JP2008249445A - Measuring method of radiation in sealed container - Google Patents

Measuring method of radiation in sealed container Download PDF

Info

Publication number
JP2008249445A
JP2008249445A JP2007090133A JP2007090133A JP2008249445A JP 2008249445 A JP2008249445 A JP 2008249445A JP 2007090133 A JP2007090133 A JP 2007090133A JP 2007090133 A JP2007090133 A JP 2007090133A JP 2008249445 A JP2008249445 A JP 2008249445A
Authority
JP
Japan
Prior art keywords
sealed
sealed container
gas
radiation
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007090133A
Other languages
Japanese (ja)
Inventor
Keita Okuyama
圭太 奥山
Naoki Kumagai
直己 熊谷
Mamoru Kamoshita
守 鴨志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2007090133A priority Critical patent/JP2008249445A/en
Publication of JP2008249445A publication Critical patent/JP2008249445A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method of a radiation in a sealed container capable of measuring a radioactive material or the like with high sensitivity without lowering a concentration of gas sealed in the sealed container. <P>SOLUTION: Sealed gas is taken from the sealed container 2 by putting the sealed gas in the sealed container 2 into a depressurized environment, and a dusty radioactive material existing in the sealed gas is recovered by a filter, and a radiation concentration in the filter is measured. The sealed gas after recovering the dusty radioactive material therefrom by the filter is returned again into the sealed container 2. Gas of the same quantity as the sealed gas taken out from the sealed container 2 may be supplied into the sealed container 2 during storage or inspection of the sealed gas recovered from the sealed container 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、原子力発電所から発生する使用済燃料や、使用済燃料の再処理で発生するガラス固化体を乾式貯蔵する貯蔵設備における放射性物質の漏洩監視方法とその装置に関する。   The present invention relates to a radioactive substance leakage monitoring method and apparatus in a storage facility for dry storage of spent fuel generated from a nuclear power plant and vitrified material generated by reprocessing of spent fuel.

原子力発電所で使用された後の使用済燃料集合体は、原子力発電所の燃料貯蔵プール内に保管される。燃料貯蔵プールに所定期間貯蔵された使用済燃料集合体は、ウラン及びプルトニウム等の再使用可能な核燃料物質を回収するために再処理施設で再処理される。この再処理によって高レベル放射性廃棄物のガラス固化体(以下、ガラス固化体という)が発生する。ガラス固化体は、最終的には地下に設けられた処分場にて埋設処分される。しかし、ガラス固化体は、製造直後は発熱量が高いため、数十年間、専用の貯蔵施設にて冷却しながら貯蔵し、処分可能な発熱量まで低下した後に処分される。   The spent fuel assembly after being used in the nuclear power plant is stored in the fuel storage pool of the nuclear power plant. Spent fuel assemblies stored in the fuel storage pool for a predetermined period are reprocessed in a reprocessing facility to recover reusable nuclear fuel materials such as uranium and plutonium. By this reprocessing, a vitrified body of high-level radioactive waste (hereinafter referred to as a vitrified body) is generated. The vitrified body is finally buried in a disposal site provided underground. However, since the vitrified body has a high calorific value immediately after production, it is stored for several decades while being cooled in a dedicated storage facility, and disposed of after being reduced to a disposable calorific value.

また、使用済燃料集合体の一部は、再処理施設で再処理される前に、金属キャスクやボールト等の中間貯蔵施設で数十年間貯蔵する。   A part of the spent fuel assembly is stored in an intermediate storage facility such as a metal cask or vault for several decades before being reprocessed in the reprocessing facility.

ガラス固化体の貯蔵施設の一例が特許文献1に記載されている。この例のガラス固化体貯蔵施設は、ガラス固化体を収納する複数の収納管を貯蔵ピット内に設置し、通風管が収納管の周囲を同心状に取り囲んで、収納管と通風管の間に貯蔵施設外から取り入れた空気を流している。ガラス固化体はこの空気によって冷却される。ガラス固化体を冷却した空気は、暖められて貯蔵施設内に形成される排気通路を通って外部へ排出される。この冷却用の空気は、暖められた空気が上昇する力を利用して、自然循環により貯蔵施設内を流れる。   An example of a storage facility for vitrified bodies is described in Patent Document 1. In this example, the vitrified material storage facility has a plurality of storage tubes for storing the vitrified material in the storage pit, and the ventilation tube concentrically surrounds the storage tube, and between the storage tube and the ventilation tube. Air is taken from outside the storage facility. The vitrified body is cooled by this air. The air that has cooled the vitrified body is heated and discharged to the outside through an exhaust passage formed in the storage facility. The cooling air flows through the storage facility by natural circulation using the force by which the warmed air rises.

