JPH03260062A - Production of ceramic-coated member - Google Patents

Production of ceramic-coated member

Info

Publication number
JPH03260062A
JPH03260062A JP6030690A JP6030690A JPH03260062A JP H03260062 A JPH03260062 A JP H03260062A JP 6030690 A JP6030690 A JP 6030690A JP 6030690 A JP6030690 A JP 6030690A JP H03260062 A JPH03260062 A JP H03260062A
Authority
JP
Japan
Prior art keywords
base material
layer
ceramic
intermediate layer
coated member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6030690A
Other languages
Japanese (ja)
Inventor
Hidenori Kita
英紀 北
Toshiyuki Yamada
俊行 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP6030690A priority Critical patent/JPH03260062A/en
Publication of JPH03260062A publication Critical patent/JPH03260062A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the release of a ceramic layer from a metallic base material due to thermal stress by providing a specified metallic intermediate layer on the base material, forming a layer of the alloy of both metals in between and then forming a ceramic layer on the intermediate layer. CONSTITUTION:The piston of an engine, etc., is produced from an Al alloy excellent in machinability and toughness. At this time, a ceramic 4 of the SiC, Si3N4, TiC, TiN, etc., excellent in high-temp. strength and wear resistance is formed on the Al alloy 1 as the base material by ion plating method to improve the high-temp. strength and wear resistance of the piston base material. In this case, an intermediate layer 3 of metals such as Ti, Zr and Hf is formed on the Al alloy base material 1 surface by ion plating method and heated, and an alloy layer 2 of both metals 1 and 3 is formed in between by the ion mixing method. A hard ceramic layer 4 of SiC, TiC, Si3N4, TiN, etc., is formed on the layer 3 by ion plating method, and the reaction product layer 5 of the ceramic 4 and intermediate layer material is formed in between. The release of the ceramic layer 4 from the base material 1 due to the thermal stress caused by the difference in the thermal expansion coefficient is prevented in this way.

Description

【発明の詳細な説明】 (a業上の利用分野) 本発明は、金属材粕からなる部材表面に熱応力を緩衝す
る合金層を介してセラくツクが被覆されているセラミッ
ク被覆部材の製造方法に関する。
Detailed Description of the Invention (Field of Application in Industry A) The present invention relates to the production of ceramic coated members in which the surface of the member made of metal material dregs is coated with ceramics through an alloy layer that buffers thermal stress. Regarding the method.

(従来の技術) 金属材料は部材の材料として広く使用されており、例え
ばエンジン部材として各種の金属材料が使用されている
(Prior Art) Metal materials are widely used as materials for members, and various metal materials are used, for example, as engine members.

しかしながら、金属材料は機械加工性や靭性に優れては
いるものの、エンジン等の性能が向上し、部材に要求さ
れる条件が厳しくなるにつれ、より耐摩耗性に優れた材
料が要求されている。
However, although metal materials have excellent machinability and toughness, as the performance of engines and the like improves and the conditions required for components become stricter, materials with even better wear resistance are required.

一方、セラミック材料は比重が小であり高温強度及び耐
摩耗性に優れてはいるものの、靭性か小であるため部材
の材料としての使用には多くの制約があり、一部の部材
に使用されているのみである。
On the other hand, although ceramic materials have a low specific gravity and are excellent in high-temperature strength and wear resistance, their low toughness imposes many restrictions on their use as materials for parts, and they are not used in some parts. There are only

そこで、金属材料からなる部材表面にセラミックを被着
させ、耐摩耗性を向上させる方法が提案されており、例
えば、アルミニウム合金などを素材としダイキャスト成
形した軸受本体の軸受面に、セラミック材をイオンプレ
ーティングすることを特徴とする軸受の製造方法か、特
開昭57=57869号公報に記載されている。
Therefore, a method has been proposed to improve wear resistance by coating the surface of a member made of a metal material with ceramic. A method for manufacturing a bearing characterized by ion plating is described in Japanese Patent Application Laid-open No. 57869.

(発明が解決しようとする課題) ところで、金属材料であるアルミニウム合金の熱膨張係
数は22X10−6/にであるのに対し、該金属材料の
表面に被覆されるセラミック材の熱膨張係数は3〜8X
10−6/にである。
(Problem to be Solved by the Invention) By the way, the coefficient of thermal expansion of aluminum alloy, which is a metal material, is 22×10-6/, while the coefficient of thermal expansion of the ceramic material coated on the surface of the metal material is 3. ~8X
It is 10-6/.

また、上記従来の製造方法にてセラミック材を被覆する
と、基材を構成する金属材料はあまり高温状態にするこ
とかてきないため、被覆時の処理温度を高温化すること
ができず、金属部分とセラミック部分との境界面で両者
は反応しない。
Furthermore, when a ceramic material is coated using the above-mentioned conventional manufacturing method, the metal material constituting the base material cannot be heated to a very high temperature, so the processing temperature during coating cannot be increased, and the metal part The two do not react at the interface between the ceramic part and the ceramic part.

よって該境界面にて組成が急峻に変化するため、部材を
熱サイクルのかかる環境にて使用すると、両者の熱膨張
係数が異なるため該境界面にて金属部分とセラミック部
分とが剥離するという問題がある。
Therefore, since the composition changes sharply at the interface, if the component is used in an environment subject to thermal cycles, there is a problem that the metal part and the ceramic part will separate at the interface because the thermal expansion coefficients of the two differ. There is.

(課題を解決するための手段) 本発明は、上記の点に鑑みてなされたもので、熱サイク
ルのかかる環境Cて使用しても、金属部分とセラミック
部分とが剥離しないセラミック被覆部材の製造方法を提
供しようとするものである。
(Means for Solving the Problems) The present invention has been made in view of the above points, and is to manufacture a ceramic coated member in which the metal part and the ceramic part do not peel off even when used in an environment C that is subject to thermal cycles. It is intended to provide a method.

本発明によるセラくツク被覆部材の製造方法を第1図を
用いて説明する。
A method of manufacturing a ceramic coated member according to the present invention will be explained with reference to FIG.

第1図は、本発明のステップを示す図である。FIG. 1 is a diagram illustrating the steps of the present invention.

ステップ1にて、アルミニウム合金等の金属材料からな
る基材の表面を清浄にした後に、ステップ2にてチタン
等の金属元素を該基体表面に蒸着させ中間層を形成する
In step 1, the surface of a base material made of a metal material such as an aluminum alloy is cleaned, and then in step 2, a metal element such as titanium is deposited on the surface of the base material to form an intermediate layer.

次に、ステップ3にて該中間層が蒸着されている基材を
加熱し、あるいは加速したアルゴンイオンを照射するイ
オンミキシング法にて、基材と中間層との接合面に、ア
ルミニウムーチタン等の合金層を形成させる。
Next, in step 3, the base material on which the intermediate layer is vapor-deposited is heated or an ion mixing method is used in which accelerated argon ions are irradiated to coat the bonding surface between the base material and the intermediate layer with aluminum-titanium, etc. form an alloy layer.

そして、上記合金層を形成した後に、中間層の表面を洗
浄し、ステップ4にて窒化チタン等のセラミックを蒸着
させ被着層を形成する。
After forming the alloy layer, the surface of the intermediate layer is cleaned, and in step 4, a ceramic such as titanium nitride is deposited to form an adhesion layer.

(作用) 本発明のセラミック被覆部材の製造方法ては、基材と被
着層との間に介在する合金層の熱膨張係数が、基材を構
成する金属材料の熱膨張係数と被着層を形成するセラミ
ックの熱膨張係数とのほぼ中間値となるため、熱サイク
ル時に基材と被着層との間の熱応力の集中を緩和する作
用がある。
(Function) In the method for manufacturing a ceramic coated member of the present invention, the thermal expansion coefficient of the alloy layer interposed between the base material and the adherend layer is the thermal expansion coefficient of the metal material constituting the base material and the adherend layer. Since the coefficient of thermal expansion is approximately midway between that of the ceramic forming the material, it has the effect of relieving the concentration of thermal stress between the base material and the adherend layer during thermal cycling.

(実施例) 以下、本発明の実施例について詳細に説明する。(Example) Examples of the present invention will be described in detail below.

実施例1 アルミニウム合金からなる基材表面をアセトンて洗浄し
た後、10−6Torrに減圧した蒸着装置内に該基材
を配置し、更にアルゴンイオンを照射して基材表面を清
浄した。
Example 1 After cleaning the surface of a base material made of an aluminum alloy with acetone, the base material was placed in a vapor deposition apparatus with a reduced pressure of 10-6 Torr, and the surface of the base material was further cleaned by irradiation with argon ions.

そして、該蒸着装置内にてチタンを加熱蒸発させ、基体
表面に蒸着させ中間層を形成した。
Then, titanium was heated and evaporated in the vapor deposition apparatus and deposited on the surface of the substrate to form an intermediate layer.

次に、該中間層が形成された基材を蒸着装置から取り出
し、真空炉内に配置した後、基材を真空雰囲気にて35
0℃に加熱し基材と中間層との境界部分をアルミニウム
ーチタン合金化させ合金層を形成した。
Next, the base material on which the intermediate layer has been formed is taken out from the vapor deposition apparatus and placed in a vacuum furnace, and then the base material is placed in a vacuum atmosphere for 35 minutes.
It was heated to 0° C. to form an aluminum-titanium alloy at the boundary between the base material and the intermediate layer to form an alloy layer.

該合金層を形成した後、真空炉から取り出し、次(、イ
オンプレーティング装置内に配置した。
After forming the alloy layer, it was taken out of the vacuum furnace and then placed in an ion plating apparatus.

そして、アルゴンイオンを照射し中間層の表面を清浄に
した後、アルゴンガスをキャリアーとし、窒素ガスを反
応ガスとして装置内に導入し、中間層表面を窒化して窒
化チタンからかる被着層を形成させた。
After cleaning the surface of the intermediate layer by irradiating argon ions, argon gas is used as a carrier and nitrogen gas is introduced into the apparatus as a reaction gas to nitridize the surface of the intermediate layer and remove the adhesion layer made of titanium nitride. formed.

以上の工程により製造された試料Aを切断し、組成等を
分析した結果を第2図により説明する。
Sample A manufactured by the above steps was cut and the composition etc. were analyzed and the results will be explained with reference to FIG. 2.

第2図は、試料Aの部分断面図である。FIG. 2 is a partial cross-sectional view of sample A.

1は基材であり、2は合金層、3は中間層、4は被着層
を示している。尚、5は中間層3のチタンと被着層4の
窒化チタンとが反応し混在している反応層である。
1 is a base material, 2 is an alloy layer, 3 is an intermediate layer, and 4 is an adhesion layer. Note that 5 is a reaction layer in which titanium of the intermediate layer 3 and titanium nitride of the adhesion layer 4 react and coexist.

基材1表面には合金層2から被着層4まての結晶化した
層が約5μmの層厚で形成されていることを確認した。
It was confirmed that crystallized layers from alloy layer 2 to adhesion layer 4 were formed on the surface of base material 1 with a layer thickness of about 5 μm.

そして、該試料Aを25℃と250℃との間で約500
回の熱サイクルを印加した結果、上記各層間における境
界面でのクラックの成長は認められなかった。
Then, the sample A was heated for about 500°C between 25°C and 250°C.
As a result of applying two thermal cycles, no crack growth was observed at the interface between the layers.

比較例 上記試料Aと比較するため、上記実施例1と同一の基材
表面を清浄した後、イオンプレーティング装置内に配置
して、該基材表面に直接窒化チタンを蒸着させた。
Comparative Example In order to compare with Sample A above, the same base material surface as in Example 1 was cleaned, placed in an ion plating apparatus, and titanium nitride was directly deposited on the surface of the base material.

該窒化チタンが蒸着された基体を切断し、基材と窒化チ
タン層との境界部分を観察した結果、若干の剥離部分を
発見した。
As a result of cutting the substrate on which the titanium nitride was deposited and observing the boundary between the substrate and the titanium nitride layer, some peeled portions were found.

次に、上記実施例と同一の熱サイクルテストを実施した
後、再び境界部分を観察すると、熱サイクルテスト前に
発見した剥M部分が成長していることが確認された。
Next, after performing the same thermal cycle test as in the above example, the boundary portion was observed again, and it was confirmed that the peeled M portion discovered before the thermal cycle test had grown.

実施例2 上記実施例1と同様にしてアルミニウム合金からなる基
材表面にチタンを蒸着させ約300μmの層厚の中間層
を形成した。
Example 2 In the same manner as in Example 1, titanium was deposited on the surface of a base material made of an aluminum alloy to form an intermediate layer having a thickness of about 300 μm.

次に、該中間層が形成された基材を10−’Torrに
減圧したイオン注入装置内部に配置し、該イオン注入装
置内にアルゴンイオンを注入して、チタン原子を基材表
面に押し込みイオンミキシング7去により合金層を形成
した。
Next, the base material on which the intermediate layer has been formed is placed inside an ion implanter with a reduced pressure of 10-'Torr, and argon ions are implanted into the ion implanter to push titanium atoms onto the surface of the base material. An alloy layer was formed by mixing 7.

そして、イオンミキシング後に、イオンプレーティング
装置内に配置し、アルゴンイオンを照射し中間層の表面
を清浄にした後、アルゴンガスをキャリアーとし、エチ
レンガスを反応ガスとして装置内に導入し、中間層表面
に炭化チタンからなる被着層を形成させた。
After ion mixing, the intermediate layer is placed in an ion plating device, irradiated with argon ions to clean the surface of the intermediate layer, and then introduced into the device using argon gas as a carrier and ethylene gas as a reaction gas. An adhesion layer made of titanium carbide was formed on the surface.

以上の工程により製造された試料Bについて、上記実施
例1と同様の熱サイクルを実施した結果、上記試料Aと
同じく境界面でのクラックの成長は認められなかった。
Sample B manufactured through the above steps was subjected to the same thermal cycle as in Example 1, and as a result, as with sample A, no crack growth was observed at the interface.

実施例3 上記実施例2と同様にしてイオンミキシング法により合
金層を形成した後、主鎖に珪素を含むポリマー前駆体で
あるポリカルボシランのトルエン溶液中に基材を浸漬し
た。
Example 3 After forming an alloy layer by the ion mixing method in the same manner as in Example 2, the base material was immersed in a toluene solution of polycarbosilane, which is a polymer precursor containing silicon in its main chain.

そして、乾燥させた後、アルゴン雰囲気にて450℃に
加熱し、中間層表面にアモルファス状の炭化珪素からな
る被着層を形成した。
After drying, it was heated to 450° C. in an argon atmosphere to form an adhesion layer made of amorphous silicon carbide on the surface of the intermediate layer.

以上の工程により製造された試料Cについて、上記実施
例1及び2と同様の熱サイクルを実施した結果、上記試
料A及びBと同しく境界面でのクラックの成長は認めら
れなかった。
Sample C manufactured by the above steps was subjected to the same thermal cycle as in Examples 1 and 2 above, and as a result, no crack growth was observed at the interface, as in Samples A and B.

ところで、上記各実施例において、中間層はチタンを蒸
着して形成したかジルコニアもしくはハフニウム、また
はこれらのうちの2 ffi以上でもよい また、被着層は上記実施例にて示した窒化チタン、炭化
チタン及び炭化珪素の他に、窒化珪素、またはこれらの
うちの2種以上でもよい。
Incidentally, in each of the above embodiments, the intermediate layer may be formed by vapor-depositing titanium, zirconia or hafnium, or 2 ffi or more of these, and the adhesion layer may be made of titanium nitride or carbide as shown in the above embodiments. In addition to titanium and silicon carbide, silicon nitride or two or more of these may be used.

尚、以上本発明の実施例について詳細に説明したが、本
発明の精神から逸れないかぎりで、種々の異なる実施例
は容易に構成できるので、本発明は前記特許請求の範囲
において記載した限定以外、特定の実施例に制約される
ものではない。
Although the embodiments of the present invention have been described in detail above, various different embodiments can be easily constructed without departing from the spirit of the present invention. , and is not limited to any particular implementation.

(発明の効果) 以上説明したように、本発明によれば、基材と被着層と
の間に介在する合金層の熱膨張係数か、基材を構成する
金属材料の熱膨張係数と被着層を形成するセラミックの
熱膨張係数とのほぼ中間値となり、熱サイクル時に基材
と被着層との間の熱応力の集中を緩和するので、熱サイ
クルのかかる環境にて使用しても、基材と被着層とが剥
離しないセラミック被覆部材の製造方法を提供てきる。
(Effects of the Invention) As explained above, according to the present invention, the coefficient of thermal expansion of the alloy layer interposed between the base material and the adherend layer is The coefficient of thermal expansion is approximately midway between that of the ceramic that forms the adhesive layer, and it alleviates the concentration of thermal stress between the base material and the adhesive layer during thermal cycling, so it can be used in environments subject to thermal cycling. , provides a method for manufacturing a ceramic coated member in which the base material and the adhered layer do not peel off.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のステップを示す図、第2図は、試料
Aの部分断面図である。 1・・・基材、2・・・合金層、3・・・中間層、4・
・・被着層、5・・・反応層。
FIG. 1 is a diagram showing the steps of the present invention, and FIG. 2 is a partial cross-sectional view of sample A. DESCRIPTION OF SYMBOLS 1... Base material, 2... Alloy layer, 3... Intermediate layer, 4...
...Adhesion layer, 5...Reaction layer.

Claims (8)

【特許請求の範囲】[Claims] (1)第1の金属元素からなる基材の表面に第2の金属
元素からなる中間層を蒸着するステップと、該中間層が
蒸着されている基材を加熱し基材と中間層との接合面に
第1及び第2の金属元素からなる合金層を形成せしめる
ステップと、該中間層の表面をセラミックからなる被着
層にて被覆するステップとを有することを特徴とするセ
ラミック被覆部材の製造方法。
(1) Depositing an intermediate layer made of a second metal element on the surface of a base material made of a first metal element, and heating the base material on which the intermediate layer is deposited to bond the base material and the intermediate layer. A ceramic coated member comprising the steps of: forming an alloy layer made of first and second metal elements on a joint surface; and coating the surface of the intermediate layer with an adhesion layer made of ceramic. Production method.
(2)上記第1の金属元素はアルミニウム及び鉄の内の
少なくとも一方であることを特徴とする請求項(1)記
載のセラミック被覆部材の製造方法。
(2) The method for manufacturing a ceramic coated member according to claim (1), wherein the first metal element is at least one of aluminum and iron.
(3)上記第2の金属元素はチタン、ジルコニア及びハ
フニウムの内の少なくとも一種類であることを特徴とす
る請求項(1)記載のセラミック被覆部材の製造方法。
(3) The method for manufacturing a ceramic coated member according to claim (1), wherein the second metal element is at least one of titanium, zirconia, and hafnium.
(4)上記セラミックは窒化チタン、炭化チタン、窒化
珪素及び炭化珪素の内の少なくとも一種類であることを
特徴とする請求頂(1)記載のセラミック被覆部材の製
造方法。
(4) The method for manufacturing a ceramic coated member according to claim 1, wherein the ceramic is at least one of titanium nitride, titanium carbide, silicon nitride, and silicon carbide.
(5)上記被着層はイオンプレーティング法により形成
されることを特徴とする請求項(4)記載のセラミック
被覆部材の製造方法。
(5) The method for manufacturing a ceramic coated member according to claim (4), wherein the adhered layer is formed by an ion plating method.
(6)上記セラミックは珪素を主鎖に含むポリマー前駆
体の熱分解により生成される炭化珪素であることを特徴
とする請求項(1)記載のセラミック被覆部材の製造方
法。
(6) The method for manufacturing a ceramic coated member according to claim (1), wherein the ceramic is silicon carbide produced by thermal decomposition of a polymer precursor containing silicon in its main chain.
(7)上記合金層はイオンミキシング法により形成され
ることを特徴とする請求項(1)記載のセラミック被覆
部材の製造方法。
(7) The method for manufacturing a ceramic coated member according to claim (1), wherein the alloy layer is formed by an ion mixing method.
(8)上記基材はエンジンのピストンであることを特徴
とする請求項(1)記載のセラミック被覆部材の製造方
法。
(8) The method for manufacturing a ceramic coated member according to claim (1), wherein the base material is an engine piston.
JP6030690A 1990-03-12 1990-03-12 Production of ceramic-coated member Pending JPH03260062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6030690A JPH03260062A (en) 1990-03-12 1990-03-12 Production of ceramic-coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6030690A JPH03260062A (en) 1990-03-12 1990-03-12 Production of ceramic-coated member

