JPH0325848B2 - - Google Patents

Info

Publication number
JPH0325848B2
JPH0325848B2 JP56071750A JP7175081A JPH0325848B2 JP H0325848 B2 JPH0325848 B2 JP H0325848B2 JP 56071750 A JP56071750 A JP 56071750A JP 7175081 A JP7175081 A JP 7175081A JP H0325848 B2 JPH0325848 B2 JP H0325848B2
Authority
JP
Japan
Prior art keywords
thin film
film
coupling agent
silane coupling
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56071750A
Other languages
Japanese (ja)
Other versions
JPS57186230A (en
Inventor
Kunio Hibino
Takashi Fujita
Masatoshi Takao
Mikio Murai
Takashi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56071750A priority Critical patent/JPS57186230A/en
Publication of JPS57186230A publication Critical patent/JPS57186230A/en
Publication of JPH0325848B2 publication Critical patent/JPH0325848B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent

Landscapes

  • Magnetic Record Carriers (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金属薄膜型磁気記録媒体の磁性層表面
の改質を行ない、耐食性、走行性の向上を目ざし
たものである。 一般に真空蒸着またはメツキ法で作成した薄膜
型磁気記録媒体は高密度性に優れているといわれ
ている。特に近年はオーデイオ録音用やビデオ録
画テープ用しての用途が期待されており、小型録
音テープ用として、プラスチツク基板上に真空蒸
着によつて、コバルト主成分合金の薄膜を形成し
たものは、実用化の域に入り、市販されるように
なつた。しかし、一般的に強磁性金属は腐食し易
く、これを避けるために磁性体自体の合金化の方
法や、磁性層上に高分子化合物の皮膜を形成する
などの方法が採用されている。しかし、これらの
方法においては、磁性層の合金化の場合、磁気特
性の観点からは耐食性の良い合金が必ずしも良い
特性とは言えないのが普通である。また、磁性層
表面に耐食性のある皮膜を形成する事は、効果は
あるが、電磁変換特性の観点からは、あまり皮膜
層の膜厚が大きすぎるのは好ましいとは言えな
い。皮膜層の厚みの許され得る範囲は高々500Å
であり、望ましくは200Å程度である。この程度
の膜厚を持ち、耐食性のある皮膜を安定にしかも
量産性良く形成するのは非常な困難を伴う。また
皮膜が形成されたとしても、この程度の厚みでは
完全に水分の侵入を妨げることは困難である。 本発明では、従来の困難さを避ける目的で、シ
ランカツプリング剤の溶液を塗布した後、乾燥さ
せることによつて、十分な耐食性を得るものであ
る。 以下本発明について説明する。 真空蒸着法、スパツタリング法、電気メツキ法
などで作成した、コバルトなどの強磁性金属より
成る磁気記録用薄膜媒体上にシランカツプリング
剤の溶液を塗布する。シランカツプリング剤とし
ては、反応基としてメトキシ基またはエトキシ基
などのアルコキシ基をもち、かつ長鎖のアルキル
基をもつものを用いる。ClまたはBrなどのハロ
ゲン原子の場合には、加水分解後、腐蝕性化合物
が発生するため、耐蝕性に悪影響を及ぼす。アル
キル基は、生成した皮膜の撥水性、滑性、溶解性
の観点から炭素数8から22のものが有用である。
炭素数8以下のアルキル基では、撥水性、滑性が
不十分であり、炭素数22以上のものは溶解の点か
ら不適当である。シランカツプリング剤はエタノ
ールを溶媒にして容量%で0.001%から10%を溶
かして、浸漬法、ハケ塗り法、スプレー法などに
よつて磁性薄膜上に塗布し、熱風乾燥機によつて
乾燥した。溶媒としては、他にメタノール、イソ
プロピルアルコールなどのアルコールを用いるこ
とができる。 シランカツプリング剤の濃度は出来るだけ、う
すい方が生成する膜がうすく、電磁変換特性の観
点から望ましい。しかしながら、濃度がうすすぎ
る場合には、金属薄膜上に均一に皮膜を形成する
こと、出来ず、金属薄膜がそのまま露出して、十
分な耐食性が得られない。以上の観点から、シラ
ンカツプリング剤の濃度は10%から0.001%が用
いられ、望ましくは1%から0.01%が適当であ
る。 シランカツプリング剤は、金属薄膜上の水分と
反応して加水分解し、薄膜上には、疎水性を示す
長鎖のアルキル基が整列した膜が出来る。その結
果、錆の原因となる水分が減少するだけでなく、
水に対する接触角も増大し、錆の原因となる水の
浸入を防ぎ、耐食性が向上する。 また、長鎖のアルキル基は、良好な滑性作用を
持つていることから、走行性も改善される。 なお後述の実施例では強磁性金属薄膜として
Co−Ni膜を用いているが、Co膜、Co−Cr膜、
Co−Ni−Cr膜、Co−Fe膜等においても類似の効
果が得られた。 次に具体的に実施例の説明を行う。 実施例 1 ポリエステルフイルム上に真空蒸着法で作成し
たコバルト(80%)、ニツケル(20%)の強磁性
合金薄膜の磁性層に下記の組成の溶液を塗布し
た。 シランカツプリング剤(トリエトキシステアリル
シラン:C18H37Si(OC2H53) 1ml エチルアルコール 100ml 塗布後、60℃で約15分間乾燥した。処理したも
のは、処理前に比較して、磁性層の撥水性が改善
された。また鏡面仕上げしたSUS304のブロツク
上で10gの荷重下での摩擦抵抗を測定したとこ
ろ、処理前に比較して、約4分の3に低下してい
た。 第1表に、接触角と環境試験結果を示す。
The present invention aims at improving the corrosion resistance and runnability by modifying the surface of the magnetic layer of a metal thin film magnetic recording medium. In general, thin film magnetic recording media made by vacuum deposition or plating are said to have excellent high density properties. Particularly in recent years, applications have been expected for audio recording and video recording tapes, and thin films of cobalt-based alloys formed by vacuum deposition on plastic substrates have been put into practical use for small recording tapes. It has become commercially available. However, ferromagnetic metals are generally prone to corrosion, and in order to avoid this corrosion, methods such as alloying the magnetic material itself or forming a film of a polymer compound on the magnetic layer are employed. However, in these methods, when alloying the magnetic layer, it is common that alloys with good corrosion resistance do not necessarily have good properties from the viewpoint of magnetic properties. Furthermore, although it is effective to form a corrosion-resistant film on the surface of the magnetic layer, it is not desirable for the film thickness to be too large from the viewpoint of electromagnetic conversion characteristics. The permissible range of film layer thickness is at most 500Å.