また、特許文献2に記載されているように、放射性廃棄物からの発熱を効率的に除去するため、密封容器内部には放射性廃棄物と共に熱伝導性に優れたヘリウムガスを封入することが考えられる。   Further, as described in Patent Document 2, in order to efficiently remove the heat generated from the radioactive waste, it is considered to enclose helium gas having excellent thermal conductivity together with the radioactive waste in the sealed container. It is done.

本方式による放射性廃棄物の貯蔵は数十年以上に及ぶ可能性もあるため、放射性廃棄物中の放射性物質等が密封容器外に漏洩していないことを監視する必要がある。   Since radioactive waste can be stored for several decades or more by this method, it is necessary to monitor that radioactive materials, etc. in the radioactive waste are not leaking outside the sealed container.

放射性物質の漏洩監視方法は、特許文献2〜4に記載されている。特許文献2では、収納管内に空気より比重の小さい高熱伝導ガスを収納管の上側から送風し、収納管の下部からガスを吸引する。吸引したガスはフィルタを通し、放射性物質のモニタリング後、問題なければ外気に排出される。高熱伝導ガスとしては、ヘリウムガスが適用される。これにより、収納管内のガスを熱伝導性が高いヘリウムガスを維持しつつ、モニタリングが可能になる。しかし、本法では常にヘリウムガスを供給し続ける必要が生じるため、コストが高くなる。   Methods for monitoring leakage of radioactive material are described in Patent Documents 2 to 4. In Patent Document 2, a high heat conduction gas having a specific gravity smaller than that of air is blown into the storage tube from above the storage tube, and the gas is sucked from the lower portion of the storage tube. The sucked gas passes through a filter and is discharged to the outside if there is no problem after monitoring the radioactive material. Helium gas is applied as the high heat conduction gas. Thereby, it is possible to monitor the gas in the storage tube while maintaining the helium gas having high thermal conductivity. However, in this method, it is necessary to always supply helium gas, which increases the cost.

特許文献3では、収納管内部のガスを定期的にサンプリングし、サンプリング空気中の放射能濃度を測定することを開示している。しかし、本法ではサンプリングしたガスを外気に放出してしまう。密封容器中のガスをヘリウムにした場合、本法においても、サンプリングする度に放出した量のガスを補給する必要が生じるため、コストが高くなる。   Patent Document 3 discloses that the gas inside the storage tube is periodically sampled and the radioactivity concentration in the sampling air is measured. However, this method releases the sampled gas to the outside air. In the case where helium is used as the gas in the sealed container, it is necessary to replenish the amount of gas released each time sampling is performed in this method, which increases the cost.

特許文献4では、収納管内に放射線検知センサを設けることで、収納管内のガス等をサンプリングすることなく、しかも遠隔で放射性物質の漏洩を監視できる。しかし、本法ではガス中の放射性物質を計測するセンサの近辺に非常に強い放射性廃棄物が存在することから、計測精度を高くすることが難しい。   In Patent Document 4, by providing a radiation detection sensor in the storage tube, it is possible to remotely monitor the leakage of the radioactive substance without sampling the gas in the storage tube. However, in this method, it is difficult to increase the measurement accuracy because very strong radioactive waste exists in the vicinity of the sensor that measures the radioactive substance in the gas.

実開平3−125299号公報Japanese Utility Model Publication No. 3-125299 特許第3314531号公報Japanese Patent No. 3314531 特公平5−11598号公報Japanese Patent Publication No. 5-11598 特開平8−15497号公報JP-A-8-15497

上記従来技術では、サンプリング時における収納管内部のガス濃度の維持、あるいは計測精度向上に関し、必ずしも十分に配慮されていなかった。また、収納管のように長尺容器を対象にした場合、サンプリングする配管とサンプリング後のガスを放射線検出器から収納管へ戻す配管を、両方とも収納管の一方の端側に設置し、サンプリング作業とサンプリング後のガスを収納管に戻す作業を同時に実施してしまうと、二本の配管近傍のガスのみをサンプリングしてしまい、もう一方の端側近傍のガスのサンプリング効率が低下するため、サンプリングの精度を向上させることが難しい。   In the above prior art, sufficient consideration has not been given to maintaining the gas concentration inside the storage tube during sampling or improving the measurement accuracy. In addition, when targeting a long container like a storage tube, both the piping to be sampled and the piping to return the sampled gas from the radiation detector to the storage tube are installed on one end side of the storage tube. If the work and the work of returning the sampled gas to the storage pipe are performed at the same time, only the gas near the two pipes will be sampled, and the sampling efficiency of the gas near the other end will decrease, It is difficult to improve sampling accuracy.

