JPH03258822A - Preparation of rigid polyurethane foam - Google Patents

Preparation of rigid polyurethane foam

Info

Publication number
JPH03258822A
JPH03258822A JP2057796A JP5779690A JPH03258822A JP H03258822 A JPH03258822 A JP H03258822A JP 2057796 A JP2057796 A JP 2057796A JP 5779690 A JP5779690 A JP 5779690A JP H03258822 A JPH03258822 A JP H03258822A
Authority
JP
Japan
Prior art keywords
polyol
polyurethane foam
foam
rigid polyurethane
prepolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2057796A
Other languages
Japanese (ja)
Inventor
Kiyohiro Yuge
弓削 清博
Hitoshi Muramatsu
仁 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP2057796A priority Critical patent/JPH03258822A/en
Priority to KR1019910003650A priority patent/KR100188473B1/en
Publication of JPH03258822A publication Critical patent/JPH03258822A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates

Abstract

PURPOSE:To prepare the subject foam having a fine cell structure and having excellent heat-insulating characteristics, low having dimensional stability and compression strength by reacting a specific urethane prepolymer with a polyol in the presence of a substitute of trichloromonofluoromethane, a catalyst and a foam stabilizer. CONSTITUTION:A prepolymer formed from a polymethylenepolyphenylisocyanate and a polyol (e.g. methanol, ethylene glycol monomethyl ether) is reacted with a polyol (e.g. polyetherpolyol having a hydroxyl group value of 300-700mgKOH/ g) in the presence of a substitute of trichloromonofluoride (preferably 1,1- dichloro-2-2,2-trifluoroethane, 1,1-dichloro-1-fluoroethane), a catalyst and a foam stabilizer to provide the objective foam.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は硬質ポリウレタンフォームの製造法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for manufacturing rigid polyurethane foam.

更に詳しくは、発泡剤としてトリクロロモノフルオロメ
タン(以下、R−11という)の代替物、好ましくは1
.1−ジクロロ−2,2,2−トリフルオロエタン(以
下、HCFC−123という)または/および1.1−
ジクロロ−1−フルオロエタン(以下、HCFC−14
lbという)を使用し、微細セル構造を有して断熱特性
に極めて優れ、かつ低温寸法安定性および圧縮強度に優
れた硬質ポリウレタンフォームの製造法に関するもので
ある。
More specifically, as a blowing agent, a substitute for trichloromonofluoromethane (hereinafter referred to as R-11), preferably 1
.. 1-dichloro-2,2,2-trifluoroethane (hereinafter referred to as HCFC-123) or/and 1.1-
Dichloro-1-fluoroethane (hereinafter referred to as HCFC-14
This invention relates to a method for producing a rigid polyurethane foam having a fine cell structure, excellent heat insulation properties, and excellent low-temperature dimensional stability and compressive strength.

従来の技術及び課題 硬質ポリウレタンフォームは、良好な断熱材であり、ま
た成型性、加工性にも優れているところから電気冷蔵庫
の断熱を始め、ビル、低温倉庫。
Conventional Technologies and Issues Rigid polyurethane foam is a good heat insulating material and has excellent moldability and processability, so it is used for insulation in electric refrigerators, buildings, and low-temperature warehouses.

貯蔵タンク、冷凍船、配管等の断熱に至るまで広い分野
に用いられている。かかる硬質ポリウレタンフォームを
製造するには、ポリオール、触媒。
It is used in a wide range of fields, including insulation for storage tanks, refrigerated ships, piping, etc. To produce such rigid polyurethane foam, a polyol, a catalyst.

整泡剤1発泡剤を主成分とするA成分と、インシアネー
トを主成分とするB成分とを混合反応させ、発泡プロセ
スと硬化プロセスとを平行して進行させてフオームを形
成するワンショット法が一般に用いられている。
Foam stabilizer 1 A one-shot method in which component A, which has a foaming agent as its main component, and component B, which has incyanate as its main component, are mixed and reacted, and the foaming process and curing process proceed in parallel to form a foam. is commonly used.

