgf / mm 2 on average when the holding time was 20 minutes or longer. Joining temperature 8
At 77 ° C, the shear strength is about 18kgf / mm with a holding time of 1 minute.
Although the value was as high as 2 , it dropped sharply when the holding time became 10 minutes, and the shear strength was almost constant even after the holding time increased, and was about 13 kgf / mm 2 . Further bonding temperature 9
When the temperature increased to 27 ° C., the shear strength was constant at about 13 kgf / mm 2 irrespective of the holding time, and there was almost no variation in strength.

【0012】ここで、せん断強さの平均で約18kgf/mm
2、最高で24.5kgf/mm2と比較的高い値が得られた接
合温度が852℃、保持時間が10分間におけるチタン
側のせん断破面は図3(a)に示すように、せん断方向に
対して線条痕が入り、剥離する際に擦れた跡がほぼ破面
全体で見られた。この部分の組成分析を行うと、銅基ア
モルファス合金成分は認められず、NiとFeのみが認
められた。また、チタン側破面にはNiのピークが、炭
素鋼側にはd−Feのピークが主として認められた。し
たがって、接合温度が低い場合は、固相拡散接合となる
Ni/Fe界面間の相互拡散が十分行われていないた
め、破壊は主にNi/Fe界面で生じる。しかし、Ni
とFeは互いに固溶し、強度の低い金属間化合物を形成
しないために、接合部は高い接合強さを有することとな
る。
Here, the average shear strength is about 18 kgf / mm.
2. The relatively high value of 24.5 kgf / mm 2 at the maximum was obtained at a bonding temperature of 852 ° C and a holding time of 10 minutes. The shear fracture surface on the titanium side, as shown in Fig. , And traces of rubbing upon peeling were observed on almost the entire fractured surface. When a composition analysis of this part was performed, no copper-based amorphous alloy component was recognized, and only Ni and Fe were recognized. Further, a Ni peak was mainly observed on the titanium-side fracture surface, and a d-Fe peak was mainly observed on the carbon steel side. Therefore, when the bonding temperature is low, the interdiffusion between the Ni / Fe interfaces, which becomes solid-phase diffusion bonding, is not sufficiently performed, and the breakdown mainly occurs at the Ni / Fe interface. However, Ni
And Fe form a solid solution with each other and do not form a low-strength intermetallic compound, so that the joint has a high joint strength.

【0013】これに対して、せん断強さの低い接合温度
927℃、保持時間10分間では、せん断破面は図3
(c)に示すように、平坦な面が階段状に存在して、タン
グとみられる突起物が破面に点在していたことから、脆
性的な破面であった。また組成分析の結果から、破面か
らはTiとNiのピークが認められた。さらにTi−N
i系金属間化合物(Ti2Ni、TiNi、TiNi3
がチタン側ならびに炭素鋼側破面のいずれからも認めら
れた。したがって、接合温度が高い場合には、Ni/F
e界面は十分な相互拡散が生じ接合しているが、Ti/
Ni界面に脆弱なTi−Ni系金属間化合物が形成され
ており、破壊はその脆性なTi/Ni界面で生じたた
め、接合強度が低下することとなる。尚、図3(b)は接
合温度877℃、保持時間10分間におけるせん断破面
である。
On the other hand, at a joining temperature of 927 ° C. with a low shear strength and a holding time of 10 minutes, the shear fracture surface is shown in FIG.
As shown in (c), the flat surface was present in a step-like manner, and projections, which were considered to be tongues, were scattered on the fracture surface, and thus the surface was brittle. From the results of the composition analysis, peaks of Ti and Ni were recognized from the fracture surface. Further Ti-N
i-based intermetallic compound (Ti 2 Ni, TiNi, TiNi 3 )
Was observed from both the titanium side and the carbon steel side fracture surface. Therefore, when the bonding temperature is high, Ni / F
The e interface has sufficient interdiffusion and is joined, but Ti /
Since a brittle Ti-Ni-based intermetallic compound is formed at the Ni interface, and the fracture occurs at the brittle Ti / Ni interface, the bonding strength is reduced. FIG. 3B shows a shear fracture surface at a bonding temperature of 877 ° C. and a holding time of 10 minutes.

【0014】以上本発明の代表的と思われる実施例につ
いて説明したが、本発明は必ずしもこれらの実施例構造
のみに限定されるものではなく、本発明にいう前記の構
成要件を備え、かつ、本発明にいう目的を達成し、以下
にいう効果を有する範囲内において適宜改変して実施す
ることができるものである。
Although the embodiments which are considered to be representative of the present invention have been described above, the present invention is not necessarily limited to only the structures of the embodiments, and has the above-mentioned constitutional requirements according to the present invention. The present invention achieves the object of the present invention and can be appropriately modified and implemented within the range having the following effects.

【0015】[0015]

【発明の効果】以上の説明から既に明らかなように、本
発明にいうところの接合法はチタンないしチタン合金と
炭素鋼ないしステンレス鋼との間にチタン基ないし銅基
アモルファス合金箔とニッケル箔とを組み合わせた複合
インサート材を介在させて、拡散接合する構成としたも
のであるから、チタンないしチタン合金と炭素鋼ないし
ステンレス鋼との間に脆弱な金属間化合物を形成するこ
となく、接合強度を大きくすることができ、高精密な製
品が製作できるという顕著な効果を期待することが出来
るに至ったのである。
As is clear from the above description, the joining method according to the present invention employs a titanium-based or copper-based amorphous alloy foil and a nickel foil between titanium or a titanium alloy and carbon steel or stainless steel. In this case, the composite insert material is interposed and diffusion bonded, so that the bonding strength is reduced without forming a brittle intermetallic compound between titanium or titanium alloy and carbon steel or stainless steel. It is possible to expect a remarkable effect that the size can be increased and a highly precise product can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の積層を示した図。FIG. 1 is a diagram showing a stack according to an embodiment of the present invention.