本発明の目的は、密封容器(収納管)に密封されているガスの濃度を下げることなく、放射性物質等を高感度で計測できる密封容器内の放射線計測方法(放射線濃度の計測方法)を提供することにある。   An object of the present invention is to provide a radiation measurement method (radiation concentration measurement method) in a sealed container that can measure radioactive substances and the like with high sensitivity without lowering the concentration of gas sealed in the sealed container (storage tube). There is to do.

上記目的を達成する本発明の特徴は、密封容器(収納管)内の封入ガスをサンプリングし、封入ガス中の放射線計測を実施後、サンプリングしたガスを再度密封容器内に戻すことで達成される。これにより、放射線濃度の計測中でも、密封容器内に密封しているガスの濃度を一定に保つことができる。   The feature of the present invention that achieves the above object is achieved by sampling the sealed gas in the sealed container (storage tube), performing radiation measurement in the sealed gas, and then returning the sampled gas to the sealed container again. . Thereby, the density | concentration of the gas sealed in the sealed container can be kept constant even during measurement of the radiation concentration.

ガスのサンプリング方法は、密封容器内を減圧環境にし、一時的に密封容器内のガスを別の容器に保管し、ガス中の放射線濃度を計測後、再度密封容器内にガスを戻す。これにより、密封容器のような長尺容器内の全てのガスをサンプリングできるので、放射線計測精度を向上することができる。   In the gas sampling method, the sealed container is placed in a reduced pressure environment, the gas in the sealed container is temporarily stored in another container, the radiation concentration in the gas is measured, and then the gas is returned to the sealed container again. Thereby, since all the gas in a long container like a sealed container can be sampled, radiation measurement accuracy can be improved.

また、密封容器内に封入されているヘリウムとは別に、ヘリウムタンクを設け、減圧環境によるヘリウムガスのサンプリングが終了した後、ただちにサンプリングしたヘリウムガスと同量のヘリウムガスを密封容器内に供給(補充)する。これにより、ヘリウムガスのサンプリングから放射線濃度の計測中も、密封容器内のヘリウム濃度を一定に保つことができ、ガラス固化体の一時的な温度上昇を最小限に抑えることができる。   In addition to the helium sealed in the sealed container, a helium tank is provided to immediately supply the same amount of helium gas as the sampled helium gas in the sealed container immediately after the sampling of the helium gas in the reduced pressure environment is completed ( refill. Accordingly, the helium concentration in the sealed container can be kept constant even during the measurement of the radiation concentration from sampling of the helium gas, and the temporary temperature rise of the vitrified body can be minimized.

本発明によれば、密封容器(収納管)に密封されているガスの濃度を下げることなく、放射性物質等を高感度に計測することができる。   ADVANTAGE OF THE INVENTION According to this invention, a radioactive substance etc. can be measured with high sensitivity, without reducing the density | concentration of the gas sealed by the sealed container (storage tube).

以下、本発明の第1実施例を図1と図2を用いて説明する。放射性物質の貯蔵施設の基本的な構成は、例えば特許文献1の図1や図3に示されているので、ここでは本発明に直接関係する部分のみについて説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. Since the basic structure of the radioactive substance storage facility is shown in, for example, FIG. 1 and FIG. 3 of Patent Document 1, only the portion directly related to the present invention will be described here.