このようなポリウレタンフォームの製造に用いられる発
泡剤としては、主としてR−11があり、また、水はイ
ンシアネートと反応して二酸化炭素を発生するところか
ら化学的発泡剤としてR−11と併用されることが多い
。しかしながら、従来発泡剤として用いられるフロンガ
スは化学的に安定であるため成層圏まで拡散し、成層圏
に存在するオゾン層を破壊する。その結果、太陽から放
射された紫外線がオゾン層で吸収されず地表に達し、皮
膚ガンの発生を増大するなどの問題が近年重大な環境問
題として取り上げられるに至っている。
The blowing agent used in the production of such polyurethane foam is mainly R-11, and since water reacts with incyanate to generate carbon dioxide, it is used in combination with R-11 as a chemical blowing agent. Often. However, since CFC gas conventionally used as a blowing agent is chemically stable, it diffuses into the stratosphere and destroys the ozone layer existing in the stratosphere. As a result, ultraviolet rays emitted from the sun are not absorbed by the ozone layer and reach the earth's surface, increasing the incidence of skin cancer, which has become a serious environmental problem in recent years.

このため1989年以降フロンガスの使用規制が実施さ
れ、ポリウレタン用のR−11も規制を受けることにな
った。
For this reason, regulations on the use of fluorocarbon gas have been implemented since 1989, and R-11 for polyurethane has also been subject to regulations.

そこで、このようなフロンガスに代わる発泡剤について
の検討が種々行われており、例えばHCFC−123,
141b等がR−11の代替物として候補に挙げられて
いる。しかしながら、発泡剤としてこれらHCFC−1
23,141bを用いたフオームは、R−11を用いて
たフオームに比べて (1)同一密度での低温寸法安定性、FE縮強度などの
フオーム物性が悪くなり、 (2)断熱特性がl O〜l 5 X l O−’kc
al/mh’0程度悪化し、 (3)初期の反応性が遅くなる 等の問題がある。
Therefore, various studies have been conducted on foaming agents that can replace fluorocarbon gas, such as HCFC-123,
141b and the like have been proposed as substitutes for R-11. However, these HCFC-1 as blowing agents
Compared to the foam using R-11, the foam using 23,141b has (1) poorer physical properties such as low-temperature dimensional stability and FE shrinkage strength at the same density, and (2) poorer thermal insulation properties. O~l 5 X l O-'kc
There are problems such as (3) slow initial reactivity.

一方、近年硬質ポリウレタンフォームを電気冷蔵庫など
に利用する場合、断熱層を薄くすることにより内容積を
より大きくするほか、消費電力などを削減するため、硬
質ポリウレタンフォームに高度の断熱性能、言い替えれ
ば熱伝導率を小さくすることが強く要求されてきている
。従来の硬質ポリウレタンフォームの熱伝導率は23℃
において通常140〜160 X 10−’kcal/
mh℃程度であり、l 30 X l O−’kcal
/mh℃以下に下げることは極めて困難で、特にHCF
C−123,141bを用いた場合は至難のことである
On the other hand, in recent years, when rigid polyurethane foam is used in electric refrigerators, etc., in addition to increasing the internal volume by making the insulation layer thinner, rigid polyurethane foam has a high degree of insulation performance, in other words, to reduce power consumption. There has been a strong demand for lower conductivity. The thermal conductivity of conventional rigid polyurethane foam is 23℃
Usually 140-160 x 10-'kcal/
It is about mh℃, l 30 X l O-'kcal
It is extremely difficult to lower the temperature below /mh℃, especially for HCF
This is extremely difficult when using C-123, 141b.

課題を解決するための手段 本発明者らは、上記の問題点に鑑み、鋭意検討を行った
結果、発泡剤としてHCFC−123または/およびH
CFC−14lbを使用して硬質ポリウレタンフォーム
を製造する際に、特定のポリオールとインシアネートを
組み合わせることで、微細セル構造を有して断熱特性に
極めて優れ、かつ低温寸法安定性及び圧縮強度等の7オ
ーム物性に優れた硬質ポリウレタンフォームを製造する
方法を見いだし、更に検討した結果、本発明を完成する
に至った。
Means for Solving the Problems In view of the above-mentioned problems, the present inventors conducted intensive studies and found that HCFC-123 or/and H
When producing rigid polyurethane foam using CFC-14lb, by combining a specific polyol and incyanate, it has a fine cell structure with excellent heat insulation properties, and has excellent low-temperature dimensional stability and compressive strength. We have discovered a method for manufacturing rigid polyurethane foam with excellent 7 ohm physical properties, and as a result of further study, we have completed the present invention.

