JPH03262971A - Speed and acceleration detecting device - Google Patents

Speed and acceleration detecting device

Info

Publication number
JPH03262971A
JPH03262971A JP6322190A JP6322190A JPH03262971A JP H03262971 A JPH03262971 A JP H03262971A JP 6322190 A JP6322190 A JP 6322190A JP 6322190 A JP6322190 A JP 6322190A JP H03262971 A JPH03262971 A JP H03262971A
Authority
JP
Japan
Prior art keywords
phase
detection device
outputs
sine wave
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6322190A
Other languages
Japanese (ja)
Inventor
Youichi Sugitomo
庸一 杉友
Kenji Sogawa
祖川 憲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6322190A priority Critical patent/JPH03262971A/en
Priority to KR1019910004045A priority patent/KR910017191A/en
Publication of JPH03262971A publication Critical patent/JPH03262971A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a highly accurate speed signal which has a small ripple and small phase delay by outputting an A-phase and a B-phase sine wave which are 90 deg. out of phase with each other by a position detecting device and outputting the differentiated values of the A phase and B phase by two differentiators. CONSTITUTION:The A-phase sine wave and B-phase sine wave which are outputted by the position detecting device and 90 deg. out of phase with each other are expressed by I. Then the A-phase sine wave and B-phase sine wave are differentiated by the differentiators 1 and 2 to obtain expressions II. Then a multiplier 3 outputs the product K<2> (2piX/lambda)cos<2>(2piX/lambda) of the differentiated value of the A phase and the B phase and a multiplier 4 outputs the product -K<2>(2piX/lambda)sin<2>(2piX/lambda) of the differentiated value of the B phase and the A phase. Then a subtracter 5 outputs the difference between the outputs of the multipliers 3 and 4, i.e. (2pi/lambda)K<2>X, but (2pi/lambda)K<2> is a constant, so it is evident that the output of the subtracter 5 is a speed signal whose ripple and phase delay are extremely small over the entire band.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、産業用ロボットの制御装置に使用する速度・
加速検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to speed and speed control devices used in industrial robot control devices.
This invention relates to an acceleration detection device.

従来の技術 近年、産業用ロボットの制御が高度化しており、例えば
高精度な位置決め、軌跡制御、力制御などの要求が高ま
りつつある。その手段として、高精度な速度・加速検出
装置の必要性が増している。
BACKGROUND OF THE INVENTION In recent years, control of industrial robots has become more sophisticated, and demands for highly accurate positioning, trajectory control, force control, etc. are increasing. As a means of achieving this, the need for highly accurate speed/acceleration detection devices is increasing.

以下図面を参照しながら、上述した従来の速度・加速度
検出装置の一例について説明する。
An example of the above-mentioned conventional speed/acceleration detection device will be described below with reference to the drawings.

第5図は従来の速度・加速度検出装置の構成を示すもの
である。第5図において、27.28はコンパレータ、
29は微分器、30はワンショット回路、31はスイッ
チ、32は積分器、33は反転増幅器、34はスイッチ
、35は方向判別器、36は微分器である。
FIG. 5 shows the configuration of a conventional speed/acceleration detection device. In Fig. 5, 27.28 is a comparator,
29 is a differentiator, 30 is a one-shot circuit, 31 is a switch, 32 is an integrator, 33 is an inverting amplifier, 34 is a switch, 35 is a direction discriminator, and 36 is a differentiator.

以下のように構成された速度・加速度検出装置について
、以下その動作を説明する。
The operation of the speed/acceleration detection device configured as follows will be described below.

まず、A相正弦波はコンパレータ27により矩形波に変
換され、この矩形波は微分器29により微分されてひげ
状の波形となる。このひげ状の波形はワンショット回路
30によりあらかじめ決められた幅のパルス列に変換さ
れ、このパルス列によりスイッチ31をオン・オフし、
この時に流れる電流が積分器32で積分される。すなわ
ち、積分器32の出力電圧はワンショット回路30から
出力されるパルス列の幅に比例した電圧となる。
First, the A-phase sine wave is converted into a rectangular wave by the comparator 27, and this rectangular wave is differentiated by the differentiator 29 to form a whisker-like waveform. This whisker-like waveform is converted into a pulse train with a predetermined width by the one-shot circuit 30, and this pulse train turns the switch 31 on and off.
The current flowing at this time is integrated by an integrator 32. That is, the output voltage of the integrator 32 becomes a voltage proportional to the width of the pulse train output from the one-shot circuit 30.

