JPH03263208A - Servo motor controller - Google Patents

Servo motor controller

Info

Publication number
JPH03263208A
JPH03263208A JP2063598A JP6359890A JPH03263208A JP H03263208 A JPH03263208 A JP H03263208A JP 2063598 A JP2063598 A JP 2063598A JP 6359890 A JP6359890 A JP 6359890A JP H03263208 A JPH03263208 A JP H03263208A
Authority
JP
Japan
Prior art keywords
control
coordinate
coordinate axes
servo motor
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2063598A
Other languages
Japanese (ja)
Inventor
Yoshihiro Niimi
新見 嘉浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2063598A priority Critical patent/JPH03263208A/en
Priority to KR1019910003887A priority patent/KR910017725A/en
Priority to US07/668,618 priority patent/US5194790A/en
Priority to DE4108293A priority patent/DE4108293A1/en
Publication of JPH03263208A publication Critical patent/JPH03263208A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/25Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for continuous-path control
    • G05B19/251Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for continuous-path control the positional error is used to control continuously the servomotor according to its magnitude
    • G05B19/253Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for continuous-path control the positional error is used to control continuously the servomotor according to its magnitude with speed feedback only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33119Servo parameters in memory, configuration of control parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34236Multiplex for servos, actuators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41021Variable gain
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41029Adjust gain as function of position error and position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41192Compensation for different response times, delay of axis
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42074Position feedback and speed feedback, speed measured with tacho
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Position Or Direction (AREA)
  • Numerical Control (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

PURPOSE:To exactly move a moving body to a target position by controlling the extent of rotation of a servo motor with a prescribed control gain with respect to coordinate axes having no response delay and changing the control gain to control this extent of rotation with respect to coordinate axes having response delay. CONSTITUTION:Preliminarily obtained position loop gains Kpx to Kpz are stored in a data ROM 32 of a gain setting part 9, and an address interface 30 designates a prescribed address of a table to output data of position loop gains corresponding to delay times from the ROM 32 to multipliers 24x to 24z of rotative speed control parts 7x to 7z when data of the delay times of respective coordinate axes is inputted from an interpolating part 3. Data of the prescribed fundamental gain is outputted with respect to the coordinate axis having no time delay. Thus, rotative speeds of servo motors Mx to Mz are controlled to control each coordinate position of the moving body to the target position, and the moving body is exactly moved along a commanded movement locus.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、複数のサーボモータの駆動を制御して機械座
標系の任意の位置に移動体を移動させるサーボモータ制
御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a servo motor control device that controls the driving of a plurality of servo motors to move a moving body to an arbitrary position in a mechanical coordinate system.

[従来の技術] 従来より、複数のサーボモータを駆動制御して、加工工
具やテーブルなどの移動体をX軸・Y軸・Z軸の夫々の
方向へ駆動することで、機械系座標の任意の位置へ移動
体を移動させる工作機械が知られている。
[Conventional technology] Conventionally, multiple servo motors are driven and controlled to drive moving objects such as processing tools and tables in the respective directions of the X-axis, Y-axis, and Z-axis. A machine tool that moves a moving body to a position is known.

この種の工作機械では、移動体を目標軌跡に沿って正確
に移動させるために、目標軌跡について所定の補間を行
うことにより座標軸の夫々について最小時間単位毎の目
標位置を設定する補間部と、移動体の目標位置と現在位
置との偏差に基づき各座標?j!ll同一の位置制御ゲ
インでサーボモータの回転速度を夫々制御し、て移動体
を岡標位置へ移動させる各座標軸の位置制御部とを備え
たサーボモータ制御装置を設けている。1 [発明が解決しようとする課題] しかし、上記装置には、補間部から各座標軸の位置制御
部へ時分割で目標位置を伝達することに伴って起こるタ
イムラグや各位置制御部夫々の固有の応答遅れがあり、
位置制御ゲインを各軸同一(=設定すると、移動体を目
標位置に正確に移動させることができないJ−いった問
題がある。
This type of machine tool includes an interpolation unit that sets a target position for each of the coordinate axes for each minimum time unit by performing predetermined interpolation on the target trajectory in order to accurately move the movable body along the target trajectory; Each coordinate based on the deviation between the target position and the current position of the moving object? j! A servo motor control device is provided that includes a position control section for each coordinate axis that controls the rotational speed of each servo motor with the same position control gain and moves the movable body to the target position. 1 [Problems to be Solved by the Invention] However, the above device has problems such as the time lag that occurs when the target position is transmitted from the interpolation unit to the position control unit for each coordinate axis in a time-division manner, and the inherent characteristics of each position control unit. There is a delay in response,
If the position control gain is set to be the same for each axis, there is a problem that the moving body cannot be accurately moved to the target position.

そこで、本発明は目標軌跡に沿って正確に移動体を移動
させることができるサーボモータ制御装置を提供するこ
とを目的と]7てなされた。
Therefore, the present invention has been made with the object of providing a servo motor control device that can accurately move a moving body along a target trajectory.