すなわち、本発明は、ポリメチレンポリフェニルイソシ
アネートとモノオールとのプレポリマーヲ、ポリオール
とトリクロロモノフルオロメタンの代替物、触媒および
整泡剤の存在下で反応させることを特徴とする硬質ポリ
ウレタンフォームの製造法に関する。
That is, the present invention provides a method for producing a rigid polyurethane foam, characterized in that a prepolymer of polymethylene polyphenylisocyanate and a monool is reacted in the presence of a polyol and a substitute for trichloromonofluoromethane, a catalyst, and a foam stabilizer. Regarding.

本発明に用いられる有機ポリイソシアネートとしては、
ポリメチレンポリフェニルイソシアネート(以下、c−
MDIという)とモノオールの単独。
The organic polyisocyanate used in the present invention includes:
Polymethylene polyphenylisocyanate (hereinafter referred to as c-
MDI) and monool alone.

または2種以上とを反応して得られたプレポリマーが用
いられ、更に必要に応じてトリレンジイソシアネート(
以下、TDIという)とポリオールとのプレポリマーも
併用できる。
Alternatively, a prepolymer obtained by reacting two or more types is used, and if necessary, tolylene diisocyanate (
A prepolymer of TDI (hereinafter referred to as TDI) and a polyol can also be used in combination.

本発明におけるモノオールとしては、たとえばメタノー
ル、エタノール、プロパツール、n−ブタノール、ペン
タノール、ヘキサノール、ヘプタツール、オクタツール
、フェニルアルコール等のアルコール類、エチレングリ
コールモノメチルエーテル、ジエチレングリコールモノ
ブチルエーテル、トリエチレングリコールモノメチルエ
ーテル。
Examples of monools used in the present invention include alcohols such as methanol, ethanol, propatool, n-butanol, pentanol, hexanol, heptatool, octatool, and phenyl alcohol, ethylene glycol monomethyl ether, diethylene glycol monobutyl ether, and triethylene glycol. Monomethyl ether.

エチレングリコールモノエチルエーテル、ジエチレング
リコールモノエチルエーテル、エチレングリコールドテ
シルエーテル、エチレングリコールモノアリルエーテル
、エチレングリコールモノベンジルエーテル、エチレン
グリコールモノ−n−ブチルエーテル、エチレングリコ
ールモノ−β−クロロエチルエーテル、エチレングリコ
ールモノn−ヘキシルエーテル、エチレングリコールモ
ノイソプロピルエーテル、エチレングリコールモノエチ
ルエーテル、ジエチレングリコールドテシルエーテル、
ジエチレングリコールモノブチルエーテル、ジエチレン
グリコールモノ−β−クロロエチルエーテル、ジエチレ
ングリコールモノクロロヒドリン、ジエチレングリコー
ル七ノーn−ヘキシルエーテル、 ジエチレングリコー
ルモノイソブチルエーテル、トリエチレングリコールド
デシルエーテル、トリエチレングリコールモノーn−ブ
チルエーテル、トリエチレングリコールモノクロロヒド
リンなどのグリコールモノアルキルエーテル類、または
上記モノオールにエチレンオキシド、プロピレンオキシ
ド、ブチレンオキシド等のアルキレンオキシドを付加し
たモノオールが使用できる。上記プレポリマーのアミン
当量は140〜300であり、特にアミン当量150以
上のものを使用するのが望ましい。
Ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, ethylene glycol tesyl ether, ethylene glycol monoallyl ether, ethylene glycol monobenzyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol mono-β-chloroethyl ether, ethylene glycol mono n-hexyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monoethyl ether, diethylene glycol tethyl ether,
Diethylene glycol monobutyl ether, diethylene glycol mono-β-chloroethyl ether, diethylene glycol monochlorohydrin, diethylene glycol 7-n-hexyl ether, diethylene glycol monoisobutyl ether, triethylene glycol decyl ether, triethylene glycol mono-n-butyl ether, triethylene glycol monochlorohydrin Glycol monoalkyl ethers such as dorine, or monools obtained by adding alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide to the above monools can be used. The above prepolymer has an amine equivalent of 140 to 300, and it is particularly desirable to use one with an amine equivalent of 150 or more.

本発明に使用されるポリオールとしては通常の硬質ポリ
ウレタンフォームの製造に使用される、官能基数2〜8
.水酸基価300〜1000m100O/gのポリエー
テルポリオール、官能基数2〜4、水酸基価200〜5
00 mg KOH/gのポリエステルポリオールおよ
び反応性のメチロール基を有するフェノールレジン等が
用いられる。これらのポリオール類の内で特に好ましい
ものとしては、オルトトリレンジアミン、メタトリレン
ジアミン。
The polyol used in the present invention is a polyol having a functional group number of 2 to 8, which is used in the production of ordinary rigid polyurethane foam.
.. Polyether polyol with hydroxyl value 300-1000m100O/g, number of functional groups 2-4, hydroxyl value 200-5
A polyester polyol of 00 mg KOH/g and a phenol resin having a reactive methylol group are used. Particularly preferred among these polyols are orthotolylene diamine and metatolylene diamine.

