JPH03261306A - Regenerative brake controller for electric car - Google Patents

Regenerative brake controller for electric car

Info

Publication number
JPH03261306A
JPH03261306A JP2058735A JP5873590A JPH03261306A JP H03261306 A JPH03261306 A JP H03261306A JP 2058735 A JP2058735 A JP 2058735A JP 5873590 A JP5873590 A JP 5873590A JP H03261306 A JPH03261306 A JP H03261306A
Authority
JP
Japan
Prior art keywords
rotational
regenerative braking
motor
reference value
rotational fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2058735A
Other languages
Japanese (ja)
Other versions
JP2671549B2 (en
Inventor
Hiroshi Tsujii
啓 辻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2058735A priority Critical patent/JP2671549B2/en
Publication of JPH03261306A publication Critical patent/JPH03261306A/en
Application granted granted Critical
Publication of JP2671549B2 publication Critical patent/JP2671549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PURPOSE:To suppress vibration or noise due to collision of gears by increasing regenerative brake torque when the rotational fluctuation detected from the output shaft of decelerator in an electric car exceeds a predetermined reference value. CONSTITUTION:DC output from a battery 32 is inverted through an inverter main circuit 30 into AC power for driving a motor 10. Rotation of the motor 10 is decelerated 12 and transmitted through a hook joint 16 and a propeller shaft 14 to a differential 18 in order to rotate a wheel 20. A rotational speed detecting section 38 mounted on the decelerator 12 detects the rotation speed (n) at the time of OFF acceleration and during brake operation. Variation of the rotational speed (n) with time dn/dt is inputted to the rotational variation detecting means 40 in a controller 34 in order to detect rotational variation which is then subjected to comparison 42. When thus detected rotational variation exceeds a reference value, a brake torque control means 44 increases a regenerative brake torque.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はモータの回生制動を利用して制動を行う電気自
動車の回生制動制御装置に係り、特に惰性運転時に発生
する減速機のギヤかた打ちによる振動、騒音を防止でき
る電気自動車の回生制動制御装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a regenerative braking control device for an electric vehicle that performs braking using regenerative braking of a motor, and particularly relates to a gear shift of a reducer that occurs during coasting. This invention relates to a regenerative braking control device for electric vehicles that can prevent vibration and noise caused by hitting.

[従来の技術] 従来から、電気自動車において、アクセルペダルを離し
たときにエンジン車両におけるエンジンブレーキ相当の
制動力を走行用のモータ回生制動により発生させ、発生
エネルギーによってバッテリを充電している。そして、
このエネルギー回収によってバッテリー充電当たりの走
行距離の増大を図っている。なお、このような回生制動
を利用した電気自動車は、例えば特開昭59−2090
04号公報等に示されている。
[Prior Art] Conventionally, in an electric vehicle, when an accelerator pedal is released, a braking force equivalent to engine braking in an engine vehicle is generated by regenerative braking of a driving motor, and a battery is charged with the generated energy. and,
This energy recovery is intended to increase the distance traveled per battery charge. Incidentally, an electric vehicle using such regenerative braking is disclosed in, for example, Japanese Patent Application Laid-open No. 59-2090.
This is shown in Publication No. 04 and the like.

第5図は上記のような従来の電気自動車の駆動機構を示
す概略構成図である。
FIG. 5 is a schematic diagram showing the drive mechanism of the conventional electric vehicle as described above.

図において、10は電気自動車の駆動用誘導モータ(以
下、モータという)、12は減速機で、減速機12はモ
ータ10の回転を減速する。14はプロペラシャフトで
、両端に設けられたフックスジヨイント16を介して、
一端は減速機12に、また他端はデファレンシャル18
に接続されている。20は駆動輪となるホイールで、デ
ファレンシャル18に接続されている。
In the figure, 10 is an induction motor for driving an electric vehicle (hereinafter referred to as a motor), 12 is a reducer, and the reducer 12 reduces the rotation of the motor 10. 14 is a propeller shaft, through Fuchs joints 16 provided at both ends,
One end is connected to the reducer 12, and the other end is connected to the differential 18.
It is connected to the. Reference numeral 20 denotes a wheel serving as a driving wheel, which is connected to the differential 18.