図1に示すように、ガラス固化体1はヘリウムガスを封入した収納管(密封容器)2に密封されている。収納管2の上部にはガラス固化体1から放出される中性子や放射線を遮蔽する密封プラグ3が設けられ、また収納管2を密封する蓋4により密封されている。収納管2の外部には冷却空気5が流れており、ガラス固化体1から発生する崩壊熱を除去する。配管7と配管8は、密封プラグ3及び蓋4を貫通して、収納管2の内部と放射線計測装置6とを接続している。配管7は収納管2内の封入ガス(ヘリウムガス)をサンプリングするためのもので、配管8は放射線計測後のヘリウムガスを収納管2内に供給する(戻す)ためのものである。   As shown in FIG. 1, the vitrified body 1 is sealed in a storage tube (sealed container) 2 in which helium gas is sealed. A sealing plug 3 that shields neutrons and radiation emitted from the vitrified body 1 is provided on the upper portion of the storage tube 2, and is sealed by a lid 4 that seals the storage tube 2. Cooling air 5 flows outside the storage tube 2 and removes decay heat generated from the vitrified body 1. The pipe 7 and the pipe 8 pass through the sealing plug 3 and the lid 4 to connect the inside of the storage pipe 2 and the radiation measuring device 6. The pipe 7 is for sampling the sealed gas (helium gas) in the storage pipe 2, and the pipe 8 is for supplying (returning) the helium gas after radiation measurement into the storage pipe 2.

次に、図2を用いて、放射線計測装置6の具体的な構造を説明する。サンプリング用の配管7を介して、収納管2内のヘリウムガスを真空ポンプ9により吸引する。真空ポンプ9と収納管2の間に圧力バルブ10を設けて圧力境界を構築し、収納管2内のヘリウムガスをサンプリングしない時に、収納管2から真空ポンプ9側へのヘリウムガスの流出や、真空ポンプ9側から収納管2へのガスの流れが生じないようにする。   Next, a specific structure of the radiation measuring apparatus 6 will be described with reference to FIG. The helium gas in the storage pipe 2 is sucked by the vacuum pump 9 through the sampling pipe 7. When a pressure boundary is established by providing a pressure valve 10 between the vacuum pump 9 and the storage tube 2 and helium gas in the storage tube 2 is not sampled, the helium gas flows out of the storage tube 2 to the vacuum pump 9 side, The gas flow from the vacuum pump 9 side to the storage tube 2 is prevented from occurring.

真空ポンプ9の下流側には、真空ポンプ9で吸引したヘリウムガスを一時的に保管する保管タンク11を設置する。保管タンク11の上流側及び下流側の両側に圧力バルブ12を設け、圧力境界を確保する。真空ポンプ9により収納管2から吸引したヘリウムガスは、保管タンク11に一時保管された後、放射性物質回収装置13に送られ、ここでダスト状の放射性物質を回収する。ダストが取り除かれたヘリウムガスは、三方弁14を介してヘリウムタンク15に格納される。放射性物質回収装置13と三方弁14との間、三方弁14とヘリウムタンク15との間にも圧力バルブ12を設け、圧力境界を確保する。   A storage tank 11 for temporarily storing the helium gas sucked by the vacuum pump 9 is installed on the downstream side of the vacuum pump 9. Pressure valves 12 are provided on both the upstream and downstream sides of the storage tank 11 to ensure a pressure boundary. The helium gas sucked from the storage tube 2 by the vacuum pump 9 is temporarily stored in the storage tank 11 and then sent to the radioactive substance recovery device 13 where the dusty radioactive substance is recovered. The helium gas from which the dust has been removed is stored in the helium tank 15 via the three-way valve 14. A pressure valve 12 is provided between the radioactive substance recovery device 13 and the three-way valve 14 and between the three-way valve 14 and the helium tank 15 to ensure a pressure boundary.

真空ポンプ9により収納管2内のヘリウムを全て吸引回収し、バルブ10を閉止した後、ヘリウムタンク15から収納管2内へ、吸引回収したヘリウムガスと同じ量のヘリウムガスを供給(注入)する。これにより、収納管2内のヘリウムガスがない時間を可能な限り短縮することで、収納管2内のガラス固化体1の温度が上昇しないようにする。   All the helium in the storage tube 2 is sucked and collected by the vacuum pump 9 and the valve 10 is closed, and then the same amount of helium gas as the sucked and collected helium gas is supplied (injected) from the helium tank 15 into the storage tube 2. . Thereby, the time when there is no helium gas in the storage tube 2 is shortened as much as possible so that the temperature of the vitrified body 1 in the storage tube 2 does not rise.

