JP2563843B2 - Instant joining method for nickel / titanium alloy moldings - Google Patents

Instant joining method for nickel / titanium alloy moldings

Info

Publication number
JP2563843B2
JP2563843B2 JP2065076A JP6507690A JP2563843B2 JP 2563843 B2 JP2563843 B2 JP 2563843B2 JP 2065076 A JP2065076 A JP 2065076A JP 6507690 A JP6507690 A JP 6507690A JP 2563843 B2 JP2563843 B2 JP 2563843B2
Authority
JP
Japan
Prior art keywords
nickel
alloy
titanium
joining
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2065076A
Other languages
Japanese (ja)
Other versions
JPH03264174A (en
Inventor
悟 増永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Masunaga Menlo Park Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Masunaga Menlo Park Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2065076A priority Critical patent/JP2563843B2/en
Application filed by Furukawa Electric Co Ltd, Masunaga Menlo Park Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to US07/768,241 priority patent/US5431506A/en
Priority to KR1019910701603A priority patent/KR960010511B1/en
Priority to PCT/JP1991/000339 priority patent/WO1991013717A1/en
Priority to EP91906272A priority patent/EP0477375B1/en
Priority to DE69112553T priority patent/DE69112553T2/en
Priority to AT91906272T priority patent/ATE127053T1/en
Priority to TW080106844A priority patent/TW212207B/zh
Publication of JPH03264174A publication Critical patent/JPH03264174A/en
Application granted granted Critical
Publication of JP2563843B2 publication Critical patent/JP2563843B2/en
Priority to HK97102048A priority patent/HK1000462A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ニッケル・チタン系合金成形材の瞬間接合
方法、詳しくは、接合困難なニッケル・チタン系の形状
記憶合金や超弾性合金から成る成形材を、ニッケル基合
金材料に局部的に強固に瞬間接合一体化させることがで
きる新方法に関するものであり、ニッケル・チタン系形
状記憶合金や超弾性合金材料の用途を大きく拡張するこ
とが可能である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a method for instantaneous joining of nickel / titanium based alloy moldings, and more specifically, to nickel / titanium based shape memory alloys and superelastic alloys that are difficult to join. The present invention relates to a new method in which a molding material can be locally instantly and firmly integrated with a nickel-based alloy material, and the applications of nickel-titanium shape memory alloys and superelastic alloy materials can be greatly expanded. Is.

〔従来の技術、および解決すべき技術的課題〕[Conventional technology and technical problems to be solved]

周知のとおり、ニッケル・チタン系の形状記憶合金
は、ニチノール(米国海軍兵器研究所の製品名:Nitino
l)に代表されるように、与えられた形状の温度履歴に
よる変形・復元の可逆性が非常に優れているところか
ら、医療の分野(例えば、歯列矯正用ワイヤー、整形外
科用骨接続部品、動脈瘤手術用クリップなど)や各種部
品材料の分野(例えば、エアコンの空気吹出角度の自動
調節器具、温室・恒温室等の窓自動開閉器具、宇宙船用
のアンテナなど)において用途開発の努力が払われてお
り、 また、ニッケル・チタン系の超弾性合金も、化学的に
安定で、しかも軽量であるところから機械装置において
軽量性と高度のバネ性が要求される部品の素材として、
その用途に期待が持たれている。
As is well known, nickel-titanium type shape memory alloy is Nitinol (product name of Navy Weapons Research Institute: Nitino
As represented by l), the reversibility of deformation / restoration due to the temperature history of a given shape is extremely excellent, so that it is used in the medical field (eg, orthodontic wires, orthopedic bone connecting parts). , Clips for aneurysm surgery, etc.) and various component materials (for example, automatic air-conditioning devices for air conditioners, automatic window opening / closing devices for greenhouses, constant temperature chambers, antennas for spacecraft, etc.) In addition, nickel-titanium-based superelastic alloys are chemically stable and lightweight, and as a material for parts that require lightweightness and high springiness in mechanical devices,
There are expectations for its use.