第6図は上記フックスジヨイント16の構造図である。FIG. 6 is a structural diagram of the Fuchs joint 16.

フックスジヨイント16は、不等速型のジヨイントであ
り、駆動軸22および被駆動軸24の2軸が互いに角度
θをなして交わる場合、角速度の関係は次のようになる
The Fuchs joint 16 is an inconstant velocity type joint, and when the two axes, the driving shaft 22 and the driven shaft 24, intersect with each other at an angle θ, the relationship of angular velocities is as follows.

eO8θ ただし、ω :駆動軸角速度、ω2:被駆動軸角速度、
θ:2軸の交差角度、φ:駆動軸の回転角度(なお、ヨ
ークが2軸を含む平面に垂直なときをOとする)である
eO8θ However, ω: Drive shaft angular velocity, ω2: Driven shaft angular velocity,
θ: intersection angle of the two axes, φ: rotation angle of the drive shaft (note that 0 is the time when the yoke is perpendicular to the plane containing the two axes).

従って、被駆動軸角速度ω2は、駆動軸角速度ω□か一
定だとしても、2軸の交差角度θおよび駆動軸の回転角
度φによって変動する。
Therefore, even if the drive shaft angular velocity ω□ is constant, the driven shaft angular velocity ω2 varies depending on the intersection angle θ of the two axes and the rotation angle φ of the drive shaft.

[発明が解決しようとする課8] すなわち、上記のような従来の電気自動車の駆動機構に
あっては、例えば第7図に示すように、フックスジヨイ
ント16の2軸の交差角度θか変わることによって、被
駆動軸24の回転数が変動する。
[Problem 8 to be solved by the invention] That is, in the conventional electric vehicle drive mechanism as described above, for example, as shown in FIG. 7, the intersection angle θ of the two axes of the Fuchs joint 16 changes. As a result, the rotation speed of the driven shaft 24 fluctuates.

このため、惰性運転(惰行)時には上記回転変動に起因
して、減速機12内の駆動側ギヤおよび被駆動側ギヤの
ギヤ同士がぶつかり合って振動、騒音が発生していた。
Therefore, during coasting, the driving gear and driven gear in the reducer 12 collide with each other due to the rotational fluctuations, causing vibration and noise.

そして、このギヤの振動、騒音が減速機12から車両へ
と伝達されて、車両そのものの騒音、振動となっていた
The vibrations and noise of this gear are transmitted from the reducer 12 to the vehicle, and become the noise and vibration of the vehicle itself.

この発明は、上記のような従来技術の課題を解決するた
めになされたものであり、その目的は、惰行時に発生す
る減速機のギヤかた打ちによる振動、騒音を防止できる
電気自動車の回生制動制御装置を提供することにある。
This invention was made to solve the problems of the prior art as described above, and its purpose is to provide regenerative braking for electric vehicles that can prevent vibration and noise caused by gear shifting of the reducer that occurs during coasting. The purpose of this invention is to provide a control device.

[課題を解決するための手段] この発明に係る電気自動車の回生制動制御装置は、電気
自動車の駆動用誘導モータと、このモータの回転を減速
して駆動輪に出力する減速機を含み、モータの回生制動
を利用して制動を行う電気自動車において、前記減速機
の出力軸における回転変動を検出する回転変動検出手段
と、この回転変動を所定の基準値と比較する演算比較手
段と、上記回転変動か基準値より大きくなった場合に回
生制動トルクを増加させる制動トルク制御手段と、を含
むことを特徴とする。
[Means for Solving the Problems] A regenerative braking control device for an electric vehicle according to the present invention includes an induction motor for driving an electric vehicle, and a reducer that decelerates the rotation of this motor and outputs it to the drive wheels. In an electric vehicle that performs braking using regenerative braking, the rotational variation detection means detects the rotational variation at the output shaft of the reduction gear, the arithmetic comparison means compares the rotational variation with a predetermined reference value, and the rotational The present invention is characterized in that it includes a braking torque control means for increasing the regenerative braking torque when the fluctuation becomes larger than a reference value.