A相正弦波、B相正弦波はそれぞれコンパレータ27.
28により矩形波に変換され、方向判別器35に入力さ
れる。方向判別器35はA相矩形波とB相矩形波の位相
を比較することにより方向判別を行い、スイッチ34を
切り換える。スイッチ34により、積分器32の出力と
、積分器32の出力を反転増幅器33により反転した出
力とを切り換える。以上により、スイッチ34の出力は
回転方向を正負で表現した速度信号となり、この信。
The A-phase sine wave and the B-phase sine wave are each sent to a comparator 27.
28 converts it into a rectangular wave and inputs it to the direction discriminator 35. The direction discriminator 35 discriminates the direction by comparing the phases of the A-phase rectangular wave and the B-phase rectangular wave, and switches the switch 34. The switch 34 switches between the output of the integrator 32 and the output obtained by inverting the output of the integrator 32 by the inverting amplifier 33. As a result of the above, the output of the switch 34 becomes a speed signal expressing the direction of rotation as positive or negative.

号は微分器36により微分されて加速信号となる。The signal is differentiated by a differentiator 36 and becomes an acceleration signal.

発明が解決しようとする課題 しかしながら上述のような構成では、高い周波数におい
てA相正弦波の周波数と速度信号の直線性は良いが、近
い周波数において速度信号のりプルが大となり、また位
相遅れも生じる。従って、加速度信号にもリプルと位相
遅れが生じ、速度信号、加速度信号の精度に限界がある
Problems to be Solved by the Invention However, in the above configuration, although the linearity between the frequency of the A-phase sine wave and the speed signal is good at high frequencies, the speed signal ripple becomes large at close frequencies, and a phase lag also occurs. . Therefore, ripples and phase delays occur in the acceleration signal, and there is a limit to the accuracy of the speed signal and acceleration signal.

産業用のロボットの位置決め制御においては、目標位置
近傍で位置検出装置から近い周波数の信号が入力される
ので、この場合制御性の良い速度・加速信号が得られな
いという問題を有していた。
In positioning control of industrial robots, a signal of a similar frequency is input from a position detection device near a target position, so there has been a problem in that speed/acceleration signals with good controllability cannot be obtained in this case.

本発明は上記問題に鑑み、位置検出装置の出力信号の周
波数が近い場合においても、リプルおよび位相遅れの少
ない高精度な速度信号、加速度信号を得る速度・加速度
検出装置を提供するものである。
In view of the above problems, the present invention provides a speed/acceleration detection device that obtains highly accurate speed and acceleration signals with little ripple and phase delay even when the frequencies of the output signals of the position detection device are close.

課題を解決するための手段 上記課題を解決するために本発明の速度・加速度検出装
置は、90°位相差のあるA相正弦波。
Means for Solving the Problems In order to solve the above problems, the speed/acceleration detection device of the present invention uses an A-phase sine wave with a 90° phase difference.

B相正弦波を出力する位置検出装置と、前記A相正弦波
、B相正弦波をそれぞれ微分する位置検出装置と前記A
相の微分し前記B相をそれぞれ微分し前記A相の2階微
分値とB相の2個の乗算器と、これら乗算器の出力の差
を求める減算器とを備えたものである。ただし、加速度
検出装置においては、微分器はA相正弦波、B相正弦波
の2階微分値を出力するものである。
a position detection device that outputs a B-phase sine wave; a position detection device that differentiates the A-phase sine wave and the B-phase sine wave; and the A-phase sine wave;
The multiplier includes two multipliers for differentiating the phase B and the second differential value of the A phase and the B phase, and a subtracter for calculating the difference between the outputs of these multipliers. However, in the acceleration detection device, the differentiator outputs second-order differential values of the A-phase sine wave and the B-phase sine wave.