ところが、これらニッケル・チタン系の形状記憶合金
や超弾性合金は、金属的に接合性が悪く、かゝるニッケ
ル・チタン系合金材料を小さな接合面積で接合する場合
にはリベットや止ネジ等の止着具を用いて機械的に連結
するか、あるいは当該ニッケル・チタン系合金材料の表
面に接合し易い金属材料をメッキして、そのメッキ金属
を介してロウ付するといった方法が採られていた。しか
しながら、前者のリベットや止ネジを使用する止着方式
は部品接合が非常に面倒で非能率的であるのに加えて、
リベット軸や止ネジ軸を中心として接合部品が回るとい
う難点があり、しかも接合面積をリベット軸やネジ軸の
太さよりも小さくすることが出来ないという欠点があっ
た。また、後者の前処理メッキによるロウ付法にあって
は、接合強度がメッキ層の付着力に依存しているために
余り強い外力を受けるとメッキ層から剥離してしまうと
いう欠点があった。
However, these nickel / titanium-based shape memory alloys and superelastic alloys have poor metal bondability, and when such nickel / titanium-based alloy materials are bonded with a small bonding area, rivets, set screws, etc. A method of mechanically connecting with a fastener or plating a metal material that is easily bonded to the surface of the nickel-titanium alloy material and brazing through the plated metal has been adopted. . However, in addition to the former fastening method using rivets and set screws, joining the parts is very troublesome and inefficient.
There is a drawback that the joint parts rotate around the rivet shaft or the set screw shaft, and there is a drawback that the joint area cannot be made smaller than the thickness of the rivet shaft or the screw shaft. Further, in the latter brazing method using pretreatment plating, the joining strength depends on the adhesive force of the plating layer, and therefore, there is a drawback that the brazing method peels off from the plating layer when a too strong external force is applied.

本発明は、ニッケル・チタン系の形状記憶合金や超弾
性合金を異種金属に接合せしめる従来技術に前述のごと
き難点があったことに鑑みて為されたもので、ニッケル
・チタン系合金成形材を異種金属に対して非常に強固に
接合させることができる新方法を提供することを技術的
課題とするものである。
The present invention has been made in view of the above-described drawbacks in the conventional technique for joining a nickel / titanium-based shape memory alloy or a superelastic alloy to dissimilar metals. It is a technical subject to provide a new method capable of joining very strongly to dissimilar metals.

また、本発明の他の技術的課題は、ニッケル・チタン
系合金成形材を局所的に瞬間接合することができ、しか
も接合部位以外の箇所には接合熱による影響を殆ど与え
ることなく能率的に接合処理できるニッケル・チタン合
金成形材の瞬間接合方法を提供するにある。
Further, another technical problem of the present invention is that the nickel-titanium alloy molding material can be locally and instantaneously joined, and the portion other than the joining portion can be efficiently joined with almost no influence of the joining heat. It is an object of the present invention to provide a method for instantaneous joining of nickel-titanium alloy moldings that can be joined.

さらに、本発明の他の技術的課題は、接合面積を極度
に小さくできるにも拘わらず、接合強度が従来技術に比
較して格段に秀れたニッケル・チタン系合金成形材の高
精度接合方法を提供するにある。
Further, another technical problem of the present invention is a high-precision joining method for a nickel / titanium-based alloy molding material, which has markedly superior joining strength as compared with the prior art, although the joining area can be extremely reduced. To provide.