口作用] 上記構成を有する電気自動車の回生制動制御装置におい
ては、回転変動検8手段によって減速機の出力軸におけ
る回転変動を検出し、演算比較手段によってこの回転変
動を所定の基準値と比較し、制動トルク制御手段によっ
て上記回転変動が基準値より大きくなった場合に回生制
動トルクを増加させる。
In the regenerative braking control device for an electric vehicle having the above-mentioned configuration, the rotational fluctuation detection means detects the rotational fluctuation at the output shaft of the reducer, and the calculation comparison means compares this rotational fluctuation with a predetermined reference value. The regenerative braking torque is increased by the braking torque control means when the rotational fluctuation becomes larger than a reference value.

[実施例コ 以下、図面に基づいてこの発明の好適な実施例について
説明する。
[Embodiments] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図はこの発明の一実施例に係る電気自動車の回生制
動制御装置を示す概略構成図であり、第5図と同一また
は相当部分には同じ符号を付して説明を省略する。
FIG. 1 is a schematic configuration diagram showing a regenerative braking control device for an electric vehicle according to an embodiment of the present invention, and the same or corresponding parts as in FIG. 5 are given the same reference numerals, and a description thereof will be omitted.

第1図において、モータ10は、バッテリ32の直流電
力を交流電力に変換するインバータ主回路30に接続さ
れており、このインバータ主回路30から供給される交
流電力によって回転駆動される。モータ10の回転は、
減速機12により減速されて、フックスジヨイント16
を用いたプロペラシャフト14を介してデファレンシャ
ル18に伝達され、ホイール20を回転させる。
In FIG. 1, a motor 10 is connected to an inverter main circuit 30 that converts DC power from a battery 32 into AC power, and is rotationally driven by AC power supplied from the inverter main circuit 30. The rotation of the motor 10 is
The speed is reduced by the reducer 12, and the Fuchs joint 16
The signal is transmitted to the differential 18 via the propeller shaft 14 using the propeller shaft 14, which rotates the wheel 20.

34はコントローラで、走行制御、回生制動I11御等
の処理を実行する。走行時においてコントローラ34は
、車両の速度、駆動力に対応した交流電圧と周波数をイ
ンバータ主回路30によって発生させ、モータ10の回
転数、出力を制御している。また、アクセルOFF時に
はエンジンブレーキ相当の回生制動を行っている。
A controller 34 executes processing such as travel control and regenerative braking I11 control. When the vehicle is running, the controller 34 causes the inverter main circuit 30 to generate an AC voltage and frequency corresponding to the speed and driving force of the vehicle, and controls the rotation speed and output of the motor 10. Additionally, when the accelerator is off, regenerative braking equivalent to engine braking is performed.

36は回転数センサで、モータ10の回転数Nを検出す
る。38は回転数検出部で、アクセルOFF時あるいは
ブレーキにより制動を行っている制動中の減速機12の
出力軸における回転数口を検出する。
A rotation speed sensor 36 detects the rotation speed N of the motor 10. Reference numeral 38 denotes a rotational speed detection unit that detects the rotational speed of the output shaft of the reducer 12 when the accelerator is turned off or during braking.

第2図は上記回転数検出部38の一実施例を示すもので
ある。図示の回転数検出部38は、減速機12の出力軸
50上に取付けられた歯車52と、この歯車52の歯並
び形状に応じたパルス信号を検出するパルス検出器54
とから構成されている。
FIG. 2 shows an embodiment of the rotation speed detecting section 38. The illustrated rotation speed detection unit 38 includes a gear 52 mounted on the output shaft 50 of the reducer 12 and a pulse detector 54 that detects a pulse signal according to the tooth arrangement shape of the gear 52.
It is composed of.

本実施例の回転数検出部38においては、パルス検出器
54により検出されるパルス信号に基づいて、減速機出
力軸50の回転数nを検出する。なお、後述する回転変
動検出手段40で回転変動dn/dtを精度良く算出す
るためには、歯車52の歯数を60以上にすることが望
ましい。
The rotation speed detection unit 38 of this embodiment detects the rotation speed n of the speed reducer output shaft 50 based on the pulse signal detected by the pulse detector 54. Note that in order to accurately calculate the rotational fluctuation dn/dt by the rotational fluctuation detecting means 40, which will be described later, it is desirable that the number of teeth of the gear 52 be 60 or more.