放射性物質回収装置13はフィルタを備え、フィルタにヘリウムガスを送風することにより、ダスト状の放射性物質をフィルタで集塵する。保管タンク11内のヘリウムガスの送風終了後、放射性物質回収装置13内のフィルタを回収し、別途、計測室においてフィルタの放射線計測を実施する。このために、フィルタは着脱可能な機構(構造)にする。   The radioactive substance recovery device 13 includes a filter, and collects dust-like radioactive substance with the filter by blowing helium gas through the filter. After the helium gas blowing in the storage tank 11 is completed, the filter in the radioactive substance recovery device 13 is recovered, and the radiation of the filter is separately measured in the measurement chamber. For this purpose, the filter has a detachable mechanism (structure).

放射線計測の頻度については、ガラス固化体の貯蔵が場合によっては数十年以上の長期にわたること、収納管の腐食などは起こるとしても徐々に進行することを考慮すると、健全性の監視は必ずしも連続的に実施する必要はない。具体的には、1日〜数ヶ月に1回でも十分と考えられる。   As regards the frequency of radiation measurement, considering that the storage of vitrified materials may last for several decades or more, and the corrosion of the storage tube will proceed gradually even if it occurs, the health monitoring is not always continuous. There is no need to implement it. Specifically, it is considered sufficient even once a day to several months.

放射性物質回収装置13としては、フィルタの近傍に放射線計測装置を設置し、フィルタの放射線を連続的に計測する構成にしても良い。この場合、フィルタの着脱が不要になると共に、連続計測が可能であることから、モニタリングとしても利用できる。更に、この場合、放射性物質の計測対象は、ダスト状の放射性物質だけではなく、気体状や液体状の放射性物質の計測も可能である。   The radioactive substance recovery device 13 may be configured such that a radiation measuring device is installed in the vicinity of the filter and the radiation of the filter is continuously measured. In this case, it is not necessary to attach or detach the filter, and continuous measurement is possible, so that it can also be used for monitoring. Furthermore, in this case, the measurement target of the radioactive substance is not limited to dust-like radioactive substance, and measurement of gaseous or liquid radioactive substance is also possible.

次に、図3を用いて、本発明の第2実施例を説明する。第1実施例では1本の収納管を監視するのに1台の放射線計測装置を用いたが、本実施例では複数の収納管を1台の放射線計測装置で監視する。図3は、2本の収納管2を1台の放射線計測装置6で監視する例を示す。具体的には、収納管2と放射線計測装置6を接続する配管7と配管8を、2本の収納管2で共有し、収納管2からのヘリウムガスのサンプリングや、収納管2へのヘリウムガスの供給を一括して実施する。   Next, a second embodiment of the present invention will be described with reference to FIG. In the first embodiment, one radiation measuring device is used to monitor one storage tube. In this embodiment, a plurality of storage tubes are monitored by one radiation measuring device. FIG. 3 shows an example in which two storage tubes 2 are monitored by one radiation measuring device 6. Specifically, the pipe 7 and the pipe 8 that connect the storage pipe 2 and the radiation measuring device 6 are shared by the two storage pipes 2, sampling helium gas from the storage pipe 2, and helium to the storage pipe 2. Implement gas supply in a lump.

放射線計測装置6と2本の収納管2a及び2bとを接続する2系統の配管7a及び7bに、三方弁16a及び16bを設置する。放射線計測装置6と2本の収納管2a及び2bとを接続する2系統の配管8a及び8bにも、三方弁16a及び16bを設置する。三方弁16a及び16bは、2本の収納管2a及び2bについて一括して実施した放射線計測で放射線が検出された場合、放射線がヘリウムガスに漏洩している収納管を特定するために用いる。具体的には、フレキシブルに着脱可能なホース17を三方弁16a又は16bに接続して、第1実施例で説明したように、収納管1本ずつ放射線計測を実施して、漏洩している収納管を特定する。   Three-way valves 16a and 16b are installed in two systems of pipes 7a and 7b connecting the radiation measuring apparatus 6 and the two storage pipes 2a and 2b. Three-way valves 16a and 16b are also installed in two systems of pipes 8a and 8b connecting the radiation measuring apparatus 6 and the two storage pipes 2a and 2b. The three-way valves 16a and 16b are used to identify the storage pipe in which the radiation leaks into the helium gas when radiation is detected by radiation measurement performed collectively on the two storage pipes 2a and 2b. Specifically, the flexible hose 17 that can be attached and detached is connected to the three-way valve 16a or 16b, and as described in the first embodiment, the radiation is measured one by one for each storage tube, and the leaked storage Identify the tube.