The thickness is preferably about 200 Å. It is extremely difficult to stably form a corrosion-resistant film with such a thickness and with good mass production. Further, even if a film is formed, it is difficult to completely prevent moisture from entering with such a thickness. In the present invention, in order to avoid the conventional difficulties, sufficient corrosion resistance is obtained by applying a solution of a silane coupling agent and then drying it. The present invention will be explained below. A solution of a silane coupling agent is applied onto a magnetic recording thin film medium made of a ferromagnetic metal such as cobalt and made by vacuum evaporation, sputtering, electroplating, or the like. As the silane coupling agent, one having an alkoxy group such as a methoxy group or an ethoxy group as a reactive group and a long-chain alkyl group is used. In the case of halogen atoms such as Cl or Br, corrosive compounds are generated after hydrolysis, which adversely affects corrosion resistance. As the alkyl group, those having 8 to 22 carbon atoms are useful from the viewpoint of water repellency, lubricity, and solubility of the formed film.
Alkyl groups having 8 or fewer carbon atoms have insufficient water repellency and lubricity, while those having 22 or more carbon atoms are unsuitable from the viewpoint of dissolution. The silane coupling agent was dissolved in 0.001% to 10% by volume using ethanol as a solvent, applied to the magnetic thin film by dipping, brushing, spraying, etc., and dried in a hot air dryer. . Other solvents that can be used include alcohols such as methanol and isopropyl alcohol. The thinner the concentration of the silane coupling agent is, the thinner the film produced is, which is desirable from the viewpoint of electromagnetic conversion characteristics. However, if the concentration is too low, it will not be possible to form a uniform film on the metal thin film, and the metal thin film will be exposed as it is, making it impossible to obtain sufficient corrosion resistance. From the above viewpoint, the concentration of the silane coupling agent used is 10% to 0.001%, preferably 1% to 0.01%. The silane coupling agent reacts with the water on the metal thin film and is hydrolyzed, forming a film on the thin film in which long-chain alkyl groups exhibiting hydrophobicity are aligned. As a result, not only does moisture, which causes rust, decrease, but
The contact angle with water also increases, preventing the intrusion of water that causes rust, and improving corrosion resistance. Furthermore, since the long-chain alkyl group has a good lubricating effect, running properties are also improved. In the examples described later, as a ferromagnetic metal thin film.
Co-Ni film is used, but Co film, Co-Cr film,
Similar effects were obtained with Co-Ni-Cr films, Co-Fe films, etc. Next, examples will be specifically explained. Example 1 A solution having the following composition was applied to a magnetic layer of a ferromagnetic alloy thin film of cobalt (80%) and nickel (20%) prepared by vacuum evaporation on a polyester film. Silane coupling agent (triethoxystearylsilane: C 18 H 37 Si (OC 2 H 5 ) 3 ) 1 ml ethyl alcohol 100 ml After coating, it was dried at 60° C. for about 15 minutes. The treated magnetic layer had improved water repellency compared to before treatment. Furthermore, when the frictional resistance was measured under a load of 10g on a mirror-finished SUS304 block, it was found to have decreased to about three-fourths of that before treatment. Table 1 shows the contact angle and environmental test results.