[課題を解決するための手段] 本発明の要旨とするところ(戴 複数のサーボモータの駆動1制御して機械座標系の任意
の位置に移動体を移動させるサーボモータ制御装置であ
って、機械座標系をなす座標軸の夫々について、移動体
の現在位置を検出する位置検出手段と、外部からの移動
指令に基づき所定の補間を行って、座標軸の夫々につい
て、目標位置を設定する補間手段と、座標軸の夫々につ
いて位置検出手段により検出された移動体の現在位置と
補間手段によって設定された目標位置との偏差に基づき
、座標軸の夫々について設定された所定の制御ゲインで
各サーボモータの回転量を制御する回転量制御手段と、
回転量制御手段による座標軸夫々の制御の応答遅れに基
づいて、座標軸の夫々二ついて設定された各制御ゲイン
を変更する制御ゲイン変更手段とを備えたことを特徴と
するサーボモータ制御装置にある。
[Means for Solving the Problems] The gist of the present invention is to provide a servo motor control device for controlling the drive of a plurality of servo motors to move a movable body to an arbitrary position in a machine coordinate system, a position detection means for detecting the current position of the moving object for each of the coordinate axes forming the coordinate system; an interpolation means for performing predetermined interpolation based on an external movement command to set a target position for each of the coordinate axes; Based on the deviation between the current position of the moving body detected by the position detection means for each of the coordinate axes and the target position set by the interpolation means, the amount of rotation of each servo motor is determined by a predetermined control gain set for each of the coordinate axes. a rotation amount control means to control;
A servo motor control device characterized by comprising: control gain changing means for changing each control gain set for each of two coordinate axes based on a response delay in control of each of the coordinate axes by the rotation amount control means.

[作用] 以上の本発明の構成(二よれI!。[Effect] The above configuration of the present invention (two-fold I!

外部から移動が指令されると、補間手段がその移動指令
I:基づき所定の補間を行って、座標軸の夫々について
、目標位置を設定する。すると、回転量制御手段が、そ
の目標位置と位置検出手段により検出された座標軸の夫
々についての移動体の現在位置との偏差に基づき、座標
軸の夫々について設定された所定の制御ゲインで各サー
ボモータの回転量を制御する。その際、回転量制御手段
による座標軸夫々の制御に応答遅れがあると、その応答
遅れに基づいて、制御ゲイン変更手段が、座標軸の夫々
について設定された各制御ゲインを変更する。そして、
変更された制御ゲインで、回転量制御手段が各サーボモ
ータの回転量を制御する。
When movement is commanded from the outside, the interpolation means performs predetermined interpolation based on the movement command I to set target positions for each of the coordinate axes. Then, the rotation amount control means controls each servo motor at a predetermined control gain set for each of the coordinate axes based on the deviation between the target position and the current position of the moving body for each of the coordinate axes detected by the position detection means. control the amount of rotation. At this time, if there is a response delay in controlling each of the coordinate axes by the rotation amount control means, the control gain changing means changes each control gain set for each of the coordinate axes based on the response delay. and,
The rotation amount control means controls the rotation amount of each servo motor using the changed control gain.

つまり、応答遅れのない座標軸については所定の制御ゲ
インそのままで、応答遅れのある座標軸については制御
ゲインを変更することで、夫々のサーボモータの回転量
を制御し移動体を目標位置へ移動させる。
In other words, by keeping the predetermined control gain unchanged for the coordinate axes without a response delay, and changing the control gain for the coordinate axes with a response delay, the amount of rotation of each servo motor is controlled and the movable body is moved to the target position.

[実施例] 以下に本発明の実施例を図面と共に説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

まず、第1図は本発明を適用したサーボモータ制御装置
の構成図である。
First, FIG. 1 is a block diagram of a servo motor control device to which the present invention is applied.

サーボモータ制御装置1は、工作機械(図示路)の一部
を構成し、3個のサーボモータMx、My、Mzを駆動
制御して、加工工具(図示路)を×軸・Y軸・Z軸から
なる機械座標系の任意の位置へ移動させるものである。
The servo motor control device 1 constitutes a part of a machine tool (path shown), and drives and controls three servo motors Mx, My, and Mz to move a machining tool (path shown) along the X axis, Y axis, and Z axis. It is used to move to an arbitrary position in a mechanical coordinate system consisting of axes.

工作機械において(i 各サーボモータMx−Mzの回
転によって各座標軸方向へ加工工具が移動し、サーボモ
ータMx−M2の回転量と各座標軸での加工工具の移動
量が対応するように、機械的伝達機構(図示路)が構成
されている。
In a machine tool (i), the machining tool moves in the direction of each coordinate axis by the rotation of each servo motor Mx-Mz, and the mechanical A transmission mechanism (path shown) is configured.

図に示すように、サーボモータ制御装置1は、上位指令
装置(図示W&)から指令された移動軌跡に沿って加工
工具を移動させるための目標位置を各座標について算出
する補間部3と、補間部3の算出結果に基づいてパルス
列信号を各座標軸に出力する分配部5と、各座標軸毎に
設けられ、分配部5からのパルス列信号と帰還パルス(
後述する)とに基づいてサーボモータM×〜Mzの回転
速度を制御する回転速度制御部7x、7y、7zと、回
転速度制御部7x〜7z夫々の位置ループゲインを設定
するゲイン設定部9と、回転速度制御部7X〜7zの回
転速度制御に基づいて回転速度指令を出力する速度指令
部11と、速度指令部]1の速度指令とサーボモータM
x−Mzの実回転速度とに基づいてサーボモータMx−
Mzを駆動制御する駆動部13x、13y、13zを主
要部として構成されている。
As shown in the figure, the servo motor control device 1 includes an interpolation section 3 that calculates, for each coordinate, a target position for moving the processing tool along a movement locus commanded by a higher order command device (W & shown in the figure); A distribution section 5 outputs a pulse train signal to each coordinate axis based on the calculation result of the section 3, and a distribution section 5 is provided for each coordinate axis to output a pulse train signal from the distribution section 5 and a feedback pulse (
(to be described later), and a gain setting unit 9 that sets the position loop gain of each of the rotation speed control units 7x to 7z. , a speed command unit 11 that outputs a rotation speed command based on the rotation speed control of the rotation speed control units 7X to 7z, and a speed command of the speed command unit 1 and the servo motor M.
Based on the actual rotational speed of x-Mz, servo motor Mx-
The main components are drive units 13x, 13y, and 13z that drive and control Mz.