〔課題解決のために採用した手段〕[Means adopted for solving the problem]

本発明者は、チタン・ニッケル系の形状記憶合金や超
弾性合金を接合させるべき相手方の金属材料の多くがニ
ッケル基合金であることに着目し、この共通するニッケ
ル成分を何らかの方法で融合させることが出来るなら
ば、この両金属材料が冶金的に強固に接合するであろう
との確信を得、これを検証すべく種々の実験を試みた。
ところが、形状記憶合金や超弾性合金は、一旦、所定以
上の高温を履歴すると、形状記憶機能や超弾性機能を劣
化して所期の目的達成に支障が生じ、しかも接合部に金
属間化合物が発生して脆弱化し、とても、ニッケルの融
点近傍まで加熱することは許されないことが実験により
判明した。こうして、ニッケル・チタン系の形状記憶合
金や超弾性合金の特性を損なうことなく、双方金属のニ
ッケル成分を溶融させ、溶融したニッケル成分を互いに
融合させて両金属を接合するための技術的な条件を求め
て試行錯誤的実験を繰返すことを余儀無くされた。そし
て、偶然の成り行きから、ニッケル・チタン系の形状記
憶合金でも、また同系の超弾性合金でも、急速かつ微小
の時間内に大きな熱エネルギーを局所的に集中させるこ
とができるならば、帯熱部が狭小な範囲に限られ、他の
部位の金属特性に殆ど影響が出ない事実を突き止めるこ
とができた。
The present inventor has paid attention to the fact that many of the other metal materials to which titanium / nickel-based shape memory alloys and superelastic alloys are to be joined are nickel-based alloys, and this common nickel component is fused by some method. If possible, we obtained the conviction that both metal materials would be strongly metallurgically bonded, and various experiments were conducted to verify this.
However, shape memory alloys and superelastic alloys, once subjected to a high temperature above a predetermined level, deteriorate the shape memory function and superelasticity function and hinder the achievement of the intended purpose. Experiments have shown that it is not allowed to heat up to near the melting point of nickel as it is generated and becomes brittle. In this way, the technical conditions for melting the nickel components of both metals and fusing the molten nickel components together without impairing the properties of the nickel-titanium shape memory alloy or superelastic alloy and joining the two metals. I was forced to repeat trial and error experiments in search of. And by accidental consequences, even in the case of nickel-titanium-based shape memory alloys and similar super-elastic alloys, if large thermal energy can be locally concentrated within a rapid and minute time, the heating zone It was possible to find out the fact that is limited to a narrow range and the metal properties of other parts are hardly affected.

そこで、更に進んで、本発明者は当該金属の昇温箇所
を接合対象部位に限った狭い範囲に止どめ、其処を瞬間
的に急速に発熱させて一時的に帯熱柔軟化させ、その柔
軟化処理にある瞬間に両金属材料を互いに高圧で押し合
せたところ、実に強固に両金属が接合する新事実を見出
した。
Therefore, further proceeding, the present inventor stops the temperature rising portion of the metal in a narrow range limited to the joining target portion, instantaneously rapidly heats it to temporarily soften the heat, and When the two metal materials were pressed against each other at a high pressure at the moment of the softening treatment, they found a new fact that the two metals were strongly joined together.

かくして、本発明者は、ニッケル・チタン系合金から
成る成形材の所定局部をニッケル基合金材料に接合する
にあたって、不活性雰囲気中で前記両材の接合対象部位
に近接した部位を金属材で包囲することによって放熱性
を高める一方、当該接合対象部位同士を強圧しながら、
瞬間的にニッケルの溶融温度近くまで昇温させて一時的
に帯熱柔軟化せしめ、この帯熱柔軟化状態にある瞬間に
当該接合対象部位に働く前記圧力によって両材当接部に
局部的な塑性流動を生じさせると共に、この発生熱を前
記放熱金属材部分を介して放熱させることによって、ニ
ッケル・チタン系合金材料の特性に悪影響を与えずに前
記両金属材料の当接部位に鍛造組織を生成して両金属材
料を冶金的に接合一体化することができるニッケル・チ
タン系合金成形材の瞬間接合方法を完成したのである。
Thus, the present inventor, when joining a predetermined local portion of a molding material made of a nickel-titanium alloy to a nickel-based alloy material, surrounds a portion of the two materials in an inert atmosphere in the vicinity of the joining target portion with a metal material. While increasing the heat dissipation by doing, while strongly pressing the parts to be joined,
Momentarily raise the temperature to near the melting temperature of nickel to temporarily heat-soften it, and at the moment when it is in this heat-softening state, the pressure acting on the joining target site causes local contact between both materials. By causing plastic flow and radiating the generated heat through the heat-dissipating metal material portion, a forged structure is formed at the contact portion of the both metal materials without adversely affecting the characteristics of the nickel-titanium alloy material. We have completed a method for instantaneous joining of nickel-titanium based alloy moldings that can be produced and metallurgically joined together.

〔実 施 例〕〔Example〕

以下、本発明の具体的内容に関し、実施例を挙げて、
更に詳しく説明する。
Hereinafter, specific examples of the present invention will be described with reference to Examples.
This will be described in more detail.

実施例 チタン・ニッケル系超弾性合金(組成:Ni50〜51%、T
i49〜50%、不可避的不純物0.5%以下)の線材(φ1.4:
長さ7cm)を、ニッケル・クロム合金材料(Ni80%、Cr1
3%、不可避的不純物残余)の線材(φ2:長さ10cm)に
端部同士を接合する。
Example Titanium-nickel superelastic alloy (composition: Ni50-51%, T
i 49-50%, unavoidable impurities 0.5% or less) wire rod (φ1.4:
7cm in length, nickel-chromium alloy material (Ni80%, Cr1
Join the ends to a wire rod (φ2: length 10 cm) with 3% unavoidable impurities remaining).

まず、上記超弾性合金の線材における接合対象部位
(本実施例では、端部)付近に高周波加熱を施して部分
的に焼鈍し、次いで、当該線材の接合すべき端部に付着
している酸化物や油脂等の如き不純物を除去して清浄に
しておく。ニッケル・クロム合金の線材も、同様に接合
すべき部位の表面の酸化物や油脂等の如き不純物を除去
して清浄にしておく。
First, high-frequency heating is performed in the vicinity of the joining target portion (end portion in this embodiment) in the wire of the above superelastic alloy to partially anneal, and then the oxidation adhered to the end of the wire to be joined. Remove impurities such as objects and fats and oils and keep them clean. Similarly, the nickel-chromium alloy wire is also cleaned by removing impurities such as oxides and oils on the surfaces of the parts to be joined.

次に、上記超弾性合金線材とニッケル・クロム合金線
材の接合対象部位同士(接触面積:2mm2)が当接するよ
うに配置して治具により固定し、当該部位同士を20kg/m
m2の圧力で押圧しながら、当該部位に近接する部分には
放熱部材としてクロム銅を巻付けて不活性ガス(アルゴ
ンガス)雰囲気中において、電圧3Vで3サイクルの電流
(1,000A)を0.05秒間流したところ、前記接合対象部位
は双方共に瞬間的に白熱化して柔軟状態となり圧力によ
り融合して接合一体化した。ちなみに、このときの接合
対象部位の発熱温度は1300〜1450℃であった。
Next, the super elastic alloy wire and the nickel-chromium alloy wire are arranged so that the parts to be joined (contact area: 2 mm 2 ) are in contact with each other and fixed with a jig, and the parts are 20 kg / m 2.
While pressing with m 2 pressure, chrome copper was wrapped around the part close to the part as a heat dissipation member, and in an inert gas (argon gas) atmosphere, a voltage of 3 V and a current (1,000 A) of 3 cycles of 0.05 were applied. When it was flowed for a second, both of the parts to be joined momentarily became incandescent and became a flexible state, and fused by pressure to be joined and integrated. By the way, the heat generation temperature of the joining target part at this time was 1300-1450 ℃.