作   用 本発明は上記構成によって、A相の微分しB相の積およ
びB相の微分しA相の積をそれぞれ求め、それら2つの
積の差を求めることにより、全帯域においてリプルおよ
び位相遅れの少ない速度信号2加速度信号を得ることが
できる。
According to the above configuration, the present invention calculates the product of the differentiation of phase A and phase B, and the product of differentiation of phase B and phase A, respectively, and calculates the difference between these two products to eliminate ripples and phase lag in the entire band. It is possible to obtain two velocity signals and two acceleration signals.

実施例 以下本発明の一実施例における速度・加速度検出装置に
ついて、図面を参照しながら説明する。
EXAMPLE Below, a speed/acceleration detection device according to an example of the present invention will be described with reference to the drawings.

第1図は、本発明の第1の実施例における速度検出装置
の構成を示すものである。同図において、1,2は微分
器、3,4は乗算器、5は減算器である。
FIG. 1 shows the configuration of a speed detection device in a first embodiment of the present invention. In the figure, 1 and 2 are differentiators, 3 and 4 are multipliers, and 5 is a subtracter.

以上のように構成された速度検出装置について、以下第
1図を用いてその動作を説明する。
The operation of the speed detection device configured as described above will be explained below with reference to FIG.

位置検出装置(図示せず)から出力される90゜位相差
のあるA相正弦波、B相正弦波は、それぞれKs in
 (2πx/λ)、Kcos (2πx/λ)と表され
る。ただし、KはA相、B相の振幅、Xは位置検出装置
の変位、λは位置検出装置のスリット幅、πは円周率で
ある。A相正弦波。
The A-phase sine wave and the B-phase sine wave with a 90° phase difference output from the position detection device (not shown) are each Ks in
(2πx/λ) and K cos (2πx/λ). Here, K is the amplitude of the A phase and B phase, X is the displacement of the position detection device, λ is the slit width of the position detection device, and π is the circumference ratio. A phase sine wave.

B相正弦波は微分器1.2により微分されてそれぞれ、
K(2πx/λ)cos (2πx/λ)。
The B-phase sine wave is differentiated by differentiator 1.2, respectively,
K(2πx/λ) cos (2πx/λ).

−K (2πx/λ)s in (2πx/λ)となる
−K (2πx/λ)s in (2πx/λ).

Xは変位Xの時間微分すなわち速度を示す。乗算器3は
A相の微分しB相の積、K  (2πX/λ)cos2
(2πX/λ)を出力し、乗算器4はB相の微分しA相
の積、−K (2πX/λ)sin2(2πX/λ)を
出力する。減算器5は乗算器3と4の出力の差、(2π
/λ)Kx(sin  (2πX/λ) +cO62(2πx/λ) )= (2π/λ)K”x
を出力するが、(2π/λ)K が定数であることによ
り、減算器5の出力が、全帯域においてリプルおよび位
相遅れの極めて少ない速度信号であることが分かる。
X indicates the time derivative of the displacement X, that is, the velocity. Multiplier 3 differentiates the A phase and the product of the B phase, K (2πX/λ)cos2
(2πX/λ), and the multiplier 4 differentiates the B phase and outputs the product of the A phase, −K (2πX/λ) sin2 (2πX/λ). Subtractor 5 calculates the difference between the outputs of multipliers 3 and 4, (2π
/λ)Kx(sin (2πX/λ) +cO62(2πx/λ) )= (2π/λ)K"x
However, since (2π/λ)K is a constant, it can be seen that the output of the subtracter 5 is a speed signal with extremely little ripple and phase lag in the entire band.

以上のように本実施例によれば、A相の微分しB相の積
およびB相の微分しA相の積を求めるために微分器1,
2と乗算器3.4を設け、さらにこれら2つの積の差を
求めて速度信号を得るための減算器5を設けたことによ
り、位置検出装置の出力の周波数にかかわらず、全帯域
でリプルおよび位相遅れの極めて少ない制御性の良い速
度信号を得ることができる。
As described above, according to this embodiment, the differentiator 1,
2 and a multiplier 3.4, and a subtracter 5 for obtaining a speed signal by calculating the difference between these two products, ripples can be eliminated in all bands regardless of the frequency of the output of the position detection device. In addition, it is possible to obtain a speed signal with excellent controllability and extremely little phase delay.