尚、本実施例では、回転速度制御部7×〜7z、速度指
令部11及び駆動部13×〜13zが回転量制御手段に
相当し、ゲイン設定部9が制御ゲイン変更手段に相当す
る。
In this embodiment, the rotation speed control sections 7x to 7z, the speed command section 11, and the drive sections 13x to 13z correspond to rotation amount control means, and the gain setting section 9 corresponds to control gain changing means.

補間部3は、周知のCPU3a、ROM3b、RAM3
c、バックアップRAM3d及び入出力ポート3eを中
心に論理演算回路として構成さ札上位指令装置から、加
工工具を直線或は円弧運動させるための移動指令が入力
されると、その指令された移動の軌跡に応じて、直線補
間或は円弧補間のためのデータを求める演算処理を実行
して、X軸・Y軸・Z軸の夫々について所定の最小時間
単位毎の目標位置と移動量を算出する。更に、移動軌跡
に沿って加工工具を移動させる過程で、サーボモータM
’x−Mzを所定の加減速時定数でスローアップ・スロ
ーダウン運転するために、予めROM3bに格納された
速度データテーブルから各軸の速度データを求める処理
を実行する。そして、算出した目標位置データ及び速度
データを分配部5へ出力する。
The interpolation unit 3 includes a well-known CPU 3a, ROM 3b, and RAM 3.
c. Constructed as a logic operation circuit centered around the backup RAM 3d and input/output port 3e. When a movement command for moving the processing tool in a straight line or in an arc is input from the upper command device, the trajectory of the commanded movement is Accordingly, arithmetic processing is executed to obtain data for linear interpolation or circular interpolation, and target positions and movement amounts for each of the X, Y, and Z axes are calculated for each predetermined minimum time unit. Furthermore, in the process of moving the processing tool along the movement trajectory, the servo motor M
In order to perform slow-up/slow-down operation of 'x-Mz with a predetermined acceleration/deceleration time constant, a process is executed to obtain speed data for each axis from a speed data table stored in advance in the ROM 3b. Then, the calculated target position data and speed data are output to the distribution section 5.

又補間部3は、起動時に、初期化のための処理の一環と
して、各座標軸の応答遅れ時間のデータ(後述する)を
、ゲイン設定部9へ出力する。
Furthermore, at startup, the interpolation section 3 outputs response delay time data (described later) for each coordinate axis to the gain setting section 9 as part of the initialization process.

応答遅れ時間のデータは、予め、工作機械のデータ入力
装置(図示路)から入力されおり、バックアップRAM
30dの所定領域に記憶されている。
The response delay time data is input in advance from the machine tool's data input device (as shown in the diagram), and is stored in the backup RAM.
It is stored in a predetermined area of 30d.

尚、直線補間或は円弧補間のための演算処理や速度デー
タを求める処理は周知であるので、詳細は省略する。
Note that the calculation process for linear interpolation or circular interpolation and the process for obtaining speed data are well known, so the details will be omitted.

分配部5は、クロックパルス発生器、カウンタ、ゲート
(いずれも図示路)などからなるパルス分配器5x、5
y、5zで構成さ札補間部3から目標位置データ及び速
度データが入力されると、それらデータに応じた数のパ
ルス(以下、分配パルスという)Px、Py、Pzを、
回転速度制御部7x〜7zへ夫々出力する。
The distribution unit 5 includes pulse distributors 5x, 5, each consisting of a clock pulse generator, a counter, a gate (all shown in the figure), etc.
When target position data and speed data are input from the interpolation section 3, a number of pulses (hereinafter referred to as distribution pulses) Px, Py, Pz corresponding to those data are inputted.
It outputs to the rotational speed control sections 7x to 7z, respectively.

回転速度制御部7×〜7zは、分配部5から入力された
分配パルスPx−Pzに基づいて、サーボモータM×〜
Mzの回転速度を制御するもので、速度指令部11及び
駆動部13x〜13zと共に、目標位置に加工工具を定
位させるようにサーボモータM×〜Mzを制御する閉ル
ープの制御系を形成している。
The rotational speed control units 7x to 7z control the servo motors Mx to 7z based on the distribution pulses Px-Pz input from the distribution unit 5.
It controls the rotational speed of Mz, and together with the speed command section 11 and drive sections 13x to 13z, forms a closed loop control system that controls the servo motors Mx to Mz to orient the processing tool to the target position. .

即ち、回転速度制御部7x〜7zでは、比較器20x、
20y、20zが、サーボモータMx〜Mzに取り付け
られたシャフトエンコーダEから入力された回転角検出
パルス(以下、帰還パルスという)PxFB、PyFB
、PzFBと分配パルスP×〜Pzとの偏差を検出して
偏差分のパルスを積分器22x、22Y、22zに出力
する。積分器22x〜22zでは、その偏差分パルスを
、これまでの累積骨に加えることで、溜りパルスεX、
εy、ε2を算出して乗算器24×、24Y、24zへ
出力する。乗算器24x〜24 z I& 溜りパルス
εX〜ε2に、ゲイン設定部9から入力されたゲインデ
ータ(後述する)に基づいて設定した位置ループゲイン
Kpx、  Kpy、  Kpzを乗することで、サー
ボモータM×〜Mzの回転速度を決定し、回転指令信号
(ディジタル信号)として速度指令部11へ出力する。
That is, in the rotational speed control units 7x to 7z, the comparators 20x,
20y and 20z are rotation angle detection pulses (hereinafter referred to as feedback pulses) PxFB and PyFB input from the shaft encoder E attached to the servo motors Mx to Mz.
, PzFB and the distributed pulses Px to Pz, and output pulses corresponding to the deviation to the integrators 22x, 22Y, and 22z. The integrators 22x to 22z add the pulses corresponding to the deviation to the accumulated bone so far, thereby obtaining the accumulated pulses εX,
εy and ε2 are calculated and output to multipliers 24×, 24Y, and 24z. The servo motor M The rotation speed of x to Mz is determined and outputted to the speed command section 11 as a rotation command signal (digital signal).