本発明は、原子力発電所から発生する使用済燃料や、使用済燃料の再処理で発生するガラス固化体を乾式貯蔵する貯蔵設備における放射性物質の漏洩監視に利用できる。   INDUSTRIAL APPLICATION This invention can be utilized for the leakage monitoring of the radioactive material in the storage facility which dry-stores the spent fuel generate | occur | produced from a nuclear power plant, and the vitrified body generated by the reprocessing of a spent fuel.

本発明の第1実施例の放射線計測方法を実現する概略装置構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic apparatus block diagram which implement | achieves the radiation measuring method of 1st Example of this invention. 第1実施例の放射線計測装置の詳細図。Detailed view of the radiation measuring apparatus of the first embodiment. 本発明の第2実施例の放射線計測方法を実現する概略装置構成図。The schematic apparatus block diagram which implement | achieves the radiation measuring method of 2nd Example of this invention.

符号の説明Explanation of symbols

1 ガラス固化体
2,2a,2b 収納管
3 密封プラグ
4 蓋
5 冷却空気
6 放射線計測装置
7,7a,7b,8,8a,8b 配管
9 真空ポンプ
10 圧力バルブ
11 保管タンク
12 圧力バルブ
13 放射性物質回収装置
14,16a,16b 三方弁
15 ヘリウムタンク
17 ホース
DESCRIPTION OF SYMBOLS 1 Glass solidified body 2,2a, 2b Storage tube 3 Seal plug 4 Lid 5 Cooling air 6 Radiation measuring device 7, 7a, 7b, 8, 8a, 8b Pipe 9 Vacuum pump 10 Pressure valve 11 Storage tank 12 Pressure valve 13 Radioactive substance Recovery device 14, 16a, 16b Three-way valve 15 Helium tank 17 Hose

Claims (8)

ガラス固化体もしくは使用済燃料を封入ガスと共に密封容器に格納し、前記密封容器の外部を冷却する貯蔵設備において、減圧装置により前記密封容器内を減圧環境にすることで、前記密封容器から前記封入ガスを取りこみ、取り込んだ前記封入ガス中に存在するダスト状の放射性物質をフィルタで回収し、放射性物質を回収したフィルタの放射線濃度を計測することを特徴とする密封容器内の放射線計測方法。   In a storage facility for storing a glass solidified body or spent fuel together with a sealed gas in a sealed container and cooling the outside of the sealed container, the sealed container is sealed from the sealed container by making the sealed container a reduced pressure environment by a decompression device. A method for measuring radiation in a sealed container, comprising: taking in gas, collecting dust-like radioactive material present in the taken-in sealed gas with a filter, and measuring the radiation concentration of the filter from which the radioactive material has been collected. 請求項1において、フィルタでダスト状の放射性物質を回収した後の前記封入ガスを前記密封容器に供給することを特徴とする密封容器内の放射線計測方法。   The radiation measurement method in the sealed container according to claim 1, wherein the sealed gas after the dust-like radioactive substance is collected by a filter is supplied to the sealed container. 請求項1において、前記密封容器から回収した封入ガスを保管中または検査中に、前記密封容器から取り出した封入ガスと同じ量のガスを前記密封容器に供給することを特徴とする密封容器内の放射線計測方法。   2. The sealed container according to claim 1, wherein the same amount of gas as the sealed gas taken out from the sealed container is supplied to the sealed container during storage or inspection of the sealed gas recovered from the sealed container. Radiation measurement method. 請求項1において、ダスト状の放射性物質を回収したフィルタの放射線濃度をその場で計測することを特徴とする密封容器内の放射線計測方法。   2. The radiation measuring method in a sealed container according to claim 1, wherein the radiation concentration of the filter that collects the dust-like radioactive substance is measured on the spot. ガラス固化体もしくは使用済燃料を封入ガスと共に密封容器に格納し、前記密封容器の外部を冷却する貯蔵設備において、減圧装置により前記密封容器内を減圧環境にすることで、前記密封容器から前記封入ガスを取りこみ、取り込んだ前記封入ガス中に存在する気体状もしくは液体状の放射性物質をフィルタの吸着作用などにより回収し、フィルタの放射線濃度を計測することを特徴とする密封容器内の放射線計測方法。   In a storage facility for storing a glass solidified body or spent fuel together with a sealed gas in a sealed container and cooling the outside of the sealed container, the sealed container is sealed from the sealed container by making the sealed container a reduced pressure environment by a decompression device. A method for measuring radiation in a sealed container, which takes in a gas, collects a gaseous or liquid radioactive substance present in the taken-in sealed gas by an adsorption action of the filter, and measures the radiation concentration of the filter . 請求項1〜5の何れかにおいて、複数の前記密封容器から封入ガスを取り込むことで、複数の前記密封容器内の封入ガス中の放射性物質の計測を一括して実施することを特徴とする密封容器内の放射線計測方法。   6. The sealing according to claim 1, wherein measurement of radioactive substances in the sealed gas in the plurality of sealed containers is collectively performed by taking in the sealed gas from the plurality of sealed containers. Radiation measurement method in the container. 請求項4において、ダスト状の放射性物質を回収したフィルタの放射線濃度をその場で連続計測することを特徴とする密封容器内の放射線計測方法。   5. The radiation measuring method in a sealed container according to claim 4, wherein the radiation concentration of the filter that collects the dust-like radioactive substance is continuously measured on the spot. 請求項1〜7の何れかにおいて、前記封入ガスがヘリウムであることを特徴とする密封容器内の放射線計測方法。   8. The radiation measuring method in a sealed container according to claim 1, wherein the sealed gas is helium.
JP2007090133A 2007-03-30 2007-03-30 Measuring method of radiation in sealed container Pending JP2008249445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090133A JP2008249445A (en) 2007-03-30 2007-03-30 Measuring method of radiation in sealed container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090133A JP2008249445A (en) 2007-03-30 2007-03-30 Measuring method of radiation in sealed container