4.4′−ジアミノジフェニルメタンなどの芳香族ジア
ミン類を開始剤としてアルキレンオキシド、たとえばに
エチレンオキシド、プロピレンオキシド、ブチレンオキ
シド等の単独または2種以上を重合して得られる水酸基
価が300〜700mgKOH/gのポリエーテルポリ
オール、メチルグルコシドを開始剤としてアルキレンオ
キシド、たとえばエチレンオキシド、プロピレンオキシ
ド、ブチレンオキシド等の単独または2種以上を重合し
て得られる水酸基価300〜700 mg KOH/g
のポリエーテルポリオール、トリメチロールプロパンを
開始剤としてアルキレンオキシド、たとえば!チレンオ
キシド、プロピレンオキシド、ブチレンオキシド等の単
独または2種以上を重合して得られる水酸基価が450
〜1000mg KOH/gのポリエーテルポリオール
、およびメチロール基を有するフェノールレジン化合物
であり、更に他の公知のポリオールを併用することもで
きる。
4. Polymerization of alkylene oxides, such as ethylene oxide, propylene oxide, butylene oxide, etc. alone or in combination, using aromatic diamines such as 4'-diaminodiphenylmethane as an initiator, resulting in a hydroxyl value of 300 to 700 mgKOH/g. Polyether polyol, hydroxyl value 300-700 mg KOH/g obtained by polymerizing alkylene oxide, such as ethylene oxide, propylene oxide, butylene oxide, alone or in combination, using methyl glucoside as an initiator.
Of polyether polyols, trimethylolpropane as an initiator alkylene oxide, for example! The hydroxyl value obtained by polymerizing tyrene oxide, propylene oxide, butylene oxide, etc. alone or in combination of two or more of them is 450.
It is a polyether polyol of ~1000 mg KOH/g and a phenol resin compound having a methylol group, and other known polyols can also be used in combination.

本発明における発泡剤は、R−11の代替物として用い
られるもの、たとえばHCFC−123゜HCFC−1
4lb、  ドデカフルオロペンタン等であり、特にH
CFC−123,HCFC−141bが好ましい。その
使用量は該ポリウレタンフォームの密度が15 kg/
m’以上で、かつ用途目的に応じて調整された量であり
、通常ポリオール100重量部に対して5〜150重量
部である。本発明では発泡剤と架橋剤の両機能をもつ水
や他の公知の発泡剤を併用することもできる。
The blowing agent in the present invention is one used as a substitute for R-11, such as HCFC-123゜HCFC-1
4lb, dodecafluoropentane, etc., especially H
CFC-123 and HCFC-141b are preferred. The amount used is that the density of the polyurethane foam is 15 kg/
The amount is not less than m' and is adjusted depending on the purpose of use, and is usually 5 to 150 parts by weight based on 100 parts by weight of the polyol. In the present invention, water and other known blowing agents that function as both a blowing agent and a crosslinking agent can also be used together.

本発明に使用される触媒の代表的なものを例示すると、
たとえばジメチルエタノールアミン、トリエチレンジア
ミン、テトラメチルエチレンジアミン、テトラメチルプ
ロパンジアミン、テトラメチルへキサメチレンジアミン
、ジメチルシクロヘキシルアミンなどの三級アミン類、
例えばスタナスオクトエート、ジブチルチンジラウレー
ト、オクチル酸鉛等の有機金属化合物などをあげること
ができる。また、必要に応じてプロパンジアミン。
Typical examples of catalysts used in the present invention are:
For example, tertiary amines such as dimethylethanolamine, triethylenediamine, tetramethylethylenediamine, tetramethylpropanediamine, tetramethylhexamethylenediamine, dimethylcyclohexylamine,
Examples include organometallic compounds such as stannath octoate, dibutyltin dilaurate, and lead octylate. Also, propanediamine if necessary.

ヘキサメチレンジアミンなどの一級アミンも併用できる
。触媒は、通常ポリオール100重量部に対して0.1
−10重量部程度用いられる。
Primary amines such as hexamethylene diamine can also be used in combination. The catalyst is usually 0.1 parts by weight per 100 parts by weight of polyol.
-10 parts by weight are used.