第3図は、本発明の第2の実施例における加速度検出装
置の構成図である。
FIG. 3 is a configuration diagram of an acceleration detection device in a second embodiment of the present invention.

同図において、16.17は乗算器、18は減算器で、
以上は第1の実施例と同様なものである。第1の実施例
の構成と異なるのは、2階微分を行う微分器14.15
を設けた点である。
In the same figure, 16.17 is a multiplier, 18 is a subtracter,
The above is similar to the first embodiment. The difference from the configuration of the first embodiment is that the differentiators 14 and 15 perform second-order differentiation.
The point is that

上記のように構成された加速度検出装置について、以下
その動作を説明する。
The operation of the acceleration detection device configured as described above will be described below.

第3図において、位置検出装置(図示せず)から出力さ
れる90”位相差のあるA相正弦波、B相正弦波は、そ
れぞれ、Ks i n (2πX/λ)、Kcos (
2πX/λ)と表される。ただし、KはA相、B相の振
幅、Xは位置検出装置の変位、λは位置検出装置のスリ
ット幅、πは演出率である。A相正弦波、B相正弦波は
微分器14゜15により2階微分されてそれぞれ、 −K(2zx/λ)stn(2πx/λ)十K (2π
X/λ)cos (2πX/λ)−K(2πX/λ)c
os (2πX/λ)K(2πx/λ)s in (2
πx/λ)となる。ただしXは変位Xの時間微分すなわ
ち速度を、Xは変位Xを時間で2階微分したものすなわ
ち加速度を示す。乗算器16はA相およびB相の積、 K2(2yrx/λ)  s J n (2yrx/λ
)cos  (2πX/λ) 千に2(2πx/λ)cos  (2πX/λ)を出力
し、乗算器17はB相およびA相の積、の積、 K’(2zx/λ)  5tn(2’rx/λ)cos
 (2πX/λ) +に2(2’r”x/λ)s i n2(2πx/λ)
を出力する。減算器18は2つの乗算器16.17の出
力の差、 (2π/λ)K2°x ls ln  <2yrx/λ
)+cos  (2πX/λ) )= <2yc/λ)
Kxを出力するが、(2π/λ)K が定数であること
より、減算器18の出力が、全帯域においてリプルおよ
び位相遅れの極めて少ない加速信号であることが分かる
In FIG. 3, an A-phase sine wave and a B-phase sine wave with a 90" phase difference output from a position detection device (not shown) are Ks in (2πX/λ) and Kcos (
2πX/λ). However, K is the amplitude of the A phase and B phase, X is the displacement of the position detection device, λ is the slit width of the position detection device, and π is the production rate. The A-phase sine wave and the B-phase sine wave are second-order differentiated by the differentiator 14゜15, and are respectively -K (2zx/λ) stn (2πx/λ) + K (2π
X/λ) cos (2πX/λ)−K(2πX/λ)c
os (2πX/λ)K(2πx/λ)s in (2
πx/λ). However, X indicates the time differential of the displacement X, that is, the velocity, and X indicates the second order differential of the displacement X with respect to time, that is, the acceleration. The multiplier 16 calculates the product of A phase and B phase, K2 (2yrx/λ) s J n (2yrx/λ
) cos (2πX/λ) 2(2πx/λ) cos (2πX/λ) is output, and the multiplier 17 outputs the product of B phase and A phase, K'(2zx/λ) 5tn(2 'rx/λ)cos
(2πX/λ) +2(2'r”x/λ)s in2(2πx/λ)
Output. The subtracter 18 calculates the difference between the outputs of the two multipliers 16 and 17, (2π/λ)K2°x ls ln <2yrx/λ
)+cos (2πX/λ) )= <2yc/λ)
Since (2π/λ)K is a constant, it can be seen that the output of the subtracter 18 is an acceleration signal with extremely little ripple and phase lag in the entire band.

以上のように本実施例によれば、A相およびB相の積お
よびB相およびA相の積を求めるために微分器(2階微
分)14.15と乗算器16.17を設け、さらにこれ
ら2つの積の差を求めて加速度信号を得るための減算器
18を設けたことにより、位置検出装置の出力の周波数
にかかわらず、全帯域でリプルおよび位相遅れの極めて
少ない制御性の良い加速度信号を得ることができる。
As described above, according to this embodiment, a differentiator (second order differential) 14.15 and a multiplier 16.17 are provided in order to obtain the product of the A phase and the B phase and the product of the B phase and the A phase. By providing a subtracter 18 to obtain an acceleration signal by calculating the difference between these two products, the acceleration can be easily controlled with extremely little ripple and phase delay in all bands, regardless of the frequency of the output of the position detection device. I can get a signal.