【表】 この効果はCo100%又はCoに比してNiの量が
5%〜35%又はCoにSi、W、V、Cr等を添加し
たものの磁性層に於ても同一であつた。又、製造
条件による差も少く、メツキ、スパツタ膜でも効
果を発揮することを確認している。 なお上記のことは後出の実施例2、3において
も同様であつた。 実施例 2 ポリエステルフイルム上に真空蒸着法で作成し
たコバルト(80%)、ニツケル(20%)の強磁性
合金薄膜の磁性層に下記の組成の溶液を塗布し
た。 シランカツプリング剤(トリメトキシカプリルシ
ラン;C8H17Si(OCH33) 1ml エチルアルコール 100ml 処理後、60℃で約15分間乾燥した。処理したも
のは、処理前に比較して、磁性層の撥水性が改善
された。また鏡面仕上げしたSUS304のブロツク
上で10gの荷重下での摩擦抵抗を測定したとこ
ろ、処理前に比較して、約5分の4に低下してい
た。 第2表に接触角と環境試験結果を示す。
[Table] This effect was the same in magnetic layers containing 100% Co, 5% to 35% Ni compared to Co, or those in which Si, W, V, Cr, etc. were added to Co. Furthermore, it has been confirmed that there is little difference depending on the manufacturing conditions, and that it is effective even with plating and sputtering films. The above also applies to Examples 2 and 3, which will be described later. Example 2 A solution having the following composition was applied to the magnetic layer of a ferromagnetic alloy thin film of cobalt (80%) and nickel (20%) prepared by vacuum evaporation on a polyester film. Silane coupling agent (trimethoxycaprylic silane; C 8 H 17 Si (OCH 3 ) 3 ) 1 ml Ethyl alcohol 100 ml After the treatment, it was dried at 60° C. for about 15 minutes. The treated magnetic layer had improved water repellency compared to before treatment. Furthermore, when the frictional resistance was measured under a load of 10g on a mirror-finished SUS304 block, it was found to have decreased to about four-fifths compared to before treatment. Table 2 shows the contact angle and environmental test results.

【表】 実施例 3 ポリエステルフイルム上に真空蒸着法で作成し
たコバルト(80%)、ニツケル(20%)の強磁性
合金薄膜の磁性層に下記の組成の溶液を塗布し
た。 シランカツプリング剤(トリエトキシベヘニツク
シラン;C22H45Si(OC2H53) 1ml エタノール 100ml 塗布後、60℃で約15分間乾燥した。処理したも
のは、処理前に比較して、磁性層の撥水性が改善
された。また鏡面仕上げしたSUS304のブロツク
上で10gの荷重下での摩擦抵抗を測定したところ
処理前に比較して約3分の2に低下していた。第
3表に接触角の測定結果と環境試験の結果を示
す。
[Table] Example 3 A solution having the following composition was applied to the magnetic layer of a ferromagnetic alloy thin film of cobalt (80%) and nickel (20%) prepared by vacuum evaporation on a polyester film. Silane coupling agent (triethoxybehenicsilane; C 22 H 45 Si (OC 2 H 5 ) 3 ) 1 ml ethanol 100 ml After coating, it was dried at 60° C. for about 15 minutes. The treated magnetic layer had improved water repellency compared to before treatment. Furthermore, when the frictional resistance was measured under a load of 10g on a mirror-finished SUS304 block, it was found to have decreased to about two-thirds compared to before treatment. Table 3 shows the contact angle measurement results and the environmental test results.

【表】 比較例 1 実施例1と同様にして、下記の組成の溶液を塗
布し、乾燥した。 シランカツプリング剤(CH2=CHSiCl3) 1ml エチルアルコール 100ml 比較例 2 実施例1と同様にして、下記の組成の溶液を塗
布し、乾燥した。 シランカツプリング剤(H2NC3H6Si(OCH33
1ml エチルアルコール 100ml 比較例1、2で得られた試料の評価結果を以下
に示す。
[Table] Comparative Example 1 In the same manner as in Example 1, a solution having the following composition was applied and dried. Silane coupling agent (CH 2 =CHSiCl 3 ) 1 ml Ethyl alcohol 100 ml Comparative Example 2 In the same manner as in Example 1, a solution having the following composition was applied and dried. Silane coupling agent ( H2NC3H6Si ( OCH3 ) 3 )
1 ml Ethyl alcohol 100 ml The evaluation results of the samples obtained in Comparative Examples 1 and 2 are shown below.