また整泡剤としては、各種のジメチルシロキサン・ポリ
アルキレンオキシドブロック共重合体(シリコン系整泡
剤)を使うことができる。整泡剤は通常ポリオール10
0重量部に対して0.2〜10重量部程度用いられる。
Further, as the foam stabilizer, various dimethylsiloxane/polyalkylene oxide block copolymers (silicon-based foam stabilizers) can be used. Foam stabilizer is usually polyol 10
About 0.2 to 10 parts by weight is used relative to 0 parts by weight.

前述の原料から硬質ポリウレタンフォームを製造する具
体的な手段としては、原料を均一に混合できる装置であ
ればいかなるものでも良いが、例えば実験用小型ミキサ
ーや発泡機などを用いて該原料を均一に混合することに
よって硬質ポリウレタンフォームが容易に得られる。
As a specific means for manufacturing rigid polyurethane foam from the above-mentioned raw materials, any device that can mix the raw materials uniformly may be used, but for example, it is possible to use a small experimental mixer, a foaming machine, etc. to uniformly mix the raw materials. Rigid polyurethane foam can be easily obtained by mixing.

発明の効果 本発明で得られる硬質ポリウレタンフォームは熱伝導率
が極めて小さく、例えば23℃では120〜130 X
 I O−’ kcal/mh’oである。従来のR−
11を使用して得られた硬質ポリウレタンフォームの熱
伝導率は135〜160XlO−’kcal/mh℃程
度であり、R−11の代替物、たとえばHCFC−12
3,141b等を使用した硬質ポリウレタンフォームで
は更に悪化し、140〜165 X I O−’ kc
al/mh’c程度であるので2割近くモ小さい。この
ことは、たとえば従来の硬質ポリウレタンフォームを断
熱材として用いた場合、lOCmの厚さを要したものが
8cmの断熱厚みで済むことになり極めて経済的で、た
とえば電気冷蔵庫。
Effects of the Invention The rigid polyurethane foam obtained by the present invention has an extremely low thermal conductivity, for example, 120 to 130 X at 23°C.
I O-'kcal/mh'o. Conventional R-
The thermal conductivity of the rigid polyurethane foam obtained using R-11 is on the order of 135-160 XlO-'kcal/mh°C.
Rigid polyurethane foam using 3,141b etc. is even worse, with 140 to 165 X I O-' kc
Since it is about al/mh'c, it is nearly 20% smaller. This means that, for example, when conventional rigid polyurethane foam is used as a heat insulator, what would require a thickness of 1OCm can be reduced to a heat insulating thickness of 8 cm, making it extremely economical, such as electric refrigerators.

ショウケース、プレハブ冷蔵庫、冷凍庫などの製造時に
断熱壁厚みの低減による内容積効率の向上、冷却用エネ
ルギーの削減などが可能である。さらに、c−MDIの
ポリオールとのプレポリマーに比べて、モノオールを使
用したプレポリマーであるため、同一アミン当量におい
ては格段に粘度が下がり、フオーム流動性等のプロセス
アビリティ−に優れ、かつ、驚くべきことに低密度での
低温寸法安定性に優れていることが明らかとなった。
When manufacturing showcases, prefabricated refrigerators, freezers, etc., it is possible to improve internal volume efficiency and reduce cooling energy by reducing the thickness of insulation walls. Furthermore, compared to a prepolymer with c-MDI polyol, since it is a prepolymer using a monool, the viscosity is significantly lower for the same amine equivalent, and it has excellent processability such as foam fluidity. Surprisingly, it has been revealed that it has excellent low-temperature dimensional stability at low density.

衷真男 以下、比較例ならびに実施例をあげて、本発明を更に具
体的に説明する。
Hereinafter, the present invention will be explained in more detail with reference to comparative examples and examples.

実施例において使用した原料は次の通りである。The raw materials used in the examples are as follows.