このようにして検出された回転数nは、第1図に示した
コントローラ34の回転変動検出手段40に入力される
。本発明の第1の特徴的構成要素である回転数変動検出
手段40は、回転数nを時間微分することにより回転変
動dn/dtを算出する。なお、後述の演算比較手段4
2て所定の(固定の)回転変動基準値と比較する場合は
、回転数変動検出手段40はこの回転変動dn/dtを
そのまま出力しても構わないが、本実施例では基準値を
そのときの制動トルクの値と関連つけるため、回転変動
検出手段40はこの回転変動dn/dtに回転系の慣性
モーメントJを乗じて回転変動トルクtに変換して出力
する。(なお、回転数変動検出手段40で回転変動トル
クtを算出するかわりに駆動系にトルクメーターを付加
して直接トルクを検出し、それから回転変動t・ルクt
を求めても良い。) 回転数変動検出手段40で算出された回転変動トルクt
は、演算比較手段42に入力される。本発明の第2の特
徴的構成要素である演算比較手段42は、回転変動トル
クtが制動時の回生制動トルクTに占める比率(t/T
)を求め、このトルク比率(t /T)と所定の基準比
率αとを比較する。
The rotational speed n thus detected is input to the rotational fluctuation detection means 40 of the controller 34 shown in FIG. The rotational speed fluctuation detection means 40, which is the first characteristic component of the present invention, calculates the rotational speed fluctuation dn/dt by differentiating the rotational speed n with respect to time. In addition, the calculation comparison means 4 described later
2, when comparing it with a predetermined (fixed) rotational fluctuation reference value, the rotational speed fluctuation detecting means 40 may output this rotational fluctuation dn/dt as it is, but in this embodiment, the reference value is used as the reference value at that time. In order to correlate this with the value of the braking torque, the rotational fluctuation detection means 40 multiplies this rotational fluctuation dn/dt by the moment of inertia J of the rotating system, converts it into a rotational fluctuation torque t, and outputs the result. (Instead of calculating the rotational fluctuation torque t with the rotational speed fluctuation detection means 40, a torque meter is added to the drive system to directly detect the torque, and then
You may also ask for ) Rotation fluctuation torque t calculated by the rotation speed fluctuation detection means 40
is input to the arithmetic comparison means 42. The calculation comparison means 42, which is the second characteristic component of the present invention, calculates the ratio (t/T
) is determined, and this torque ratio (t/T) is compared with a predetermined reference ratio α.

演算比較手段42の比較結果は制動トルク制御手段44
に入力される。本発明の第3の特徴的構成要素である制
動トルク制御手段44は、上記トルク比率(t /T)
か基準値αより大きくなった場合に回生制動トルクTを
ΔTたけ増加させる。
The comparison result of the arithmetic comparison means 42 is transmitted to the braking torque control means 44.
is input. The braking torque control means 44, which is the third characteristic component of the present invention, controls the torque ratio (t/T) as described above.
is larger than the reference value α, the regenerative braking torque T is increased by ΔT.

ここで、基準比率αにより回生制動トルクの増加を判断
するようにしたのは、もともと回生制動か充分にかけら
れている状況下では回転変動か多くて回生制動トルクT
により駆動・被駆動歯車の離れか防止できるため回生制
動トルクTの増加か必要無いためである(第4図参照)
。なお、回生制動トルクTは、例えば回転センサ36に
より検出された制動開始時のモータ回転数Nを微分する
ことによって、その最大値が規定されている。
Here, the reason why we decided to judge the increase in regenerative braking torque based on the reference ratio α is that under the situation where regenerative braking is applied sufficiently, the regenerative braking torque T
This is because it is possible to prevent the driving and driven gears from separating, so there is no need to increase the regenerative braking torque T (see Figure 4).
. The maximum value of the regenerative braking torque T is defined, for example, by differentiating the motor rotational speed N at the start of braking detected by the rotation sensor 36.

上記構成を有する本実施例の制動トルク制御処理手順を
第3図のフローチャートに従って説明する。
The braking torque control processing procedure of this embodiment having the above configuration will be explained according to the flowchart of FIG. 3.