【表】 * 処理前を1とする
本発明によると以上のように金属薄膜型磁気記
録媒体の耐食性と走向性を容易に高めることがで
きる。
[Table] * Before processing is set as 1
According to the present invention, as described above, the corrosion resistance and orientation of a metal thin film magnetic recording medium can be easily improved.

Claims (1)

【特許請求の範囲】[Claims] 1 強磁性金属薄膜より成る磁性層表面に炭素数
8から22のアルキル基とメトキシ基またはエトキ
シ基から成る反応基を有するシランカツプリング
剤の溶液を塗布し乾燥することを特徴とする金属
薄膜型磁気記録媒体の製造方法。
1. A metal thin film type characterized in that a solution of a silane coupling agent having a reactive group consisting of an alkyl group having 8 to 22 carbon atoms and a methoxy group or an ethoxy group is applied to the surface of a magnetic layer made of a ferromagnetic metal thin film and dried. A method for manufacturing a magnetic recording medium.
JP56071750A 1981-05-13 1981-05-13 Metallic thin film type magnetic recording medium and its manufacture Granted JPS57186230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56071750A JPS57186230A (en) 1981-05-13 1981-05-13 Metallic thin film type magnetic recording medium and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56071750A JPS57186230A (en) 1981-05-13 1981-05-13 Metallic thin film type magnetic recording medium and its manufacture

Publications (2)

Publication Number Publication Date
JPS57186230A JPS57186230A (en) 1982-11-16
JPH0325848B2 true JPH0325848B2 (en) 1991-04-09

Family

ID=13469514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56071750A Granted JPS57186230A (en) 1981-05-13 1981-05-13 Metallic thin film type magnetic recording medium and its manufacture

Country Status (1)

Country Link
JP (1) JPS57186230A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312873B2 (en) * 1974-04-19 1978-05-04
JPS5415704A (en) * 1977-07-05 1979-02-05 Nec Corp Magnetic recording medium
JPS54162508A (en) * 1978-06-13 1979-12-24 Nec Corp Magnetic memory medium
JPS5525822A (en) * 1978-08-08 1980-02-23 Nec Corp Magnetic memory substance
JPS5525821A (en) * 1978-08-08 1980-02-23 Nec Corp Magnetic memory substance
JPS5613761A (en) * 1979-07-16 1981-02-10 Pioneer Electronic Corp Preparation of semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312873U (en) * 1976-07-14 1978-02-02

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312873B2 (en) * 1974-04-19 1978-05-04
JPS5415704A (en) * 1977-07-05 1979-02-05 Nec Corp Magnetic recording medium
JPS54162508A (en) * 1978-06-13 1979-12-24 Nec Corp Magnetic memory medium
JPS5525822A (en) * 1978-08-08 1980-02-23 Nec Corp Magnetic memory substance
JPS5525821A (en) * 1978-08-08 1980-02-23 Nec Corp Magnetic memory substance
JPS5613761A (en) * 1979-07-16 1981-02-10 Pioneer Electronic Corp Preparation of semiconductor device

Also Published As

Publication number Publication date
JPS57186230A (en) 1982-11-16

Similar Documents

Publication Publication Date Title
JPS6069824A (en) Magnetic recording medium
JPH0325848B2 (en)
JPH0239018B2 (en)
JPS59172134A (en) Magnetic recording medium
JPS63171422A (en) Magnetic recording medium
JPH0326454B2 (en)
JPS58105431A (en) Magnetic recording medium
JPS6089817A (en) Magnetic recording medium
JPS5819737A (en) Metallic thin film magnetic recording medium and its production
JPH028366B2 (en)
JPH0219528B2 (en)
JPS59172159A (en) Magnetic recording medium
JPS60223028A (en) Magnetic recording medium
JPS58211324A (en) Magnetic recording medium
JPS6180522A (en) Magnetic recording medium
JPH026133B2 (en)
JPS63183607A (en) Magnetic recording medium
JPH02201727A (en) Lubricating material for recording medium and its production
JPS61194624A (en) Magnetic recording medium
JPH0312817A (en) Magnetic recording medium
JPS581834A (en) Magnetic recording medium
JPS59188826A (en) Magnetic recording medium
JPH0378692B2 (en)
JPS62117131A (en) Magnetic recording medium
JPH0310162B2 (en)