ポリオールA:水酸基価500 mg KOH/gのト
リレンジアミン/エチレンジアミン系ポリエーテルボリ
オール ボリオールB:水酸基価550 mg KOH/gのメ
チルグルコシド系ポリエーテルポリオールポリオールC
:水酸基価880 mg KOH/gのトリメチロール
プロパン系ポリエーテルポリオール 整泡剤A:シリコン系整泡剤;信越化学工業(株)製F
−373 触媒A:テトラメチルへキサメチレンジアミン発泡剤A
IR−11 発泡剤B:HCFC−123 発泡剤C: HCFC−14lb 発泡剤Dり水 ポリイソシアネートA:c−MDI(アミン当量136
) ポリイソシアネートB:c−MDIとポリオールとのプ
レポリマー(アミン当量163)およびTDIとポリオ
ールとのプレポリマー(アミン当量145)の等量混合
物 ポリイソシアネートC:c−MDIとジエチレングリコ
ール七ツメチルエーテルとのプレポリマー(アミン当量
150)およびTDIとポリオールとのプレポリマー(
アミン当量145)の等量混合物 ポリイソシアネートD:c−MDIとジエチレングリコ
ール七ツメチルエーテルとのプレポリマー(アミン当量
200)およびTDIとポリオールとのプレポリマー(
アミン当量145)の等量混合物 ポリイソシアネートEtc−MDIとn−ヘプタツール
とのプレポリマー(アミン当量150)およびTDIと
ポリオールとのプレポリマー(アミン当量145)の等
量混合物 第1表および第2表に示される発泡処方に従って、これ
らの原料を20士ピCにした後、5秒間高速混合撹拌し
て反応させた。発泡した硬質ポリウレタンフォームは常
法に従い翌日裁断、サンプリングして諸物性を測定し、
その結果を第1表および第2表に示した。なお、熱伝導
率はANACON社モデル88測定機によって、平均温
度23℃で測定した値であり、圧縮強度は発泡方向に対
し直角方向のlO%圧縮時におけるもので、低温寸法安
定性は一30℃で24時間冷却した後の、発泡方向に対
し直角方向の寸法変化率を測定したものである。
Polyol A: Tolylene diamine/ethylene diamine polyether polyol with a hydroxyl value of 500 mg KOH/g Polyol B: Methyl glucoside polyether polyol with a hydroxyl value of 550 mg KOH/g Polyol C
: Trimethylolpropane-based polyether polyol with a hydroxyl value of 880 mg KOH/g Foam stabilizer A: Silicone-based foam stabilizer; F manufactured by Shin-Etsu Chemical Co., Ltd.
-373 Catalyst A: Tetramethylhexamethylenediamine Blowing Agent A
IR-11 Blowing agent B: HCFC-123 Blowing agent C: HCFC-14lb Blowing agent D Water polyisocyanate A: c-MDI (amine equivalent 136
) Polyisocyanate B: A mixture of equal amounts of a prepolymer of c-MDI and polyol (amine equivalent weight 163) and a prepolymer of TDI and polyol (amine equivalent weight 145) Polyisocyanate C: A mixture of c-MDI and diethylene glycol 7-methyl ether Prepolymer (amine equivalent weight 150) and prepolymer of TDI and polyol (
Polyisocyanate D: A prepolymer of c-MDI and diethylene glycol 7-methyl ether (amine equivalent weight 200) and a prepolymer of TDI and polyol (amine equivalent weight 145).
Tables 1 and 2 In accordance with the foaming recipe shown in the table, these raw materials were brought to a temperature of 20 μC and then reacted by high-speed mixing and stirring for 5 seconds. The expanded rigid polyurethane foam was cut and sampled the next day according to conventional methods, and various physical properties were measured.
The results are shown in Tables 1 and 2. The thermal conductivity is a value measured using an ANACON model 88 measuring device at an average temperature of 23°C, the compressive strength is when compressed by 10% in the direction perpendicular to the foaming direction, and the low-temperature dimensional stability is -30%. The dimensional change rate in the direction perpendicular to the foaming direction was measured after cooling at ℃ for 24 hours.