尚、本実施例ではシャフトエンコーダEが位置検出手段
に相当する。
In this embodiment, the shaft encoder E corresponds to the position detection means.

ゲイン設定部9は、論理素子やカウンタなどで構成され
たアドレスインターフェイス30及びデータROM32
からなり、データROM32の所定領域には、位置指令
に対する各座標軸間の制御系の応答の遅れ時間(例えば
、後述のマルチプレクサ40の時分割のシーケンスに伴
う遅れ時間)に応じて予め設定された位置ループゲイン
のデータ群が、各座標軸毎に、テーブルとして記憶され
ている。補間部3から、各座標軸の遅れ時間のデータが
入力されると、アドレスインターフェイス30は、上記
テーブルの所定アドレスを指定してそこに格納されてい
る遅れ時間に対応する位置ループゲインのデータをデー
タROM32から乗算器24×〜24zへ出力する。遅
れ時間がない座標軸については、所定の基本制御ゲイン
KpOのデ−夕を出力する。
The gain setting unit 9 includes an address interface 30 and a data ROM 32 that are composed of logic elements, counters, etc.
In a predetermined area of the data ROM 32, positions are preset according to the delay time of the response of the control system between the respective coordinate axes to the position command (for example, the delay time associated with the time-sharing sequence of the multiplexer 40, which will be described later). A group of loop gain data is stored as a table for each coordinate axis. When the delay time data for each coordinate axis is input from the interpolation unit 3, the address interface 30 specifies a predetermined address in the table and inputs the position loop gain data corresponding to the delay time stored therein. It is output from the ROM 32 to the multipliers 24x to 24z. For coordinate axes with no delay time, data of a predetermined basic control gain KpO is output.

速度指令部111よマルチプレクサ40と、D/Aコン
バータ(以下、D/ACという)42と、各座標軸毎に
設けられたサンプルホールド回路(以下、S/H回路と
いう)44x、44y、442とから構成さね回転速度
制御部7x〜7zから入力された回転指令信号を、サー
ボモータMx〜Mzの回転速度の指令信号に変換して駆
動部13x〜13zへ出力する。
From a speed command unit 111, a multiplexer 40, a D/A converter (hereinafter referred to as D/AC) 42, and sample and hold circuits (hereinafter referred to as S/H circuits) 44x, 44y, and 442 provided for each coordinate axis. The rotation command signals input from the configuration tongue rotation speed control units 7x to 7z are converted into command signals for the rotation speed of the servo motors Mx to Mz, and output to the drive units 13x to 13z.

即ち、速度指令部1]においては、マルチプレクサ40
が、予め定められた時分割のシーケンスで(例えE  
Δtの間隔、X軸−Y軸−Z軸の順で)、回転速度制御
部7x〜7zの一つとD/AC34とを接続すると共に
当該座標軸のS/H回路34x〜34zにラッチ指令を
出力する。すると、D/AC34が回転指令信号(ディ
ジタル)を電圧信号(アナログ)に変換し速度指令とし
て出力する。そして、当該S/口回路34x〜342が
、電圧信号をそのまま保持して速度指令信号として当該
座標軸の駆動部13x〜13zへ出力する。従って、位
置指令に対して速度指令信号が、Y軸についてはΔtだ
け遅れてZ軸については2×Δtだけ遅れて、駆動部1
3Y、13zへ夫々出力されるので、Y軸の制御系には
Δtの時間遅れが、Z軸の制御系には2×Δtの時間遅
れが、夫々起こる。
That is, in the speed command unit 1], the multiplexer 40
in a predetermined time-sharing sequence (for example, E
At intervals of Δt, in the order of X-axis - Y-axis - Z-axis), one of the rotational speed control units 7x to 7z is connected to the D/AC 34, and a latch command is output to the S/H circuit 34x to 34z of the corresponding coordinate axis. do. Then, the D/AC 34 converts the rotation command signal (digital) into a voltage signal (analog) and outputs it as a speed command. Then, the S/port circuits 34x to 342 hold the voltage signals as they are and output them as speed command signals to the drive units 13x to 13z of the coordinate axes. Therefore, the speed command signal is delayed by Δt for the Y-axis and by 2×Δt for the Z-axis, and the speed command signal is delayed by Δt for the Y-axis with respect to the position command.
3Y and 13z, a time delay of Δt occurs in the Y-axis control system, and a time delay of 2×Δt occurs in the Z-axis control system.

駆動部13x〜13zは、周知のパルス幅変調回路(P
WM回路)や通電回路で構成され、サーボモータMx=
Myに取り付けられたタコジェネレータTGにより検出
されたサーボモータM×〜Myの実回転速度と速度指令
との偏差に応じて通電電流を増減制御することで、回転
速度を指令速度に制御する。尚、駆動部13×〜13y
はサーボモータの駆動部として周知であるので、詳細は
省略する。
The drive units 13x to 13z are constructed using a well-known pulse width modulation circuit (P
WM circuit) and an energizing circuit, and the servo motor Mx=
The rotation speed is controlled to the command speed by increasing or decreasing the energizing current according to the deviation between the actual rotation speed of the servo motors Mx to My detected by the tacho generator TG attached to My and the speed command. In addition, the driving parts 13x to 13y
Since this is well known as a servo motor drive unit, the details will be omitted.

次に、サーボモータ制御装置1の動作について説明する
Next, the operation of the servo motor control device 1 will be explained.