とができる。I can do that.

なお、第1の実施例における乗算器を、第2図に示した
ように対数器と加算器と逆対数器により構成してもよい
Note that the multiplier in the first embodiment may be constructed of a logarithm, an adder, and an anti-logarithm, as shown in FIG.

また、第2の実施例における乗算器を、第4図に示した
ように対数器と加算器と逆対数器により構成してもよい
Furthermore, the multiplier in the second embodiment may be constructed of a logarithm, an adder, and an anti-logarithm, as shown in FIG.

発明の効果 以上のように本発明は、90°位相差のあるA相、B相
正弦波を出力する位置検出装置と、A相の微分、B相の
微分を出力する位置検出装置と、人相とB相の微分の積
およびA相の微分とB相の積を出力する乗算器と、これ
ら2つの積の差を出力する減算器を設けたことにより、
位置検出装置の出力の周波数にかかわらず、全帯域でリ
プルおよび位相遅れの少ない制御性の良い速度・加速度
信号を得ることができる。
Effects of the Invention As described above, the present invention provides a position detection device that outputs A-phase and B-phase sine waves with a 90° phase difference, a position detection device that outputs A-phase differentials, B-phase differentials, and By providing a multiplier that outputs the product of the differential of phase and B phase and the product of the differential of A phase and B phase, and a subtractor that outputs the difference between these two products,
Regardless of the frequency of the output of the position detection device, it is possible to obtain velocity/acceleration signals with good controllability with little ripple and phase delay over the entire band.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の第1の実施例の速度検出装置
の構成図、第3図、第4図は本発明の第2の実施例の加
速度検出装置の構成図、第5図は従来の速度・加速度検
出装置の構成図である。 1.2・・・・・・微分器、3,4・・・・・・乗算器
、5・・・・・・減算器、6.7,8.9・・・・・・
対数器、10.11・・・・・・加算器、12.13・
・・・・・逆対数器、14.15・・・・・・微分器(
2階微分)、16.17・・・・・・乗算器、18・・
・・・・減算器、19.20.21.22・・・・・・
対数器、23.24・・・・・・加算器、25.26・
・・・・・逆対数器。
1 and 2 are block diagrams of a speed detecting device according to a first embodiment of the present invention, FIGS. 3 and 4 are block diagrams of an acceleration detecting device according to a second embodiment of the present invention, and FIG. The figure is a configuration diagram of a conventional speed/acceleration detection device. 1.2... Differentiator, 3, 4... Multiplier, 5... Subtractor, 6.7, 8.9...
Logarithm, 10.11... Adder, 12.13.
・・・・・・Antilogarithm, 14.15・・・Differentiator (
second-order differential), 16.17...multiplier, 18...
...Subtractor, 19.20.21.22...
Logarithm, 23.24... Adder, 25.26.
...Antilogarithm.

Claims (4)