まず、コントローラ34は、回転数センサ36あるいは
回転数検出部38等から入力される各々の検出値に基づ
いて初期値を設定する(ステップ101)。次いでコン
トローラ34は、アクセルの0N10FFから回生制動
を実行するタイミングを判断しくステップ102)、ア
クセルOFFならば回転変動検出手段40によって回転
変動トルクtを検出する(ステップ103)。
First, the controller 34 sets an initial value based on each detected value input from the rotation speed sensor 36, the rotation speed detection section 38, etc. (step 101). Next, the controller 34 determines the timing to perform regenerative braking based on the ON/OFF state of the accelerator (step 102), and if the accelerator is OFF, the rotational fluctuation detection means 40 detects the rotational fluctuation torque t (step 103).

この回転変動トルクtは、第4図に示すように、前述し
た2軸の交差角度θか小さい場合には振幅か小さい回転
変動トルクt1として現われる。また、2軸の交差角度
θか大きい場合には振幅か大きい回転変動トルクt2と
して現われる。そして、従来技術にあっては、エンジン
ブレーキ和尚の回生制動トルクTに占める回転変動トル
クtの割合か大きくなると、減速機12のギヤの振動、
騒音を引き起こしていた。
As shown in FIG. 4, this rotational fluctuation torque t appears as a rotational fluctuation torque t1 with a small amplitude when the above-mentioned intersection angle θ of the two axes is small. Furthermore, when the intersection angle θ of the two axes is large, the rotational fluctuation torque t2 appears to have a large amplitude. In the conventional technology, when the ratio of the rotational fluctuation torque t to the regenerative braking torque T of the engine brake increases, the vibration of the gears of the reducer 12,
It was causing noise.

そこで、本発明にあっては、演算比較手段42によりト
ルク比率t/Tか基準比率αより大きいかどうかを判断
しくステップ104) 、YESならば制動トルク制御
手段44において、回生制動トルクをTe−T+ΔTに
より規定しくステップ105)、NoならばTe−Tに
より規定する(ステップ106)。
Therefore, in the present invention, it is determined by the arithmetic comparison means 42 whether the torque ratio t/T is larger than the reference ratio α (step 104), and if YES, the braking torque control means 44 sets the regenerative braking torque to Te- It is defined by T+ΔT (step 105), and if No, it is defined by Te-T (step 106).

次いてコントローラ34は、上記回生制動トルクTeを
発生させるためのベクトル演算指令をインバータ主回路
30に出力しくステップ107)、ステップ102に戻
る。
Next, the controller 34 outputs a vector calculation command to the inverter main circuit 30 for generating the regenerative braking torque Te (step 107), and returns to step 102.

一方、ステップ102の判断てYESならば、コントロ
ーラ34は、アクセルの踏込み量に応して必要な駆動力
を算出しくステップ108)、ステップ107に進む。
On the other hand, if the determination in step 102 is YES, the controller 34 calculates the necessary driving force according to the amount of depression of the accelerator (step 108), and proceeds to step 107.

このように回生制動トルクを切換えることて、プロペラ
シャフト14の回転変動に起因する車両の振動、騒音を
軽減できるので、車両の乗り心地を向上させることがで
きる。
By switching the regenerative braking torque in this manner, it is possible to reduce vehicle vibration and noise caused by rotational fluctuations of the propeller shaft 14, thereby improving the ride comfort of the vehicle.

なお、上記実施例においては回転変動の基準値をそのと
きの回生制動トルクの値に関連づけて設定したか、これ
にかかわらず基準値をある固定された値とし、回転変動
の検出値がこの値を越えたときに回生制動トルクを増加
するよう制御しても良い。また、回転変動はプロペラシ
ャフトのフックスジヨイント交差角度θが大きくなった
ときに生ずるものであるので、このような条件をサスペ
ンションストローク等から機械的に検出し、交差角度θ
が大きくなったときに回生制動力を増加させるように制
御しても良い。
In addition, in the above embodiment, whether or not the reference value of the rotational fluctuation was set in relation to the value of the regenerative braking torque at that time, the reference value was set to a certain fixed value and the detected value of the rotational fluctuation was set to this value. The regenerative braking torque may be controlled to be increased when the torque is exceeded. In addition, since rotational fluctuations occur when the Fuchs joint intersection angle θ of the propeller shaft becomes large, such conditions are mechanically detected from the suspension stroke, etc., and the intersection angle θ is
The regenerative braking force may be controlled to be increased when the regenerative braking force becomes large.