比較例1および12はR−11を発泡剤として用いたも
ので、微細セル構造を有し、断熱特性に優れた、いわゆ
るマイクロセル処方と呼ばれるものであり、非常に低い
熱伝導率を示している。しかし、これらの処方も比較例
2および13から明らかなように、発泡剤を増やして密
度をある程度小さくすると、圧縮強度、特に低温寸法安
定性が著しく悪化し熱伝導率も若干悪くなる。これらの
処方に、比較例3および14で示すように発泡剤として
水を加えると、圧縮強度および低温寸法安定性は低密度
ながら改善されるが、今度は熱伝導率が極端に悪化して
しまう。このことはHCFC−123を用いた場合(比
較例4,15と比較例5.16)もHCFC−14]b
を用いた場合(比較例6.17と比較例7.18)も同
じことがいえる。そして、比較例8,19、比較例9,
20または比較例10.21に示したように、ポリイソ
シアネートをc−MDIからc−MDIとポリオ−ルと
のプレポリマーおよびTDIとポリオールとのプレポリ
マーの等量混合物に代え、アミン系または/およびメチ
ルグルコシド系ポリエーテルポリオールにトリメチロー
ルプロパン系ポリエーテルポリオールを混ぜることによ
って、熱伝導率。
Comparative Examples 1 and 12 used R-11 as a foaming agent, and had a microcell structure and excellent heat insulation properties, so-called microcell formulations, and exhibited very low thermal conductivity. There is. However, as is clear from Comparative Examples 2 and 13, in these formulations, when the blowing agent is increased and the density is reduced to a certain extent, the compressive strength, especially the low temperature dimensional stability, deteriorates significantly and the thermal conductivity also slightly deteriorates. When water is added as a blowing agent to these formulations as shown in Comparative Examples 3 and 14, the compressive strength and low-temperature dimensional stability are improved at a lower density, but the thermal conductivity is now extremely deteriorated. . This also applies when using HCFC-123 (Comparative Examples 4 and 15 and Comparative Example 5.16).
The same can be said when using (Comparative Example 6.17 and Comparative Example 7.18). And Comparative Examples 8, 19, Comparative Example 9,
20 or Comparative Example 10.21, the polyisocyanate was replaced with an equal mixture of c-MDI and a prepolymer of c-MDI and a polyol and a prepolymer of TDI and a polyol, and an amine-based or/ and thermal conductivity by mixing trimethylolpropane polyether polyol with methyl glucoside polyether polyol.

圧縮強度、および低温寸法安定性はマイクロセル処方(
比較例1.12)に匹敵する優れた値を示している。
Compressive strength and low-temperature dimensional stability were determined by microcell formulation (
It shows an excellent value comparable to Comparative Example 1.12).

また、R−11の代替物を用いた場合にポリイソシアネ
ートをc−MDIとn−ヘプタツールとのプレポリマー
(アミン当量150)およびTDIとポリオールとのプ
レポリマー(アミン当量 145)の等量混合物にする
と(実施例5.10)、圧縮強度は低下するものの低温
寸法安定性と熱伝導率を保ったまま低密度化できること
が分かる。さらに、ポリイソシアネートをc−MDIと
ジエチレングリコール七ツメチルエーテルとのプレポリ
マー(アミン当量150)およびTDIとポリオールと
のプレポリマー(アミン当量145)の等量混合物にす
ると(実施例1〜3.6〜8)、マイクロセル処方(比
較例1 12)とほとんど同様の硬質ポリウレタンフォ
ームを発泡することができる。
In addition, when a substitute for R-11 is used, the polyisocyanate is a mixture of equal amounts of a prepolymer of c-MDI and n-heptatool (amine equivalent weight 150) and a prepolymer of TDI and polyol (amine equivalent weight 145). (Example 5.10), it can be seen that although the compressive strength decreases, the density can be reduced while maintaining low-temperature dimensional stability and thermal conductivity. Furthermore, when the polyisocyanate is made into a mixture of equal amounts of a prepolymer of c-MDI and diethylene glycol 7-methyl ether (amine equivalent weight 150) and a prepolymer of TDI and polyol (amine equivalent weight 145) (Examples 1 to 3.6 to 8), a rigid polyurethane foam almost similar to the microcell formulation (Comparative Example 1 12) can be foamed.

同様の処方で、c−MDIとジエチレングリコール七ツ
メチルエーテルとのプレポリマーのアミン当量を上げた
場合は(実施例4,9)、圧縮強度。
In the same formulation, when the amine equivalent of the prepolymer of c-MDI and diethylene glycol 7-methyl ether was increased (Examples 4 and 9), the compressive strength was increased.

低温寸法安定性が若干悪化するが熱伝導率を幾らか下げ
ることができる。しかしながら、発泡剤としてR−11
を用いた場合に上記のポリイソシアネートを使用すると
、得られたフオームはもろく、接着力も弱いため実用に
供することはできない(比較例11)。
Thermal conductivity can be lowered to some extent, although low-temperature dimensional stability is slightly deteriorated. However, R-11 as a blowing agent
When the above-mentioned polyisocyanate is used, the obtained foam is brittle and the adhesive strength is weak, so that it cannot be put to practical use (Comparative Example 11).