実施例 チタン・ニッケル系形状記憶合金(組成:Ni40〜60
%、Ti60〜40%、Cu3%、不可避的不純物0.5%以下)の
線材(φ1.4:長さ7cm)とニッケル・銅合金材料=monel
metal(Ni63%以上、Cu21%以上)の線材(φ2:長さ10
cm)とを、上記実施例の場合とは電流値のみ1,500Aに
変更して、他は同一条件にて接合した結果、極めて強固
な接合効果が得られた。
Example Titanium-nickel-based shape memory alloy (composition: Ni40-60
%, Ti60-40%, Cu3%, unavoidable impurities 0.5% or less) wire rod (φ1.4: length 7 cm) and nickel-copper alloy material = monel
Metal (Ni63% or more, Cu21% or more) wire rod (φ2: Length 10
cm) was changed to 1,500 A only in the current value as in the case of the above-mentioned example, and the other conditions were the same, and as a result, an extremely strong joining effect was obtained.

本発明方法の概要は概ね上記実施例およびに示す
とおりであるが、本発明は前述の実施例に限定されるも
のでは決してなく、「特許請求の範囲」の記載内で種々
の工程的付加または削除が可能であって、例えば上記実
施例およびにおいてはニッケル・チタン系合金成形
材に対し高周波加熱による部分的焼鈍を施したが、これ
は後の接合工程での加圧による折損を配慮したからであ
り、形状的またはサイズ的に耐え得るものであれば不要
であり、また、接合すべき金属材料双方の接合対象部位
をやゝ突起状に膨出させて熱集中を促進することも自由
であり、何れの場合も本発明の技術的範囲に属するもの
と云うべきである。
The outline of the method of the present invention is generally as shown in the above Examples and, but the present invention is by no means limited to the above Examples, and various process additions or It is possible to delete it. For example, in the above-mentioned Examples and Examples, the nickel-titanium alloy molded material was partially annealed by high-frequency heating, but this was taken into consideration because of breakage due to pressure in the subsequent joining process. It is unnecessary as long as it can withstand the shape or size, and it is also possible to swell the parts to be joined of both metal materials to be joined into a bulge to promote heat concentration. In any case, it should be said to belong to the technical scope of the present invention.

〔強度試験〕〔Strength test〕

上記各実施例の試料にて次の試験を行った。 The following tests were conducted on the samples of the above respective examples.

(1) 屈曲試験 試料および試料の接合部位を中心にして前後に90
゜ずつ(計180゜)の角度範囲で1分間に30回の速度
で、240回往復的に繰り返して屈曲させたが、試料お
よび試料は何れも、原形状に復元し目視上何らの変形
も生じず、また何らの弾性劣化も起こらなかった。
(1) Bending test 90 times before and after centering around the sample and the joint part of the sample
The sample was bent repeatedly in a reciprocating manner 240 times at a speed of 30 times per minute in an angle range of 180 ° each (total 180 °). It did not occur, and no elastic deterioration occurred.

(2) 引張強度試験 試料および試料の接合部分の引張強度を、引張試
験機(株式会社 島津製作所:AGS−A型)によって計測
したところ、次のような結果が得られた。なお、試験
は、試料および試料の両端を試験機のクランプで挾
み、接合部分を中心にして上下に引っ張ることによって
実施した。
(2) Tensile strength test When the tensile strength of the sample and the joint part of the sample was measured by a tensile tester (Shimadzu Corporation: AGS-A type), the following results were obtained. The test was carried out by sandwiching the sample and both ends of the sample with clamps of a tester and pulling the sample up and down around the joint.

i.試料について、 引張荷重が82.7kg fに達したところで、超弾性金属線
の部分で破断した。この強度は、実用上、有効にして十
分なものである。
i. Regarding the sample, when the tensile load reached 82.7 kgf, the sample was broken at the superelastic metal wire. This strength is practically effective and sufficient.

ii.試料について、 引張荷重が55.1kg fに達したところで、ニッケル・銅
合金(monel metal)線材の部分で破断した。この強度
も、実用上、有効にして十分なものである。
ii. Regarding the sample, when the tensile load reached 55.1 kgf, the nickel-copper alloy (monel metal) wire rod fractured. This strength is also practically effective and sufficient.