[発明の効果] 以上説明したように本発明に係る電気自動車の回生制動
制御装置によれば、回生制動トルクを増加させることに
より、減速機のギヤかた打ちを弓き起こす回転変動トル
クの影響力を、吸収・減殺することができ、上記のギヤ
かた打ちに起因する振動、騒音を軽減することができる
[Effects of the Invention] As explained above, according to the regenerative braking control device for an electric vehicle according to the present invention, by increasing the regenerative braking torque, the influence of the rotational fluctuation torque that causes gear shift of the reduction gear is reduced. The force can be absorbed and reduced, and the vibration and noise caused by the above-mentioned gear shifting can be reduced.

【図面の簡単な説明】 第1図はこの発明の一実施例に係る電気自動車の回生制
動制御装置を示す概略構成図、第2図は回転数変動検出
部の一実施例を示す概略構成図、 第3図は本実施例の制動トルク制御処理手順を示すフロ
ーチャート、 第4図は車両がエンジンブレーキ相当の回生制動力を受
けて減速しているときの回生制動トルクと回転変動トル
クの関係を車両速度の低下に従って示す特性図、 第5図は従来の電気自動車の駆動機構を示す概略構成図
、 第6図はフックスジヨイントの構造図、第7図はフック
スジヨイントの2軸の交差角度θおよび駆動軸の回転角
度φの変化による被駆動軸の回転数変動を示す特性図で
ある。 0・・・モータ 2・・・減速機 O・・・回転変動検出手段 2・・・演算比較手段 4・・・制御トルク制御手段
[Brief Description of the Drawings] Fig. 1 is a schematic diagram showing a regenerative braking control device for an electric vehicle according to an embodiment of the present invention, and Fig. 2 is a schematic diagram showing an embodiment of a rotation speed fluctuation detection section. , Fig. 3 is a flowchart showing the braking torque control processing procedure of this embodiment, and Fig. 4 shows the relationship between regenerative braking torque and rotational fluctuation torque when the vehicle is decelerating by receiving regenerative braking force equivalent to engine braking. Characteristic diagram shown as the vehicle speed decreases, Figure 5 is a schematic configuration diagram showing the drive mechanism of a conventional electric vehicle, Figure 6 is a structural diagram of the Fuchs joint, and Figure 7 is the intersection angle of the two axes of the Fuchs joint. FIG. 4 is a characteristic diagram showing the variation in the rotational speed of the driven shaft due to changes in θ and the rotation angle φ of the drive shaft. 0...Motor 2...Reducer O...Rotation fluctuation detection means 2...Calculation comparison means 4...Control torque control means

Claims (1)

【特許請求の範囲】 電気自動車の駆動用誘導モータと、このモータの回転を
減速して駆動輪に出力する減速機を含み、モータの回生
制動を利用して制動を行う電気自動車において、 前記減速機の出力軸における回転変動を検出する回転変
動検出手段と、 この回転変動を所定の基準値と比較する演算比較手段と
、 上記回転変動が基準値より大きくなった場合に回生制動
トルクを増加させる制動トルク制御手段と、を含むこと
を特徴とする電気自動車の回生制動制御装置。
[Scope of Claims] An electric vehicle that includes an induction motor for driving the electric vehicle and a reducer that decelerates the rotation of this motor and outputs it to the drive wheels, and performs braking using regenerative braking of the motor, a rotational fluctuation detection means for detecting rotational fluctuation in the output shaft of the machine; an arithmetic comparison means for comparing the rotational fluctuation with a predetermined reference value; and an increase in regenerative braking torque when the rotational fluctuation becomes larger than the reference value. A regenerative braking control device for an electric vehicle, comprising: braking torque control means.
JP2058735A 1990-03-09 1990-03-09 Regenerative braking control device for electric vehicles Expired - Fee Related JP2671549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2058735A JP2671549B2 (en) 1990-03-09 1990-03-09 Regenerative braking control device for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2058735A JP2671549B2 (en) 1990-03-09 1990-03-09 Regenerative braking control device for electric vehicles