【図2】本発明の実施例の接合組織写真。FIG. 2 is a photograph of a joint structure of an example of the present invention.

【図3】本発明の実施例のせん断破面組織写真。FIG. 3 is a photograph of a shear fracture surface structure of an example of the present invention.

【符号の説明】[Explanation of symbols]

1…合せ材 2…銅基アモルファス合金箔 3…ニッケル箔 4…母材 DESCRIPTION OF SYMBOLS 1 ... Laminated material 2 ... Copper base amorphous alloy foil 3 ... Nickel foil 4 ... Base metal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B23K 20/00 360 B23K 20/00 360E (72)発明者 西田 稔 愛媛県松山市文京町3番 愛媛大学工学部 機能材料工学科内──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification code FI B23K 20/00 360 B23K 20/00 360E (72) Inventor Minoru Nishida 3rd Bunkyocho, Matsuyama-shi, Ehime Pref.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チタンないしチタン合金と炭素鋼ないし
ステンレス鋼との間にチタン基ないし銅基アモルファス
合金箔とニッケル箔とを組み合わせた複合インサート材
を介在させて、拡散接合してなる接合法。
1. A bonding method in which a composite insert material comprising a combination of a titanium-based or copper-based amorphous alloy foil and a nickel foil is interposed between titanium or a titanium alloy and carbon steel or stainless steel, and diffusion-bonded.
JP22113897A 1997-07-31 1997-07-31 Method of joining titanium and steel Pending JPH1147954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22113897A JPH1147954A (en) 1997-07-31 1997-07-31 Method of joining titanium and steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22113897A JPH1147954A (en) 1997-07-31 1997-07-31 Method of joining titanium and steel

Publications (1)

Publication Number Publication Date
JPH1147954A true JPH1147954A (en) 1999-02-23

Family

ID=16762064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22113897A Pending JPH1147954A (en) 1997-07-31 1997-07-31 Method of joining titanium and steel

Country Status (1)

Country Link
JP (1) JPH1147954A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014052A (en) * 2003-06-26 2005-01-20 Japan Atom Energy Res Inst Nonfused joining method of different kind of material
CN105643138A (en) * 2014-12-02 2016-06-08 阿文美驰技术有限责任公司 Instant liquid phase connection among different materials
CN114932336A (en) * 2022-05-27 2022-08-23 郑州机械研究所有限公司 Copper-phosphorus-zinc-tin soldering lug and preparation method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014052A (en) * 2003-06-26 2005-01-20 Japan Atom Energy Res Inst Nonfused joining method of different kind of material
JP4534008B2 (en) * 2003-06-26 2010-09-01 独立行政法人 日本原子力研究開発機構 Non-melting joining method for dissimilar materials
CN105643138A (en) * 2014-12-02 2016-06-08 阿文美驰技术有限责任公司 Instant liquid phase connection among different materials
JP2016107337A (en) * 2014-12-02 2016-06-20 アービンメリトール・テクノロジー,エルエルシー Transient liquid phase joining of dissimilar materials
US9943927B2 (en) 2014-12-02 2018-04-17 Arvinmeritor Technology, Llc Transient liquid phase joining of dissimilar materials
CN114932336A (en) * 2022-05-27 2022-08-23 郑州机械研究所有限公司 Copper-phosphorus-zinc-tin soldering lug and preparation method and application thereof
CN114932336B (en) * 2022-05-27 2023-05-23 郑州机械研究所有限公司 Copper-phosphorus-zinc tin soldering chip and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US4710235A (en) Process for preparation of liquid phase bonded amorphous materials
US4250229A (en) Interlayers with amorphous structure for brazing and diffusion bonding
US4611752A (en) Method for bonding metallic structural elements
US4725509A (en) Titanium-copper-nickel braze filler metal and method of brazing
JP3086950B2 (en) How to join metal parts together
JPS599274B2 (en) Homogeneous brazing foil of copper-based amorphous metal
US4700881A (en) Multiple foil transient liquid phase bonding
JPH07299592A (en) Method of making self brazing composite material
JP2007118059A (en) Method and structure of welding different kind of metallic material
JPH11505178A (en) Nickel-chrome based brazing alloy
WO2002094499B1 (en) High temperature melting braze materials for bonding niobium based alloys
JP2000239838A (en) Sputtering target assembled body subjected to solid phase diffusion joining and its production
TW200927346A (en) A diffusion bonding method for blocks of based bulk metallic glass
JPH1147954A (en) Method of joining titanium and steel
EP0587307A1 (en) Aluminium alloys
US5484096A (en) Method of bonding two bodies together by brazing
JP6426883B2 (en) Method of manufacturing joined body excellent in corrosion resistance
CA1223759A (en) Homogeneous low melting point copper based alloys
JPS5924592A (en) Joining method of sintered hard alloy and metal
US7150799B2 (en) Weld nugget inoculation
JPH0147277B2 (en)
JP3705368B2 (en) Ti-based functionally gradient material and manufacturing method thereof
KR20170141031A (en) Metal sheets spot welding with inoculation agents
JP2004188482A (en) Brazing method for composite brazing material having a plurality of kinds of metallic layers and brazed product
JP2001259861A (en) Method of joining first member made of aluminide-based inter-metallic compound and second member made of metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040514

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

A131 Notification of reasons for refusal

Effective date: 20070828

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115