速度F[mm/min] (パルス換算速度f [pu
lse/see])にて、×軸−Y軸平面上に傾きθの
直線軌跡L1m沿って加工工具を移動させる指令が、上
位指令装置から補間部3に入力されると、補間部3は、
直線補間を行って所定の最小時間単位毎に、到達すべき
目標位置と移動量を、X軸・Y軸・Z軸の夫々について
算出し、その算出結果に基づいて分配部5がパルス列信
号を各座標軸の回転速度制御部7×〜7zへ出力する。
Speed F [mm/min] (Pulse conversion speed f [pu
lse/see]), when a command to move the machining tool along the linear trajectory L1m with an inclination θ on the
Linear interpolation is performed to calculate the target position and movement amount to be reached for each of the X-axis, Y-axis, and Z-axis for each predetermined minimum time unit, and the distribution unit 5 generates a pulse train signal based on the calculation results. It is output to the rotational speed controllers 7x to 7z for each coordinate axis.

回転速度制御部7x〜7zは、溜りパルスεX〜ε2に
位置ループゲインKpx−Kpzを乗することで、サー
ボモータMx〜Mzの回転速度を決定する。
The rotational speed control units 7x to 7z determine the rotational speeds of the servo motors Mx to Mz by multiplying the residual pulses εX to ε2 by the position loop gain Kpx-Kpz.

ここで、第2図(A)に示すように、時刻tでの直線軌
跡り上の目標位置をA点とすると、Y軸の制御系に時間
遅れがない場合に(よ時刻tでのX軸・Y軸の溜りパル
スεX・Eyは、夫々次式で表される。尚、Z軸のサー
ボモータMzは停止している。
Here, as shown in Fig. 2 (A), if the target position on the straight line trajectory at time t is point A, then if there is no time delay in the Y-axis control system ( The droop pulses εX and Ey of the axis and Y axis are respectively expressed by the following equations. Note that the Z axis servo motor Mz is stopped.

εx= f Xcosθ/ K pO[pu I se
]εy=fXsinθ/ K pO[pulselイ旦
し、 Kpx=Kpy= KpO つまり、加工工具は直線軌跡り上の点Bに位置して、A
点と8点との距離1ft、  l=f/KpO[pul
selとなる。このとき、回転速度制御部7x及び7y
で決定されるサーボモータMx及びMyの回転速度は、
K pxX e x= f X cosθ[pulse
/sec]及びKpyX t: y= f X5inθ
[pulse/5eclであるので、サーボモータMx
及びMyは速度指令部11の回転速度指令に基づいて回
転して加工工具を目標位置へ移動させる。
εx= f X cos θ/K pO[pu I se
]εy=fXsinθ/K pO
Distance between point and point 8 is 1ft, l=f/KpO[pul
It becomes sel. At this time, rotation speed control units 7x and 7y
The rotational speeds of servo motors Mx and My determined by
K pxX e x= f X cosθ[pulse
/sec] and KpyX t: y= f X5inθ
[Since pulse/5ecl, servo motor Mx
and My rotate based on the rotation speed command from the speed command unit 11 to move the processing tool to the target position.

しかし、上述したように、Y軸の制御系には時間遅れΔ
tがあるため、実際の加工工具の位置は、Y軸に関して
Δy (=fXsinθ×Δt)だけ遅れた0点であり
、直線軌跡りから外れて位置誤差を生じる。そこで、本
実施例では、Y軸の回転速度制御部7yの位置ループゲ
インを、時間遅れΔtに応じて設定して、サーボモータ
Myの回転速度を増速しY軸方向の移動量を増やすこと
で位置誤差を補正する。
However, as mentioned above, the Y-axis control system has a time delay Δ.
Because of t, the actual position of the machining tool is the 0 point delayed by Δy (=fXsinθ×Δt) with respect to the Y axis, which deviates from the straight line trajectory and causes a position error. Therefore, in this embodiment, the position loop gain of the Y-axis rotational speed control section 7y is set according to the time delay Δt to increase the rotational speed of the servo motor My and increase the amount of movement in the Y-axis direction. to correct the position error.

即ち、設定された位置ループゲインをKpy、時刻tで
の溜りパルスをEyとすると、直線軌跡り上に加工工具
が位置するためには、 E y= Ey −f X5inθXΔt。
That is, if the set position loop gain is Kpy and the droop pulse at time t is Ey, then in order for the machining tool to be located on a straight line trajectory, E y=Ey −f X5inθXΔt.

(fXsinθ/ Kpy)=(f X5inθ×Δt
m)fXsinθ×Δt よって、 K py= 1 / ((1/K pO)−Δt)−・
・(1)という条件が必要である。従って、第2図(B
)に示すようl、(1)式に基づいて位置ループゲイン
Kpyを設定すれば回転速度制御部7yにおける溜りパ
ルスは一#yとなり、加工工具を位置を目標軌跡り上の
8点に移動させることができる。
(fXsinθ/Kpy)=(fX5inθ×Δt
m) fXsinθ×Δt Therefore, Kpy=1/((1/KpO)−Δt)−・
-The condition (1) is necessary. Therefore, Fig. 2 (B
), if the position loop gain Kpy is set based on equation (1), the droop pulse in the rotational speed control section 7y becomes 1#y, and the position of the processing tool is moved to 8 points on the target trajectory. be able to.

又、Y軸平面上の傾きθの直線軌跡Ll:沿って移動す
るように指令された場合にli  Z軸についての時間
遅れは2×Δtであるので、上述の場合と同様にして、 K pz= 1 / ((1/K pO)−2XΔt)
−(2)という条件が必要であるので、 (2)式に基
づいて位置ループゲインKpzを設定する。
Also, when a command is given to move along the straight line locus Ll with an inclination θ on the Y-axis plane, the time delay about the li Z-axis is 2×Δt, so in the same way as in the above case, K pz = 1 / ((1/K pO)-2XΔt)
- Since the condition (2) is required, the position loop gain Kpz is set based on equation (2).