〔本発明の効果〕[Effect of the present invention]

以上実施例をもって説明したとおり、本発明方法によ
れば、ニッケル・チタン系合金成形材に含まれるニッケ
ル成分とニッケル基合金材料に含まれるニッケル成分と
が帯熱柔軟化した状態の下に高圧で押圧して局所的な塑
性流動を生ぜしめ新鮮な層面同士を圧接することになる
ので、圧接部位には共通するニッケル成分をベースとす
る薄い融合層が生成された状態で両金属材料が冶金的に
融合一体化することゝなり、従来接合が困難であると信
じられていたニッケル・チタン系合金成形材を異種のニ
ッケル基合金材料とでも非常に強固に接合させることが
可能となった。
As described in the above examples, according to the method of the present invention, the nickel component contained in the nickel-titanium alloy molding material and the nickel component contained in the nickel-base alloy material are heated at high pressure under a state of being heat-softened. Since pressing causes local plastic flow and presses the fresh layer surfaces against each other, both metal materials are metallurgically metalized with a thin fused layer based on a common nickel component being formed at the press contacting site. As a result of the fusion and integration, it has become possible to bond nickel-titanium alloy molding materials, which were previously believed to be difficult to bond, very strongly, even to dissimilar nickel-base alloy materials.

また、本発明においては、ニッケル・チタン系合金成
形材およびニッケル基合金材料をニッケルの溶融温度近
くまでに昇温させはするが、温度上昇部位が局所的な接
合対象部位に限られ、しかも高圧接合した瞬間に当該部
位で放熱させて直ちに降温されるため、当該部分の帯熱
時間が極く微小なものとなり、それゆえ、デリケートで
特異な物理的・化学的性質を有するニッケル・チタン系
合金(形状記憶合金および超弾性合金)も化学反応を起
こす暇もなく冶金的に瞬間接合されてしまうのである。
そして、それがゆえに、接合部位以外の箇所には接合熱
による影響を殆ど生じさせずに、しかも非常に能率的に
接合処理を行うことが可能となるのである。
Further, in the present invention, although the nickel-titanium alloy molding material and the nickel-based alloy material are heated up to near the melting temperature of nickel, the temperature rising portion is limited to the local joining target portion At the moment of joining, the heat is radiated from the relevant part and the temperature is immediately lowered, so the heat-up time of the relevant part is extremely small, and therefore the nickel-titanium alloy having delicate and unique physical and chemical properties. (Shape memory alloys and superelastic alloys) are also metallurgically instantly joined without time to cause a chemical reaction.
Therefore, it is possible to perform the joining process very efficiently with almost no effect of the joining heat on the portions other than the joining portion.

さらに、本発明によれば、従来異種金属との接合が困
難視されていたニッケル・チタン系形状記憶合金や超弾
性合金から成る成形材を、ニッケル基の異種合金にでも
迅速かつ強固に接合することが可能となり、かつ接合面
積も極度に小さくできる。それゆえ、ニッケル・チタン
系の形状記憶合金や超弾性合金の用途を産業用・軍需用
から衣食住の各分野に渡る日常生活の分野に迄大きく拡
張することが可能となった。
Further, according to the present invention, a molding material composed of a nickel-titanium type shape memory alloy or a superelastic alloy, which has been conventionally considered difficult to bond to a dissimilar metal, is quickly and firmly bonded to a dissimilar alloy based on nickel. It becomes possible and the joint area can be made extremely small. Therefore, the applications of nickel-titanium type shape memory alloys and superelastic alloys can be greatly expanded to the fields of daily life ranging from industrial / military use to clothing, clothing and housing.