【特許請求の範囲】[Claims] (1)90°位相差のあるA相、B相正弦波を位置の変
化により出力する位置検出装置と、この位置検出装置の
出力信号A相およびB相をそれぞれ微分しA相の微分値
とB相の微分値とを出力する2個の微分器と、前記A相
の微分値と前記B相および前記B相の微分値と前記A相
をそれぞれ掛け算する2個の乗算器と、これら乗算器の
出力の差を求める減算器とを備えたことを特徴とする速
度検出装置。
(1) A position detection device that outputs A-phase and B-phase sine waves with a 90° phase difference depending on changes in position, and a differential value of the A phase that is obtained by differentiating the output signals of the A phase and B phase of this position detection device, respectively. two differentiators that output a differential value of the B phase, two multipliers that multiply the differential value of the A phase by the B phase, and the differential value of the B phase and the A phase, and these multipliers. 1. A speed detection device comprising: a subtractor for determining the difference between the outputs of the speed detectors.
(2)乗算器が対数器と加算器と逆対数器とから成る請
求項1記載の速度検出装置。
(2) The speed detection device according to claim 1, wherein the multiplier comprises a logarithm, an adder, and an antilogarithm.
(3)90°位相差のあるA相、B相正弦波を位置の変
換により出力する位置検出装置と、前記位置検出装置の
出力信号A相およびB相をそれぞれ2階微分しA相の2
階微分値とB相の2階微分値を出力する2個の微分器と
、前記A相の2階微分値とB相および前記B相の2階微
分値とA相をそれぞれ掛け算する2個の乗算器と、これ
ら乗算器の出力の差を求める減算器とを備えたことを特
徴とする加速度検出装置。
(3) A position detection device that outputs A-phase and B-phase sine waves with a 90° phase difference by position conversion, and a second-order differential of the output signals of the A-phase and B-phase, respectively, of the A-phase
Two differentiators that output a differential value and a second differential value of the B phase, two differentiators that multiply the second differential value of the A phase by the B phase, and the second differential value of the B phase by the A phase, respectively. An acceleration detection device comprising: a multiplier; and a subtracter that calculates a difference between the outputs of these multipliers.
(4)乗算器が対数器と加算器と逆対数器とから成る請
求項3記載の加速度検出装置。
(4) The acceleration detection device according to claim 3, wherein the multiplier comprises a logarithm, an adder, and an antilogarithm.
JP6322190A 1990-03-14 1990-03-14 Speed and acceleration detecting device Pending JPH03262971A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6322190A JPH03262971A (en) 1990-03-14 1990-03-14 Speed and acceleration detecting device
KR1019910004045A KR910017191A (en) 1990-03-14 1991-03-14 Speed and acceleration detection device and robot control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6322190A JPH03262971A (en) 1990-03-14 1990-03-14 Speed and acceleration detecting device

Publications (1)

Publication Number Publication Date
JPH03262971A true JPH03262971A (en) 1991-11-22

Family

ID=13222939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6322190A Pending JPH03262971A (en) 1990-03-14 1990-03-14 Speed and acceleration detecting device

Country Status (1)

Country Link
JP (1) JPH03262971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040745A3 (en) * 2002-10-29 2004-07-08 Honeywell Int Inc Method and apparatus for fine resolution brushless motor control
RU199936U1 (en) * 2020-06-05 2020-09-29 Публичное Акционерное Общество "Одк-Сатурн" Vibration measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040745A3 (en) * 2002-10-29 2004-07-08 Honeywell Int Inc Method and apparatus for fine resolution brushless motor control
RU199936U1 (en) * 2020-06-05 2020-09-29 Публичное Акционерное Общество "Одк-Сатурн" Vibration measuring device

Similar Documents

Publication Publication Date Title
JPH04260983A (en) Method and device for detecting control information
US4039946A (en) Tachometer
JPS61162726A (en) Stress detector
US4616510A (en) Fluid velocity measuring method and apparatus
JPH03262971A (en) Speed and acceleration detecting device
JP3256661B2 (en) AC amplitude detector
US5365184A (en) Quadrature phase processing
JPS62864A (en) Speed detecting device
JPS62144021A (en) Resolver detection apparatus
RU2085953C1 (en) Frequency detector for rotor of alternating- current electric motor
JPS63158466A (en) Frequency-voltage converting apparatus
JPH02129552A (en) Velocity detector
JP3439814B2 (en) Digital PLL device
JPH04216108A (en) Robot controller
JPS62165154A (en) Frequency/voltage converter
RU2236080C2 (en) Method and unit for detecting phase lockout of channels (alternatives), two-dimensional control method and system
JPS6348178A (en) Digital type motor control method
SU1615616A1 (en) Device for measuring rotational speed
JPH03296618A (en) Correcting method of waveform for interpolation
JPS63148882A (en) Speed control device for motor
SU737842A1 (en) Device for comparing output voltage of objects operating with ac
SU1401398A1 (en) Method of measuring phase shift between two harmonic oscillations of same frequencies
SU838564A1 (en) Angular velocity transmitter
SU1088044A2 (en) Shaft turn angle encoder
JP2508036B2 (en) Digital Directional Ground Fault Relay