本実施例で(よ このようにして予め求められた位置ル
ープゲインKpx−Kpzが、ゲイン設定部9のデータ
ROM32に格納されており、時間遅れΔt、2×Δt
に応じて位置ループゲインKpx(: K po)、K
py、  Kpzが設定されるので、各座標軸の回転速
度制御部7y〜7zにおける溜りパルスεX〜εz l
&時間遅れのない場合と同じとなる。つまり、速度指令
部11から駆動部13y、13zへ速度指令信号が出力
されるのがΔt、2×Δtだけ遅れる分、回転速度制御
部7y、7zにおいて位置ループゲインが増大補正され
て回転速度が増速される。そして、速度指令部1]で速
度指令に変換さね、駆動部14×、14yが、その速度
指令と実速度との偏差に応じてサーボモータMx、My
の通電電流を制御する。
In this embodiment, the position loop gain Kpx-Kpz obtained in advance in this way is stored in the data ROM 32 of the gain setting section 9, and the time delay Δt, 2×Δt
Position loop gain Kpx (: K po), K
Since py and Kpz are set, the droop pulses εX to εz in the rotational speed control units 7y to 7z of each coordinate axis
& Same as when there is no time delay. In other words, the output of the speed command signal from the speed command unit 11 to the drive units 13y, 13z is delayed by Δt, 2×Δt, and the position loop gain is corrected to increase in the rotational speed control units 7y, 7z to increase the rotational speed. The speed will be increased. Then, the speed command unit 1] converts it into a speed command, and the drive units 14x, 14y actuate the servo motors Mx, My according to the deviation between the speed command and the actual speed.
Controls the energizing current.

このようにしてサーボモータMx−Mzの回転速度が制
御され加工工具は直線軌跡Ll:沿って移動する。
In this way, the rotational speed of the servo motors Mx-Mz is controlled, and the machining tool moves along the linear trajectory Ll:.

上記したように、本実施例では応答遅れのないX軸につ
いては位置ループゲインを基本ゲインKpOに設定し、
応答遅れのあるY軸又はZ軸については応答遅れΔを又
は2×Δtに応じて位置ループゲインを設定して(Kp
y、  Kpz)、サーボモータM×〜Mzの回転速度
を制御するので、加工工具の各座標位置を目標位置へ制
御することができ、指令された移動軌跡しに沿って正確
に加工工具を移動させることができる。
As mentioned above, in this embodiment, the position loop gain is set to the basic gain KpO for the X-axis without response delay,
For the Y-axis or Z-axis with a response delay, set the position loop gain according to the response delay Δ or 2 × Δt (Kp
y, Kpz) and the rotational speed of the servo motors M can be done.

ここで、本実施例では回転速度制御部7x〜72を閉ル
ープの制御系として構成したが、このほかにフィードフ
ォーワードの制御系として構成してもよい。即ち、第3
図に示すように、回転速度制御部7x〜7zにおいて、
乗算器24×〜242の出力(溜りパルスεX〜ε2に
位置ループゲインKpx−Kpzを乗じたもの)に、所
定のフィードフォワード率αから決定されるフィードフ
ォワード量を加える加算器26x、26y、26zを増
設して、フィードフォワードの位置制御系として構成し
てもよい。
Here, in this embodiment, the rotation speed control sections 7x to 72 are configured as a closed loop control system, but they may also be configured as a feed forward control system. That is, the third
As shown in the figure, in the rotational speed control sections 7x to 7z,
Adders 26x, 26y, 26z that add a feedforward amount determined from a predetermined feedforward rate α to the outputs of the multipliers 24x to 242 (the product of the accumulated pulses εX to ε2 multiplied by the position loop gain Kpx−Kpz); may be added to form a feedforward position control system.

この場合に(よ フィードフォワード量が加算された分
、溜りパルスEyは減るので、加工工具を目標位置に移
動させるために(よ EY=(fXsinθ/Kpy)X(1−cr)εy=
(fXsinθ/KpO)X(1−a>E V” e 
y −f X5inθ×Δtよって、 (fXsinθ/Kpy)X(1−a>=(fXsin
θ/KpO)X(1−cr)−fXsinθ×Δを 上式を整理すると、 1 /K pV= 1 /K pO−Δt/(1−α)
・・・(3)同様にして K pz = 1 / ((1/K pO) −2XΔ
t/(1−α))・・・(4) という条件が必要となる。
In this case, the droop pulse Ey decreases by the addition of the feedforward amount, so in order to move the machining tool to the target position, (YEY=(fXsinθ/Kpy)X(1-cr)εy=
(fXsinθ/KpO)X(1-a>E V” e
y −f X5inθ×Δt Therefore, (fXsinθ/Kpy)X(1-a>=(fXsin
θ/KpO)
...(3) Similarly, K pz = 1 / ((1/K pO) -2XΔ
The following condition is required: t/(1-α))...(4).

従って、 (3)式、 (4)式に基づいて位置ループ
ゲインKpy、Kpzt設定すれば、フィードバック制
御の場合と同様に、回転速度制御部7y、7zにおける
溜りパルスはεy、ε2となるので、加工工具を目標軌
跡に沿って移動させることができる。
Therefore, if the position loop gains Kpy and Kpzt are set based on equations (3) and (4), the droop pulses in the rotational speed control sections 7y and 7z will be εy and ε2, as in the case of feedback control. The processing tool can be moved along the target trajectory.

このように本発明はフィードバック制御の場合にもフィ
ードフォワード制御の場合にも適用できるので、広範な
サーボモータの位置制御において精度の向上に寄与でき
る。
As described above, the present invention can be applied to both feedback control and feedforward control, so it can contribute to improving accuracy in a wide range of servo motor position control.