このように本発明は、従来、接合技術が隘路となって
用途が不可避的に限定されていたニッケル・チタン系合
金材料の利用分野を飛躍的に広げ得るものであり、その
産業上の利用価値は頗る高いものと云える。
As described above, the present invention can dramatically expand the field of use of nickel-titanium alloy materials, which have been unavoidably limited in their applications because the joining technology has become a bottleneck, and their industrial utility value. Can be said to be extremely expensive.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ni含有率が60〜40%、Ti含有率が40〜60%
のニッケル・チタン系形状記憶合金またはニッケル・チ
タン系超弾性合金から成る成形材の所定局部をニッケル
基合金材料に接合する方法であって、 不活性雰囲気中で前記両材の接合対象部位に近接した部
位を金属材で包囲することより放熱性を高める一方、当
該接合対象部位同士を強圧しながら、瞬間的にニッケル
の溶融温度近くにまで昇温させて一時的に帯熱柔軟化せ
しめ、この帯熱柔軟化状態にある瞬間に当該接合対象部
位に働く前記圧力により両材当接部に局部的な塑性流動
を生じさせると共に、この発生熱を前記金属材部分を介
して放熱させることにより、前記両金属材料の当接部位
に鍛造組織を生成して両金属材料を冶金的に接合一体化
することを特徴としたニッケル・チタン系合金成形材の
瞬間接合方法。
1. Ni content is 60-40%, Ti content is 40-60%.
A method of joining a predetermined part of a molding material made of the nickel-titanium shape memory alloy or nickel-titanium superelastic alloy to a nickel-base alloy material, which is located in the inert atmosphere in the vicinity of the joining target portion of both materials. While enlarging the heat-dissipating property by enclosing the formed part with a metal material, while strongly pressing the parts to be joined, the temperature is temporarily raised to near the melting temperature of nickel to temporarily soften the heat. By causing a local plastic flow in both material contact portions by the pressure acting on the joining target portion at the moment of being in a heat-softened state, by radiating the generated heat through the metal material portion, A method for instantaneous joining of nickel-titanium based alloy moldings, characterized by forming a forged structure at a contact portion of the both metal materials and metallurgically joining and integrating the both metal materials.
【請求項2】ニッケル・チタン系形状記憶合金またはニ
ッケル・チタン系超弾性合金から成る成形材を接合すべ
き相手方のニッケル基合金材料が、Ni−Cu系合金、Ni−
Mo系合金、Ni−Cr系合金、またはNi−Cr−Fe系合金であ
る請求項(1)記載の、ニッケル・チタン系合金成形材
の瞬間接合方法。
2. The other nickel-base alloy material to which a molding material made of a nickel-titanium shape memory alloy or a nickel-titanium superelastic alloy is to be joined is a Ni-Cu alloy or a Ni-Cu alloy.
The instantaneous joining method for a nickel-titanium alloy molded material according to claim 1, which is a Mo alloy, a Ni-Cr alloy, or a Ni-Cr-Fe alloy.
【請求項3】ニッケル・チタン系形状記憶合金またはニ
ッケル・チタン系超弾性合金から成る成形材の接合対象
部位を予じめ部分的に焼鈍処理を施しておく請求項
(1)または(2)記載の、ニッケル・チタン系合金成
形材の瞬間接合方法。
3. A part to be joined of a molding material made of a nickel / titanium type shape memory alloy or a nickel / titanium type superelastic alloy is partially annealed in advance in advance. The method for instantaneous joining of nickel-titanium alloy moldings as described.
JP2065076A 1990-03-14 1990-03-14 Instant joining method for nickel / titanium alloy moldings Expired - Lifetime JP2563843B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2065076A JP2563843B2 (en) 1990-03-14 1990-03-14 Instant joining method for nickel / titanium alloy moldings
KR1019910701603A KR960010511B1 (en) 1990-03-14 1991-03-13 Property of bonded metal including forming meterial of ni-ti alloy, and the method of manufacturing the same
PCT/JP1991/000339 WO1991013717A1 (en) 1990-03-14 1991-03-13 Joined metallic work containing shaped member of nickel-titanium alloy and production thereof
EP91906272A EP0477375B1 (en) 1990-03-14 1991-03-13 Joined metallic work containing shaped member of nickel-titanium alloy and production thereof
US07/768,241 US5431506A (en) 1990-03-14 1991-03-13 Property of bonded metal, including forming material of nickel-titatium alloy, and the method of manufacturing the same
DE69112553T DE69112553T2 (en) 1990-03-14 1991-03-13 METAL WORKPIECE THAT CONTAINS ELEMENTS OF NICKEL-TITANIUM ALLOY AND THEIR PRODUCTION.
AT91906272T ATE127053T1 (en) 1990-03-14 1991-03-13 METALLIC WORKPIECE CONTAINING NICKEL-TITANIUM ALLOY ELEMENTS AND THE PRODUCTION THEREOF.
TW080106844A TW212207B (en) 1990-03-14 1991-08-28
HK97102048A HK1000462A1 (en) 1990-03-14 1997-10-29 Joined metallic work containing shaped member of nickel-titanium alloy and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2065076A JP2563843B2 (en) 1990-03-14 1990-03-14 Instant joining method for nickel / titanium alloy moldings