Publications (1)

Publication Number Publication Date
JP2008249445A true JP2008249445A (en) 2008-10-16

Family

ID=39974578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090133A Pending JP2008249445A (en) 2007-03-30 2007-03-30 Measuring method of radiation in sealed container

Country Status (1)

Country Link
JP (1) JP2008249445A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014115282A1 (en) * 2013-01-24 2017-01-26 株式会社日立製作所 Computer system and computer resource allocation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014115282A1 (en) * 2013-01-24 2017-01-26 株式会社日立製作所 Computer system and computer resource allocation method

Similar Documents

Publication Publication Date Title
MY201882A (en) Leakage control system for spent fuel cooling pool
JPH06300849A (en) Method for detecting leakage of radioactive gas of nuclear reactor and radioactivity monitor for nuclear reactor
CN106404311A (en) Spent fuel assembly damage detection apparatus
JP6129646B2 (en) Method for carrying out fuel debris in boiling water nuclear power plant
KR102006701B1 (en) A test apparatus for spent nuclear fuel storage cask monitoring system
TWI572854B (en) Device for Detecting Integrity of Sealed Border of Dry Storage Container of Used Nuclear Fuel during Operation Period
JP2008249445A (en) Measuring method of radiation in sealed container
CN111354488A (en) Nuclear fuel assembly vacuum off-line sipping detection device and method
JP5069642B2 (en) Tritium sampler
CN101710495B (en) Installation structure of spent fuel storage pool in PTR system
KR102372548B1 (en) Analytical device for detecting fission products by measurement of radioactivity
CN110095802B (en) Method for simulating and researching hydrogen generation in radioactive solid waste disposal process
Chung et al. New pneumatic transfer systems for neutron activation analysis at the HANARO research reactor
Perevezentsev et al. Experimental trials of methods for metal detritiation for JET
JP2009115691A (en) Temperature monitoring system for radioactive heat generator, temperature monitoring method for radioactive heat generator, and storage facility for radioactive substance
Perry Experimental Evaluation of Drying Spent Nuclear Fuel for Dry Cask Storage through Vacuum and Forced Helium Dehydration
RU2297680C1 (en) Method and device for checking fuel element cans for tightness
Kumano Integrity inspection of dry storage casks and spent fuels at Fukushima Daiichi nuclear power station
CN213600442U (en) Helium sampling tank of high-temperature gas cooled reactor
KR20130114799A (en) Foreign removal system for steam generator of nuclear power plant
JP2002257991A (en) Storage device and storage method for radioactive material
JP4300501B2 (en) Nuclear fuel cladding inspection method and inspection apparatus
JPH02296148A (en) Equipment for measuring amount of metal in acid solution and acidity thereof continuously in real time
JPH10170698A (en) Spent fuel dry storage facility
JPH11271493A (en) Canister for spent fuel and canister storage facility