尚、本実施例では直線補間を例に説明したが、円弧補間
の場合でも同様にして、各座標の応答遅れに応じて位置
ループゲインを変更して設定することで、加工工具を指
令された移動軌跡に沿って移動させることができる。
In this example, linear interpolation was explained as an example, but in the case of circular interpolation, the processing tool can be commanded by changing and setting the position loop gain according to the response delay of each coordinate. It can be moved along a movement trajectory.

更に、上記実施例では、各座標軸の位置制御系の応答遅
れΔt、2×Δtが、予めデータ入力装置から入力され
ていたが、この他に補間部3からの補間データの出力タ
イミングとS/口回路44X〜44zからの速度指令の
出力タイミングとのタイムラグ任検出し、そのタイムラ
グに応じて位置ループゲインを設定するように構成して
もよい。
Furthermore, in the above embodiment, the response delay Δt, 2×Δt of the position control system for each coordinate axis is inputted in advance from the data input device, but in addition to this, the output timing of interpolated data from the interpolation unit 3 and the S/ The configuration may be such that the time lag between the output timing of the speed command from the output circuits 44X to 44z is detected and the position loop gain is set in accordance with the detected time lag.

この場合には、より精密で正確な位置制御が可能となる
In this case, more precise and accurate position control becomes possible.

又、本実施例では、サーボモータで加工工具を移動させ
るように構成したが、このほかにワークテーブルや加工
ヘッドを移動させるように構成してもよいし、工作機械
に限らず、複数のサーボモタを制御して機械座標系の任
意の位置に移動体を移動させる装置の何れにも本発明は
適用できる。
Further, in this embodiment, the machining tool is moved by a servo motor, but it may be configured to move the work table or the machining head in addition to this, and it is not limited to machine tools. The present invention can be applied to any device that moves a movable body to an arbitrary position in a mechanical coordinate system by controlling.

[発明の効果] 以上詳述したように本発明によれば、応答遅れのない座
標軸については所定の制御ゲインそのままで、応答遅れ
のある座標軸については制御ゲインを変更することで、
それぞれのサーボモータの回転量を制御するので、座標
細末々の目標位置に正確に移動体の位置を制御して移動
体を移動指令に沿って移動させることができる。
[Effects of the Invention] As detailed above, according to the present invention, the predetermined control gain is maintained as is for coordinate axes without response delay, and the control gain is changed for coordinate axes with response delay.
Since the amount of rotation of each servo motor is controlled, the position of the movable body can be accurately controlled to the target position at each coordinate point, and the movable body can be moved in accordance with the movement command.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例のサーボモータ制御装置の構成図、第2
図(A)は時間遅れによる位置誤差の説明図、第2図(
B)は位置誤差の補正の説明図、第3図はフィードフォ
ワードによる位置制御を行う実施例の構成図である。 1・・・サーボモータ制御装置 3・・・補間部5・・
・分配部7X、7’+’、7Z・・・回転速度制御部9
・・・ゲイン設定部     1]・−・速度指令部1
3X、13Y、132・・−駆動部 E・・・シャフトエンコーダ
Figure 1 is a configuration diagram of the servo motor control device of the embodiment, Figure 2
Figure (A) is an explanatory diagram of position error due to time delay, and Figure 2 (
B) is an explanatory diagram of position error correction, and FIG. 3 is a configuration diagram of an embodiment in which position control is performed by feedforward. 1... Servo motor control device 3... Interpolation section 5...
・Distribution section 7X, 7'+', 7Z...Rotation speed control section 9
... Gain setting section 1] -- Speed command section 1
3X, 13Y, 132...-Drive section E...Shaft encoder

Claims (1)

【特許請求の範囲】 複数のサーボモータの駆動を制御して機械座標系の任意
の位置に移動体を移動させるサーボモータ制御装置であ
つて、 機械座標系をなす座標軸の夫々について、上記移動体の
現在位置を検出する位置検出手段と、外部からの移動指
令に基づき所定の補間を行つて、上記座標軸の夫々につ
いて、目標位置を設定する補間手段と、 上記座標軸の夫々について上記位置検出手段により検出
された移動体の現在位置と上記補間手段によつて設定さ
れた目標位置との偏差に基づき、上記座標軸の夫々につ
いて設定された所定の制御ゲインで上記各サーボモータ
の回転量を制御する回転量制御手段と、 上記回転量制御手段による上記座標軸夫々の制御の応答
遅れに基づいて、上記座標軸の夫々について設定された
各制御ゲインを変更する制御ゲイン変更手段と、 を備えたことを特徴とするサーボモータ制御装置。
[Scope of Claim] A servo motor control device that controls the driving of a plurality of servo motors to move a moving body to an arbitrary position in a mechanical coordinate system, wherein the moving body a position detection means for detecting the current position of the coordinate axis; an interpolation means for performing predetermined interpolation based on a movement command from the outside to set a target position for each of the coordinate axes; and a position detection means for each of the coordinate axes. Rotation for controlling the amount of rotation of each of the servo motors with a predetermined control gain set for each of the coordinate axes based on the deviation between the detected current position of the moving body and the target position set by the interpolation means. and control gain changing means for changing each control gain set for each of the coordinate axes based on a response delay in control of each of the coordinate axes by the rotation amount control means. servo motor control device.
JP2063598A 1990-03-14 1990-03-14 Servo motor controller Pending JPH03263208A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2063598A JPH03263208A (en) 1990-03-14 1990-03-14 Servo motor controller
KR1019910003887A KR910017725A (en) 1990-03-14 1991-03-12 Servo Motor Control Device
US07/668,618 US5194790A (en) 1990-03-14 1991-03-13 Control device for controlling a servo motor
DE4108293A DE4108293A1 (en) 1990-03-14 1991-03-14 Coordinated controller for servomotors - uses gain valves stored in ROM table for improved performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2063598A JPH03263208A (en) 1990-03-14 1990-03-14 Servo motor controller