Publications (2)

Publication Number Publication Date
JPH03264174A JPH03264174A (en) 1991-11-25
JP2563843B2 true JP2563843B2 (en) 1996-12-18

Family

ID=13276502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2065076A Expired - Lifetime JP2563843B2 (en) 1990-03-14 1990-03-14 Instant joining method for nickel / titanium alloy moldings

Country Status (1)

Country Link
JP (1) JP2563843B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163379A (en) * 1984-09-06 1986-04-01 Kawasaki Steel Corp Manufacture of clad steel plate

Also Published As

Publication number Publication date
JPH03264174A (en) 1991-11-25

Similar Documents

Publication Publication Date Title
KR960010511B1 (en) Property of bonded metal including forming meterial of ni-ti alloy, and the method of manufacturing the same
KR100205160B1 (en) Joined parts of ni-ti alloys with different metals and joining method
JPS60121247A (en) Shape memory alloy
CN105834540B (en) A kind of method of Ti-Ni high-temp solder soldering TZM alloy
JP2563843B2 (en) Instant joining method for nickel / titanium alloy moldings
JPS63310778A (en) Bonding method of carbon material and metal
JP2516447B2 (en) Metal frame eyeglasses including nickel-titanium alloy parts, and method of manufacturing the same
JPH07150369A (en) Composite wire made of shape memory alloy
TW201111524A (en) Special alloy complex
JP3119906B2 (en) Joint of carbon material and metal
US20150196957A1 (en) Hybrid shape memory effect elements for facile integration to structures
JPS6042283A (en) Method of bonding oxide ceramics and active metal
JPH0337165A (en) Adhesion between ceramics and metal
SK500792017U1 (en) Soft lead-free active solder and method of soldering
Pierce et al. Reversible brazing process
JPH05185251A (en) Joint part of ni-ti alloy and joining method therefor
JP2004237349A (en) Joint structure of shape memory alloy and method for forming joint structure
JPH0525932B2 (en)
JP3358680B2 (en) Method for producing wire rod of Ni-Ti alloy
JPH1147954A (en) Method of joining titanium and steel
JPS63261868A (en) Clad wire material for pin grid array
JP2003112270A (en) Joining structure and joining method of different metallic material
Zimmerman et al. The Fundamentals of Microjoining Processes
JPH04154678A (en) Alloy for joining mutual ceramics or ceramics to metal and method for joining thereof
JPH01228697A (en) Brazing filler metal for joining ceramics and joining method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14