(以下余白)(Margin below)

Claims (1)

【特許請求の範囲】[Claims] ポリメチレンポリフェニルイソシアネートとモノオール
とのプレポリマーを、ポリオールとトリクロロモノフル
オロメタンの代替物、触媒および整泡剤の存在下で反応
させることを特徴とする硬質ポリウレタンフォームの製
造法。
A method for producing a rigid polyurethane foam, characterized in that a prepolymer of polymethylene polyphenylisocyanate and a monool is reacted in the presence of a polyol and a substitute for trichloromonofluoromethane, a catalyst, and a foam stabilizer.
JP2057796A 1990-03-08 1990-03-08 Preparation of rigid polyurethane foam Pending JPH03258822A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2057796A JPH03258822A (en) 1990-03-08 1990-03-08 Preparation of rigid polyurethane foam
KR1019910003650A KR100188473B1 (en) 1990-03-08 1991-03-07 Method of preparation of polyurethane foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2057796A JPH03258822A (en) 1990-03-08 1990-03-08 Preparation of rigid polyurethane foam

Publications (1)

Publication Number Publication Date
JPH03258822A true JPH03258822A (en) 1991-11-19

Family

ID=13065859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2057796A Pending JPH03258822A (en) 1990-03-08 1990-03-08 Preparation of rigid polyurethane foam

Country Status (2)

Country Link
JP (1) JPH03258822A (en)
KR (1) KR100188473B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007584A1 (en) * 2002-07-16 2004-01-22 Daikin Industries, Ltd. Blowing agent having low vapor pressure, premix, and process for producing foam
JP2008260841A (en) * 2007-04-12 2008-10-30 Nippon Polyurethane Ind Co Ltd Polyisocyanate composition for producing rigid polyurethane foam having closed cells, and method for producing rigid polyurethane foam having closed cells by using the composition
JP2008260836A (en) * 2007-04-12 2008-10-30 Nippon Polyurethane Ind Co Ltd Method for producing rigid polyurethane foam having closed cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007584A1 (en) * 2002-07-16 2004-01-22 Daikin Industries, Ltd. Blowing agent having low vapor pressure, premix, and process for producing foam
JP2008260841A (en) * 2007-04-12 2008-10-30 Nippon Polyurethane Ind Co Ltd Polyisocyanate composition for producing rigid polyurethane foam having closed cells, and method for producing rigid polyurethane foam having closed cells by using the composition
JP2008260836A (en) * 2007-04-12 2008-10-30 Nippon Polyurethane Ind Co Ltd Method for producing rigid polyurethane foam having closed cells

Also Published As

Publication number Publication date
KR100188473B1 (en) 1999-06-01
KR910016797A (en) 1991-11-05

Similar Documents

Publication Publication Date Title
US7750058B2 (en) Process for preparing closed-cell water-blown rigid polyurethane foams having improved mechanical properties
CA2245291A1 (en) Thermally stable rigid foams based on isocyanate and having low brittleness and low thermal conductivity
JP3700499B2 (en) refrigerator
EP0409599A2 (en) Polyol, polyurethane resin and utilization thereof
JP2004517181A (en) Method for producing polyurethane integral skin foams
JPH07110097A (en) Heat insulation material
JPH03258822A (en) Preparation of rigid polyurethane foam
JP3041011B2 (en) Manufacturing method of rigid polyurethane foam
JPH03258823A (en) Preparation of rigid polyurethane foam
JP3553470B2 (en) Rigid polyurethane foam and method for producing the same
CA2410367A1 (en) Isotropic rigid foams
KR100188474B1 (en) Method of preparation of hardening polyurethane foam
CA2490242C (en) Polyol compositions useful for preparing dimensionally stable, low density water-blown rigid foams and the processes related thereto
JP3453731B2 (en) Method for producing open-celled rigid polyurethane foam
EP0609320A1 (en) Polyisocyanate compositions and rigid polyurethane foam therefrom
US20010014703A1 (en) Process for rigid polyurethane foams
JPH04279619A (en) Production of rigid polyurethane foam composite material
JPH0797429A (en) New polyol composition and production of rigid polyurethane foam by using same
JP3608363B2 (en) Polyol composition for thin panel and method for producing polyurethane foam for thin panel
JP3306782B2 (en) Open cell rigid polyurethane foam, its production and use
JPH04103613A (en) Method for preparing rigid polyurethane foam and its product
JPH03195718A (en) Production of rigid urethane foam
JPH03231915A (en) Polyol composition and use thereof
JPH07165864A (en) Composition for polyurethane foam
JPH07165861A (en) Composition for polyurethane foam