Publications (2)

Publication Number Publication Date
JPH03261306A true JPH03261306A (en) 1991-11-21
JP2671549B2 JP2671549B2 (en) 1997-10-29

Family

ID=13092770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2058735A Expired - Fee Related JP2671549B2 (en) 1990-03-09 1990-03-09 Regenerative braking control device for electric vehicles

Country Status (1)

Country Link
JP (1) JP2671549B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0901933A2 (en) * 1997-09-09 1999-03-17 Ford Motor Company Vibration control for a vehicle drivetrain
US7495403B2 (en) 2004-03-30 2009-02-24 Continental Automotive Systems Us, Inc. Method, apparatus and article for vibration compensation in electric drivetrains
US7877184B2 (en) 2006-06-28 2011-01-25 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for hybrid vehicle
US20140251273A1 (en) * 2013-03-08 2014-09-11 GM Global Technology Operations LLC Oil pump control systems and methods for noise minimization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821282U (en) * 1981-08-05 1983-02-09 イカリ消毒株式会社 Reversion prevention device
JPS629056A (en) * 1985-07-05 1987-01-17 Fuji Heavy Ind Ltd Transmission for vehicle
JPH0217253A (en) * 1988-07-04 1990-01-22 Honda Motor Co Ltd Gear noise control device in internal combustion engine or the like

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821282U (en) * 1981-08-05 1983-02-09 イカリ消毒株式会社 Reversion prevention device
JPS629056A (en) * 1985-07-05 1987-01-17 Fuji Heavy Ind Ltd Transmission for vehicle
JPH0217253A (en) * 1988-07-04 1990-01-22 Honda Motor Co Ltd Gear noise control device in internal combustion engine or the like

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0901933A2 (en) * 1997-09-09 1999-03-17 Ford Motor Company Vibration control for a vehicle drivetrain
EP0901933A3 (en) * 1997-09-09 2000-09-06 Ecostar Electric Drive Systems L.L.C. Vibration control for a vehicle drivetrain
US7495403B2 (en) 2004-03-30 2009-02-24 Continental Automotive Systems Us, Inc. Method, apparatus and article for vibration compensation in electric drivetrains
US7877184B2 (en) 2006-06-28 2011-01-25 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for hybrid vehicle
US20140251273A1 (en) * 2013-03-08 2014-09-11 GM Global Technology Operations LLC Oil pump control systems and methods for noise minimization
US9353655B2 (en) * 2013-03-08 2016-05-31 GM Global Technology Operations LLC Oil pump control systems and methods for noise minimization

Also Published As

Publication number Publication date
JP2671549B2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
KR101165554B1 (en) Controller for electric vehicle
US20190100214A1 (en) Control apparatus for hybrid vehicle
JPH0611434A (en) Road surface situation judging device
KR102395339B1 (en) Braking control device
JPH03261306A (en) Regenerative brake controller for electric car
JP3807369B2 (en) Hybrid vehicle
JPH0439790Y2 (en)
JP5830870B2 (en) Rotating body speed / acceleration measurement / control device
JP3677104B2 (en) Composite test apparatus and electric inertia control method thereof
JPH0698418A (en) Estimating device for counter force of road surface, differential device for right and left wheels, control device for automobile motor torque
JP2005020830A (en) Yawing behavior of vehicle control device
JP7105608B2 (en) Motor control method and motor control device
JP5240004B2 (en) Vehicle control device
JP2002095110A (en) Vehicle drive
JP3747935B2 (en) Four-wheel drive vehicle
JPH0274103A (en) Method of damping electric rolling stock
KR930007216B1 (en) Power steering device
JP2001095106A (en) Device and method for controlling hybrid vehicle
JPS62138002A (en) Controller for drive motor of wheel
JP7443977B2 (en) Vehicle control device
JP6551667B2 (en) Climbing start motor controller for electric car
JPH01255402A (en) Method of controlling electric vehicle
JPH09200909A (en) Drive controller for electric car
WO2021240193A1 (en) Electric vehicle control method, and electric vehicle control system
JP2561554B2 (en) Electric braking and auxiliary accelerators for vehicles

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees