JPH03259727A - Sampling method and device for high-temperature melt of radioactive waste - Google Patents
Sampling method and device for high-temperature melt of radioactive wasteInfo
- Publication number
- JPH03259727A JPH03259727A JP2059337A JP5933790A JPH03259727A JP H03259727 A JPH03259727 A JP H03259727A JP 2059337 A JP2059337 A JP 2059337A JP 5933790 A JP5933790 A JP 5933790A JP H03259727 A JPH03259727 A JP H03259727A
- Authority
- JP
- Japan
- Prior art keywords
- probe
- crucible
- glass layer
- waste
- radioactive waste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002901 radioactive waste Substances 0.000 title claims abstract description 16
- 238000005070 sampling Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title claims description 13
- 239000000523 sample Substances 0.000 claims abstract description 57
- 239000002699 waste material Substances 0.000 claims abstract description 23
- 239000011521 glass Substances 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 13
- 238000001816 cooling Methods 0.000 claims abstract description 6
- 239000000155 melt Substances 0.000 abstract description 11
- 238000002844 melting Methods 0.000 abstract description 7
- 230000008018 melting Effects 0.000 abstract description 7
- 230000001105 regulatory effect Effects 0.000 description 4
- 238000011109 contamination Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 239000012768 molten material Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000009933 burial Methods 0.000 description 2
- 239000002925 low-level radioactive waste Substances 0.000 description 2
- 206010073306 Exposure to radiation Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000010850 non-combustible waste Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Measurement Of Radiation (AREA)
- Sampling And Sample Adjustment (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は低レベルの放射性廃棄物の高温溶融物のサンプ
リング方法および装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for sampling high temperature melts of low-level radioactive waste.
(従来の技術)
従来、原子力発電所等の原子力施設内で発生した放射性
廃棄物は施設内でドラム缶等の容器に充填され保管管理
されてきたが、その貯蔵量の増加に伴い、近い将来、こ
れらの施設内の貯蔵容量が限界に達する状況となってい
る。このため、これら廃棄物を減容、安定化処理して最
終的に陸地埋設処分する計画が進められている。(Conventional technology) Conventionally, radioactive waste generated in nuclear power facilities such as nuclear power plants has been stored and managed by being filled in containers such as drums within the facility. The storage capacity within these facilities is reaching its limit. For this reason, plans are underway to reduce the volume of these wastes, stabilize them, and finally bury them on land.
放射性廃棄物の陸地埋設処分に関しては、数百年にわた
る安全性の確保のために、放射性廃棄物は減容固化、安
定化処理される必要があるが、その技術の一つとして、
特開昭61−209399号公報に示す様な溶融固化処
理が発明されている。高温で溶融固化された放射性廃棄
物は廃棄物材質の真密度まで減容され、安定かつ放射性
核種の分布が均一なガラス、金属塊となり埋設処分環境
下で充分な健全性、安全性を確保しうる特性を持つもの
となる。When disposing of radioactive waste on land, it is necessary to reduce its volume, solidify it, and stabilize it in order to ensure its safety for hundreds of years.
A melt-solidification process as shown in Japanese Patent Application Laid-Open No. 61-209399 has been invented. Radioactive waste that is melted and solidified at high temperatures is reduced in volume to the true density of the waste material, and becomes a glass or metal lump with a stable and uniform distribution of radionuclides, ensuring sufficient integrity and safety in a buried disposal environment. It has the characteristic of absorbing water.
このよ・うにして減容、安定化された廃棄体の最終埋設
処分に際しては、廃棄体内に含まれる放射性核種量が埋
設処分に関する技術基準で定められた規制値以下である
ことを確認することが要求される。これら規制核種の内
Co −60やCs −137などのようなイ線核種に
ついては、廃棄体外部からの直接測定により容易にその
含有量を測定することが可能である。しかしながら、N
i−63などの難測定核種の含有量の評価にあたっては
、廃棄物の発生経緯、汚染形態により定まるGo −6
0やCs −137とNi−63などの難測定核種含有
量の相関関係(スケーリングファクタ)より推定する評
価方法がとられる。When disposing of the waste whose volume has been reduced and stabilized in this manner for final burial, it must be confirmed that the amount of radionuclides contained in the waste is below the regulatory value stipulated by the technical standards for burial disposal. is required. Among these regulated nuclides, the content of inline nuclides such as Co-60 and Cs-137 can be easily measured by direct measurement from outside the waste body. However, N
When evaluating the content of difficult-to-measure nuclides such as i-63, Go-6
An evaluation method is used that estimates from the correlation (scaling factor) between the contents of difficult-to-measure nuclides such as 0, Cs-137, and Ni-63.
しかしながら、溶融固化処理の対象となる不燃性廃棄物
は、その種類、発生場所など雑多なものであり、廃棄物
の発生経總、汚染形態よりスケーリングファクタを求め
ることは不可能である。このため、溶融固化処理された
廃棄体のスゲ−リングファクタを求めるためには、溶融
固化体からサンプルを採取、分析し、廃棄体中に含まれ
る規制核種量の相関関係のハックデータを蓄積すること
が必要となる。However, non-combustible waste that is subject to melt-solidification treatment is diverse in terms of its type and location, and it is impossible to determine the scaling factor from the history of waste generation and the form of contamination. Therefore, in order to determine the scaling factor of melt-solidified waste, samples must be taken from the melt-solidified waste, analyzed, and hack data on the correlation between the amounts of regulated nuclides contained in the waste must be accumulated. This is necessary.
ところで、るつぼ内で溶融固化された廃棄体は、廃棄物
の比重差により一つの廃棄体の中で金属層、ガラス層に
分離し、含有される核種も核種別にそれぞれの層に分離
される。このため溶融固化廃棄体内の規制核種含有量を
正確に求めるためには金属、ガラス各層についてサンプ
ルを採取し分析することが必要である。By the way, the waste body melted and solidified in the crucible is separated into a metal layer and a glass layer in one waste body due to the difference in specific gravity of the waste, and the contained nuclides are also separated into layers according to the nuclide type. Therefore, in order to accurately determine the content of regulated nuclides in molten solidified waste, it is necessary to collect and analyze samples for each layer of metal and glass.
この分析用サンプルの採取方法として、冷却、固化後の
廃棄体からのコア抜きポーリング機による切削採取が考
えられるが、ガラス、金属各層は非常に硬く切削が困難
であるばかりか、廃棄体に孔を開けるため廃棄体の健全
性確保の観点からも好ましい方法とはいえないものであ
った。One possible method for collecting samples for analysis is to cut the waste material after cooling and solidification by cutting it with a core poling machine, but the glass and metal layers are extremely hard and difficult to cut, and the waste material has holes in it. This method could not be said to be preferable from the viewpoint of ensuring the integrity of the waste because it was opened.
(発明が解決しようとする課題)
本発明は上記した従来の問題を解決して、■高温溶融状
態の廃棄物より一回のサンプリングにより溶融物中のガ
ラス、金属層を確実に採取すること、
■試料採取により、廃棄体の健全性に影響をおよぼさな
いこと、
■外部と密閉された装置内で、遠隔自動操作によるサン
プリングを可能とし、周辺の放射能による汚染、及び作
業者の被曝を防止すること、
の3つの課題を達成することができる放射性廃棄物の高
温溶融物のサンプリング方法および装置を提供するため
に完成されたものである。(Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional problems, and has the following features: ■Sample collection does not affect the integrity of the waste; ■Sampling can be performed remotely and automatically in a device that is sealed from the outside, preventing contamination by surrounding radioactivity and exposure of workers. The present invention has been completed in order to provide a method and apparatus for sampling high-temperature melts of radioactive waste that can accomplish the following three tasks:
(課題を解決するための手段)
上記の課題は、密閉室内で昇降装置に取付けられた筒状
のプローブを放射性廃棄物の高温溶融物の入ったるつぼ
の底部まで挿入し内部を吸引するごとによってプローブ
の下端からるつぼ底部の溶融した金属層を採取するとと
もに、プローブの側面に設けた吸引孔から高粘性のガラ
ス層を吸引すると同時に外面に強制付着させ、その後る
つぼの上方にプローブを引き上げて冷却し、回収するこ
とを特徴とする放射性廃棄物の高温溶融物のサンプリン
グ方法によって解決される。(Means for solving the problem) The above problem can be solved by inserting a cylindrical probe attached to a lifting device in a closed room to the bottom of a crucible containing high-temperature melted radioactive waste and suctioning the inside. The molten metal layer at the bottom of the crucible is collected from the lower end of the probe, and the highly viscous glass layer is sucked in through the suction hole provided on the side of the probe, at the same time forcibly depositing it on the outer surface, and then the probe is pulled above the crucible and cooled. The problem is solved by a method for sampling high-temperature melts of radioactive waste, which is characterized by the collection of high-temperature melts of radioactive waste.
また−上記の課題は、放射性廃棄物を溶融するるつぼの
上方に密閉室を形成し、この密閉室の内部にカプラを下
端に備えた昇降装置と、このカプラヘプローブを自動的
に供給しまたカプラからプローブを自動的に回収するプ
ローブ交換装置を設けるとともに、上記の昇降装置に負
圧吸引ラインを接続したことを特徴とする放射性廃棄物
の高温溶融物のサンプリング装置によって解決される。Furthermore, the above-mentioned problem is to form a sealed chamber above the crucible for melting radioactive waste, and to install a lifting device with a coupler at the lower end inside this sealed chamber, and to automatically supply a probe to the coupler. This problem is solved by a sampling device for high-temperature melted radioactive waste, which is characterized by being provided with a probe exchange device for automatically recovering the probe from the coupler, and by connecting a negative pressure suction line to the above-mentioned lifting device.
(実施例)
以下に本発明を図示の実施例によって更に詳細に説明す
る。(Examples) The present invention will be explained in more detail below using illustrated examples.
第1図において(1)は溶融炉であり、その内部には低
レベルの放射性廃棄物を溶融するためセラミック製のる
つぼ(2)が交換自在に設置され、加熱装置(3)によ
り加熱されたるつぼ(2)内の高温溶融物(4)は比重
差により下層の金属層(5)と上層のガラス層(6)に
分離している。In Figure 1, (1) is a melting furnace, inside which a replaceable ceramic crucible (2) was installed to melt low-level radioactive waste, and was heated by a heating device (3). The high temperature molten material (4) in the crucible (2) is separated into a lower metal layer (5) and an upper glass layer (6) due to a difference in specific gravity.
(7)はるつぼ(2)を備えた溶融炉(1)の上方に形
成された密閉室である。この密閉室(7)の内部には、
カブラ(8)を下端に備えた昇降装置(9)と、プロー
ブ交換装置(10)とが設けられている。プローブ(1
1)はプローブ交換装置(10)によって自動的に昇降
装置(9)のカブラ(8)に取付けられる。プローブ交
換装置(10)の型式は特に限定されるものではないが
、例えば円筒座標系の一般産業用ロボットを使用するこ
とができる。プローブ(11)は第3図のよ・うに−1
一端にカブラ(8a)を備えた筒状のもので、底部及び
側面にそれぞれ吸引孔を備えたものとされている。なお
、プローブ(11)の材質として、溶融物中に浸漬され
る時間が短いこと、1回限りの使用であることより、安
価な鋼管、ステンレス管でも使用可能であるが、耐熱性
、採取試料のプローブからの取り出し易さ、異成分の混
入防Iトの観点よりカーボングラファイトが好ましい。(7) It is a closed chamber formed above the melting furnace (1) equipped with the crucible (2). Inside this sealed room (7),
A lifting device (9) equipped with a cover (8) at the lower end and a probe changing device (10) are provided. Probe (1
1) is automatically attached to the cover (8) of the lifting device (9) by the probe changing device (10). Although the type of the probe exchanger (10) is not particularly limited, for example, a general industrial robot with a cylindrical coordinate system can be used. The probe (11) is -1 as shown in Figure 3.
It is cylindrical with a cover (8a) at one end, and suction holes are provided at the bottom and sides. In addition, as the material of the probe (11), inexpensive steel pipes and stainless steel pipes can be used as they are immersed in the melt for a short time and are only used once. Carbon graphite is preferred from the viewpoint of ease of removal from the probe and prevention of contamination with foreign components.
また、プローブ内径は、吸引後の溶融物のプローブ内保
持の為10〜25mmであることが望ましい。Further, the inner diameter of the probe is preferably 10 to 25 mm in order to retain the molten material within the probe after suction.
昇降装置(9)の昇降軸には吸引ポンプ02)を備えた
負圧吸引ライン(13)が接続されている。この負圧吸
引ライン(13)は昇降装置(9)のカブラ(8)に取
(dけられたプローブ(11)の内部を減圧して高温溶
融物(4)を吸引するためのもので、その吸引圧は溶融
物の重量を保持するため−30〜−1(10mmHgで
ある事が必要である。A negative pressure suction line (13) equipped with a suction pump 02) is connected to the lifting shaft of the lifting device (9). This negative pressure suction line (13) is for reducing the pressure inside the probe (11) attached to the cover (8) of the lifting device (9) and sucking the high-temperature melt (4). The suction pressure needs to be -30 to -1 (10 mmHg) to maintain the weight of the melt.
更に実施例ではこの負圧吸引ライン(13)に切換弁(
10を介してレヘル検知用のガスバージライン圓が接続
されている。このガスバージラインθ滲はN2ガスボン
へ(10等から供給されたガスをプローブ(11)の下
端から噴出させ、その背圧を圧力計θηで検知すること
によってるつぼ(2)内の高温溶融物(4)のレヘルを
測定することができる。Furthermore, in the embodiment, a switching valve (
A gas barge line circle for level detection is connected via 10. This gas barge line θ leaks gas supplied from the N2 gas bomb (10, etc.) from the lower end of the probe (11), and the back pressure is detected by the pressure gauge θη. The level of (4) can be measured.
(作用)
次に上記した装置の作動説明とともに本発明のサンプリ
ング方法を説明する。(Function) Next, the sampling method of the present invention will be explained along with an explanation of the operation of the above-described apparatus.
まず、プローブ(11)はプローブ交換装置(10)に
よりプローブ昇降装置(9)に装着される。プローブ(
11)と昇降装置(9)の接合部には空気圧により自動
脱着可能なカブラ(8)等を用いて、プローブ交換装置
(10)で遠隔自動操作で装着する。First, the probe (11) is attached to the probe lifting device (9) by the probe changing device (10). probe(
11) and the lifting device (9), a cover (8) etc. that can be automatically attached and detached by air pressure is used, and the probe exchanger (10) is attached by remote automatic operation.
プローブ(11)は昇降装置(9)に装着された後、溶
融るつぼ(2)内に挿入し、負圧吸引ラインθ3)によ
り溶融物をプローブ(11)内に吸引する。プローブ(
11)は、るつぼ底部の溶融物も採取するためにるつぼ
(2)の底部イ」近まで挿入された後吸引する。この時
、比重差によりるつぼ底部に溜まった金属溶融物は、L
部のガラス層(6)に比べ粘性が低いため容易にプロー
ブ(11)内に吸引されるがガラス層(6)の吸引は困
難である。この為、前述したようにプローブ(11)の
側面にも吸引孔を設は金属層(5)と同時に吸引すると
ともに、プローブ(11)外面にガラス層(6)を付着
させ採取する。プローブ(111は、溶融物を採取した
後に溶融炉(1)から取り出され、冷却ノズル08)か
ら噴出される冷却空気により強制的に冷却された後に、
プローブ交換装置(10)により昇降装置(9)より取
りはずし、自動的に回収する。After the probe (11) is attached to the lifting device (9), it is inserted into the melting crucible (2), and the melt is sucked into the probe (11) by the negative pressure suction line θ3). probe(
11) is inserted to near the bottom of the crucible (2) and then sucked in order to collect the molten material at the bottom of the crucible. At this time, the molten metal accumulated at the bottom of the crucible due to the difference in specific gravity is L
Since the viscosity is lower than that of the glass layer (6), it is easily sucked into the probe (11), but it is difficult to suction the glass layer (6). For this purpose, as described above, a suction hole is also provided on the side surface of the probe (11) to simultaneously suck the metal layer (5), and at the same time, the glass layer (6) is attached to the outer surface of the probe (11) and sampled. The probe (111) is taken out from the melting furnace (1) after collecting the melt, and is forcibly cooled by cooling air jetted from the cooling nozzle 08.
It is removed from the lifting device (9) by the probe exchange device (10) and automatically recovered.
以上の工程は第2図に示されたとおりであって、回収さ
れたプローブ(+11の内部には金属層(5)が吸引さ
れており、またプローブ(11)の外周面にはガラス層
(6)が付着されており、これら2つの層が同時にサン
プリングできることとなる。The above process is as shown in FIG. 6) is attached, allowing these two layers to be sampled simultaneously.
本発明によれば、プローブ(11)を取り扱うすべての
装置が外部と遮断された密閉室(7)内に配置される為
、溶融炉(1)内にプローブ(11)を挿入する際に、
放射能を持ったダストを同伴したガスが外部へ漏れるお
それは全くなく、また、全ての動作は遠隔自動操作が可
能であり作業者の被曝の恐れは全くない。According to the present invention, all the devices that handle the probe (11) are placed in the closed chamber (7) that is isolated from the outside, so when inserting the probe (11) into the melting furnace (1),
There is no risk of gas containing radioactive dust leaking outside, and all operations can be remotely and automatically controlled, so there is no risk of worker exposure to radiation.
(発明の効果)
以上に説明したように、本発明の方法および装置によれ
ば、るつぼ内の高温溶融廃棄物の金属層とガラス層とを
同時にサンプリングすることができるうえ、溶融状態の
ままでサンプリングを行うので廃棄体にサンプリング用
の孔を明ける必要もなく、固化させた廃棄体の健全性が
損なわれることがない。またこれらのサンプリング操作
をすべて密閉室内で自動的に行うことができるので、安
0
全かつ確実にサンプリング操作を行うことができる。(Effects of the Invention) As explained above, according to the method and apparatus of the present invention, it is possible to simultaneously sample the metal layer and the glass layer of the high-temperature molten waste in the crucible, and also to sample the metal layer and the glass layer of the high-temperature molten waste in the crucible while they remain in the molten state. Since sampling is performed, there is no need to drill holes for sampling in the waste body, and the integrity of the solidified waste body is not impaired. Moreover, since all of these sampling operations can be performed automatically in a closed room, the sampling operations can be performed safely and reliably.
よって本発明は従来の問題点を一掃した放射性廃棄物の
高温溶融物のザンプリング方法および装置として、産業
の発展に寄与するところは極めて大である。Therefore, the present invention greatly contributes to the development of industry as a method and apparatus for sampling high-temperature melts of radioactive waste, eliminating the problems of the conventional methods.
第1図は本発明の実施例を示す断面図、第2図はその工
程を示す部分断面図、第3図はプローブの一部切欠正面
図である。
(2):るつぼ、(5):金属層、(6)ニガラス層、
(7):密閉室、(8):カプラ、(9):昇降装置、
(10)ニブローブ交換装置ζ(11)ニブローブ、(
13):負圧吸引ライン。FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a partial sectional view showing the process, and FIG. 3 is a partially cutaway front view of the probe. (2): Crucible, (5): Metal layer, (6) Nigarasu layer,
(7): Closed room, (8): Coupler, (9): Lifting device,
(10) Nib lobe exchange device ζ (11) Nib lobe, (
13): Negative pressure suction line.
Claims (1)
状のプローブ(11)を放射性廃棄物の高温溶融物の入
ったるつぼ(2)の底部まで挿入し内部を吸引すること
によってプローブ(11)の下端からるつぼ底部の溶融
した金属層(5)を採取するとともに、プローブ(11
)の側面に設けた吸引孔から高粘性のガラス層(6)を
吸引すると同時に外面に強制付着させ、その後るつぼ(
2)の上方にプローブ(11)を引き上げて冷却し、回
収することを特徴とする放射性廃棄物の高温溶融物のサ
ンプリング方法。 2、放射性廃棄物を溶融するるつぼ(2)の上方に密閉
室(7)を形成し、この密閉室(7)の内部にカプラ(
8)を下端に備えた昇降装置(9)と、このカプラ(8
)へプローブ(11)を自動的に供給しまたカプラ(8
)からプローブ(11)を自動的に回収するプローブ交
換装置(10)を設けるとともに、上記の昇降装置(9
)に負圧吸引ライン(13)を接続したことを特徴とす
る放射性廃棄物の高温溶融物のサンプリング装置。[Claims] 1. Insert the cylindrical probe (11) attached to the lifting device (9) in the closed room (7) to the bottom of the crucible (2) containing high-temperature melt of radioactive waste. The molten metal layer (5) at the bottom of the crucible is collected from the lower end of the probe (11) by suctioning the inside, and the probe (11
At the same time, the highly viscous glass layer (6) is suctioned through the suction hole provided on the side of the crucible (
2) A method for sampling high-temperature molten radioactive waste, which comprises raising the probe (11) above the waste, cooling it, and collecting it. 2. A sealed chamber (7) is formed above the crucible (2) in which radioactive waste is melted, and a coupler (7) is placed inside this sealed chamber (7).
8) at the lower end, and this coupler (8).
) to automatically supply the probe (11) to the coupler (8).
) is provided with a probe exchange device (10) that automatically collects the probe (11) from the above-mentioned lifting device (9).
1. A sampling device for high-temperature melted radioactive waste, characterized in that a negative pressure suction line (13) is connected to ).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2059337A JPH07104230B2 (en) | 1990-03-09 | 1990-03-09 | Method and apparatus for sampling hot melt of radioactive waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2059337A JPH07104230B2 (en) | 1990-03-09 | 1990-03-09 | Method and apparatus for sampling hot melt of radioactive waste |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03259727A true JPH03259727A (en) | 1991-11-19 |
JPH07104230B2 JPH07104230B2 (en) | 1995-11-13 |
Family
ID=13110407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2059337A Expired - Lifetime JPH07104230B2 (en) | 1990-03-09 | 1990-03-09 | Method and apparatus for sampling hot melt of radioactive waste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07104230B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8511183B2 (en) * | 2011-07-25 | 2013-08-20 | Corning Incorporated | Glass sampling apparatus and method for using same to obtain a glass sample from a glass melting vessel |
CN114518377A (en) * | 2022-04-20 | 2022-05-20 | 南京中科特检机器人有限公司 | Fuse piece system of intelligent robot for x-ray fluorescence analysis |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5844312A (en) * | 1981-09-09 | 1983-03-15 | Honda Motor Co Ltd | Supporting device for pointer shaft for instrument |
JPS5938434U (en) * | 1982-09-03 | 1984-03-10 | 株式会社学習研究社 | Slide projection device for overhead projector |
JPH01117546U (en) * | 1988-02-02 | 1989-08-08 |
-
1990
- 1990-03-09 JP JP2059337A patent/JPH07104230B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5844312A (en) * | 1981-09-09 | 1983-03-15 | Honda Motor Co Ltd | Supporting device for pointer shaft for instrument |
JPS5938434U (en) * | 1982-09-03 | 1984-03-10 | 株式会社学習研究社 | Slide projection device for overhead projector |
JPH01117546U (en) * | 1988-02-02 | 1989-08-08 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8511183B2 (en) * | 2011-07-25 | 2013-08-20 | Corning Incorporated | Glass sampling apparatus and method for using same to obtain a glass sample from a glass melting vessel |
CN114518377A (en) * | 2022-04-20 | 2022-05-20 | 南京中科特检机器人有限公司 | Fuse piece system of intelligent robot for x-ray fluorescence analysis |
Also Published As
Publication number | Publication date |
---|---|
JPH07104230B2 (en) | 1995-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11948700B2 (en) | In-situ method of drilling to collect dry samples from a nuclear reactor core interior for analysis | |
JP5981324B2 (en) | Nuclear fuel material retrieval method in nuclear power plant | |
KR102380740B1 (en) | System and method for monitoring radioactivity in water | |
JPH03259727A (en) | Sampling method and device for high-temperature melt of radioactive waste | |
JPS60181690A (en) | Storage system for nuclear fuel | |
Heffernan et al. | Solubility of airborne uranium compounds at the Fernald Environmental Management Project | |
JPH10153696A (en) | Disposal vessel of high level radioactive waste | |
US3971482A (en) | Anti-leak closure valve | |
JP3847231B2 (en) | High frequency induction furnace for miscellaneous solid waste melting and miscellaneous solid waste melting method | |
Holcomb et al. | High level radioactive solid waste burial operations for the EBR-II fuel cycle facility | |
JP2015161606A (en) | Device and method for processing radioactive material | |
US20240274310A1 (en) | Injection method for nuclear waste capsule construction | |
CN104947952A (en) | Ex-service biological shield demounting process of swimming pool reactors | |
JPH07120593A (en) | Automatic machine for disposing radioactively contaminated concrete | |
JPH0363599A (en) | Processing method for dismantled body such as radio-actively contaminated equipment and its transportation container | |
Jurney et al. | Disassembly of the Los Alamos Fast Reactor | |
JPH0382996A (en) | Freeze seal structure | |
JP3149232B2 (en) | Method and apparatus for automatically collecting a material sample during pouring into a container | |
Chikalla et al. | Nuclear waste management. Semiannual progress report, October 1982-March 1983 | |
Lamb | The high-radiation-level analytical facility at the oak ridge national laboratory | |
Mulkin | Characterization of transuranic solid wastes from a plutonium processing facility | |
JP2008249445A (en) | Measuring method of radiation in sealed container | |
JPH10319191A (en) | Method for processing sealing end crop of spent nuclear fuel | |
JP2023065695A (en) | Manufacturing method of clumpy metal substance | |
Boersma et al. | Development of an integrated facility for processing TRU solid wastes at the Savannah River Plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081113 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081113 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091113 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101113 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101113 Year of fee payment: 15 |