Publications (1)

Publication Number Publication Date
JPH03260062A true JPH03260062A (en) 1991-11-20

Family

ID=13138345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6030690A Pending JPH03260062A (en) 1990-03-12 1990-03-12 Production of ceramic-coated member

Country Status (1)

Country Link
JP (1) JPH03260062A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005332A3 (en) * 1994-08-09 1996-04-04 Zapadoceska Univerzita V Plzni Coated material and method of its production
CN100378372C (en) * 2002-09-06 2008-04-02 通用汽车公司 Planetary gearset with multi-layer coated sun gear
JP2009299142A (en) * 2008-06-13 2009-12-24 Ntn Corp Wear-resistant tin film and former thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005332A3 (en) * 1994-08-09 1996-04-04 Zapadoceska Univerzita V Plzni Coated material and method of its production
CN100378372C (en) * 2002-09-06 2008-04-02 通用汽车公司 Planetary gearset with multi-layer coated sun gear
JP2009299142A (en) * 2008-06-13 2009-12-24 Ntn Corp Wear-resistant tin film and former thereof

Similar Documents

Publication Publication Date Title
JPH0790590A (en) Substrate carrier
KR20010007445A (en) Ceramic superalloy articles
JP2000119843A (en) Diamondlike carbon hard multilayer formed body
EP0310043A3 (en) Oxidation resistant, high temperature thermal cycling resistant coating on silicon-based substrates and process for the production thereof
US5382471A (en) Adherent metal coating for aluminum nitride surfaces
JPH03260062A (en) Production of ceramic-coated member
JPS5864377A (en) Surface coated tool and its production
EP0440384B1 (en) Method of bonding a diamond film to a substrate
US5423475A (en) Diamond coatings for aluminum alloys
JP2969291B2 (en) Abrasion resistant member and method of manufacturing the same
WO2021117498A1 (en) Tantalum carbonate-coated graphite member and method for producing same
JP7261542B2 (en) Method for producing SiC-coated silicon material
JPS60224778A (en) Ceramic coated hard parts
JPS61106478A (en) Diamond coated part
JPH06100398A (en) Production of diamond film having mirror finished surface
JP3189353B2 (en) Coated ceramic member and method of manufacturing the same
JPH01103976A (en) Ceramics coated graphite material
JP3036933B2 (en) Peeling-resistant coated member and method of manufacturing the same
JPH03191065A (en) Method for covering hard carbon film
JP2002128580A (en) METHOD FOR MANUFACTURING HIGH-PURITY SiC-COATED CARBON SUBSTANCE
JPH07258822A (en) Boron nitride containing film and its production
JPH09256168A (en) Coating method on graphite
JP2525799B2 (en) Method for metallizing nitride ceramics
KR950013981A (en) Silicon carbide coated graphite jig for semiconductor wafer processing with improved thermal shock resistance and manufacturing method thereof
JPH09228050A (en) Ceramics member coated with carbon hard film