Publications (1)

Publication Number Publication Date
JPH03263208A true JPH03263208A (en) 1991-11-22

Family

ID=13233871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2063598A Pending JPH03263208A (en) 1990-03-14 1990-03-14 Servo motor controller

Country Status (4)

Country Link
US (1) US5194790A (en)
JP (1) JPH03263208A (en)
KR (1) KR910017725A (en)
DE (1) DE4108293A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293107A (en) * 1991-03-20 1992-10-16 Fanuc Ltd Feed speed clamp system for numerical controller
JPH0527845A (en) * 1991-07-22 1993-02-05 Okuma Mach Works Ltd Numerical controller having control parameter changing function
WO2003100536A1 (en) * 2002-05-14 2003-12-04 Kabushiki Kaisha Yaskawa Denki Numerical value control device synchronization control method
JP2015118402A (en) * 2013-12-16 2015-06-25 ファナック株式会社 Numerical controller for issuing command to plurality of shafts by single command

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4107373A1 (en) * 1991-03-08 1992-09-10 Thomson Brandt Gmbh METHOD AND DEVICE FOR REDUCING INTERFERENCE SIGNALS
JP3036143B2 (en) * 1991-09-02 2000-04-24 三菱電機株式会社 Numerical control unit
JP2866556B2 (en) * 1993-09-02 1999-03-08 三菱電機株式会社 Control device and control method for machine tool
US5581254A (en) * 1994-03-30 1996-12-03 Burr-Brown Corporation Electric motor control chip and method
US5684374A (en) * 1995-07-27 1997-11-04 Allen-Bradley Company, Inc. Method and apparatus for tuning a motion control system having an external velocity loop
US5625267A (en) * 1995-12-13 1997-04-29 Coburn Optical Industries, Inc. Constant delay filtering for synchronized motion on multiple axes
US5798626A (en) * 1996-08-09 1998-08-25 Emhart Glass Machinery Investments Inc. Servo motor control
JP3581221B2 (en) * 1996-08-22 2004-10-27 東芝機械株式会社 Position control system
DE19644801C1 (en) 1996-10-28 1998-05-28 Samson Ag Arrangement for controlling and monitoring servo devices e.g. for process automation
KR20010107998A (en) * 1998-12-03 2001-12-07 다니구찌 이찌로오, 기타오카 다카시 Servo system controller
EP1226476B1 (en) 1999-09-08 2004-04-07 Dr. Johannes Heidenhain GmbH Method and circuitry for producing nominal position values for a closed loop position control of a numerically continuous-path controlled machine
JP4543967B2 (en) * 2004-03-31 2010-09-15 セイコーエプソン株式会社 Motor control device and printing device
CN100524136C (en) * 2005-03-07 2009-08-05 三菱电机株式会社 Drive control system and mechanical control device
JP5324679B1 (en) * 2012-04-10 2013-10-23 ファナック株式会社 Servo motor control device for controlling a servo motor for driving a feed axis of a machine tool
CN112114539B (en) * 2020-09-25 2023-11-28 成都易慧家科技有限公司 Control system and method for double-motor driven sliding door and window

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427808A (en) * 1987-04-27 1989-01-30 Mitsubishi Electric Corp Numerical control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293107A (en) * 1991-03-20 1992-10-16 Fanuc Ltd Feed speed clamp system for numerical controller
JPH0527845A (en) * 1991-07-22 1993-02-05 Okuma Mach Works Ltd Numerical controller having control parameter changing function
WO2003100536A1 (en) * 2002-05-14 2003-12-04 Kabushiki Kaisha Yaskawa Denki Numerical value control device synchronization control method
JP2015118402A (en) * 2013-12-16 2015-06-25 ファナック株式会社 Numerical controller for issuing command to plurality of shafts by single command
US9488965B2 (en) 2013-12-16 2016-11-08 Fanuc Corporation Numerical controller instructing a plurality of axes using a single instruction

Also Published As

Publication number Publication date
DE4108293A1 (en) 1991-10-02
KR910017725A (en) 1991-11-05
US5194790A (en) 1993-03-16

Similar Documents

Publication Publication Date Title
JPH03263208A (en) Servo motor controller
EP0144442B1 (en) Method of controlling industrial robot along arc
CN101362511B (en) Synergetic control method of aircraft part pose alignment based on four locater
KR880001647B1 (en) Robot control apparatus
JPS63273108A (en) Speed controller
EP0364593B1 (en) Machine tool having two main spindles
WO1988004445A1 (en) Numerical controller
JPH0123269B2 (en)
JPS59163614A (en) Driving of industrial robot in coordinate system alien to robot dynamic motion
CN107645979B (en) Robot system for synchronizing the movement of a robot arm
JP2907164B2 (en) Numerical control unit
JP2004086434A (en) Speed command type synchronization controller
JPS6246003B2 (en)
JPH0561650B2 (en)
JPH03164811A (en) Servo motor feed correcting method
JPS58120449A (en) Table control method of machine tool
JP6391489B2 (en) Motor control device
RU2771456C1 (en) Method for controlling the working body of a multi-stage manipulator
SU568938A1 (en) Circuit system of program control
JPH10143215A (en) Control method for synchronous shaft of track control machine
JP2000175473A (en) Pulse train control system of motor enabling arbitrary interpolation
JPS58149512A (en) Numerical control system
SU772818A1 (en) Copying control system
JPH0452708A (en) Malfunction check system
JPH04102905A (en) Control method