JPH0325797A - Storage matrix - Google Patents

Storage matrix

Info

Publication number
JPH0325797A
JPH0325797A JP1159882A JP15988289A JPH0325797A JP H0325797 A JPH0325797 A JP H0325797A JP 1159882 A JP1159882 A JP 1159882A JP 15988289 A JP15988289 A JP 15988289A JP H0325797 A JPH0325797 A JP H0325797A
Authority
JP
Japan
Prior art keywords
magnetoresistive element
storage medium
storage
magnetoresistive
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1159882A
Other languages
Japanese (ja)
Inventor
Hisao Funahara
船原 尚男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1159882A priority Critical patent/JPH0325797A/en
Publication of JPH0325797A publication Critical patent/JPH0325797A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the storage capacity by using plural write lead wires crossing to each other and plural read lead wires set in an array and forming a storage cell with a storage medium, a magneto-resistance element and a diode. CONSTITUTION:The write lead wires include lead wires 6 and 7 crossing to each other and these wires 6 and 7 are magnetically connected to a storage medium 3. When the current flows to the wires 6 and 7, a magnetic writing operation of a current coincidence type is applied to the medium 3. Each storage cell forming a storage matrix consists of the medium 3, a magneto-resistance element 1 and a diode 2. The element 1 has the magnetic resistance and has a different structure from the medium 3. At the same time, the element 1 is connected in series to the diode 2 and set between a column line 4 and a row line 5. Furthermore the element 1 is also connected magnetically to the medium 3, and all diodes 2 are set in the same direction. In such a constitution, a nonvolatile storage device of large storage capacity is obtained.

Description

【発明の詳細な説明】 本発明は不揮発性記憶装置の一部分を構成する記憶マト
リックスに関する.また、本発明は磁気的記憶媒体によ
り記憶を保持し,磁気抵抗素子によって記憶媒体に保持
された記憶を読みとる構成の記憶マトリックスに関する
. 従来の技術 半硬質磁性体に磁気書き込みを行ない、書き込まれた磁
気的記憶を磁気抵抗素子によって読み取れば不揮発性記
憶装置を構成する事ができる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a storage matrix forming part of a non-volatile storage device. The present invention also relates to a memory matrix configured to hold memory using a magnetic storage medium and read the memory held in the storage medium using a magnetoresistive element. BACKGROUND ART A nonvolatile memory device can be constructed by performing magnetic writing on a semi-hard magnetic material and reading the written magnetic memory using a magnetoresistive element.

磁気抵抗効果を磁気的記憶読み取りに応用した記憶装置
は米国特許3,160,863号、米国特許4,455
,626号などにある。
Storage devices that apply the magnetoresistive effect to magnetic memory reading are disclosed in U.S. Patent No. 3,160,863 and U.S. Patent No. 4,455.
, No. 626, etc.

記憶セルの構造が単純である事は大規模な記憶装置を実
現するのに不可欠に重要である。従来の技術に共通する
欠点は大規模な記憶容量の装置を構成するには商業的に
不適当な記憶セル構造を有する事である, たとえば.米国特許3,160,863号では記憶セル
一つにつき一つのマルチブレクサを必要とする.米国特
許4,455,626号ではマルチブレクサの数を減ら
すために、磁気抵抗素子を直列接続している.しかしな
がら、直列接続する方法は別の欠点を持ち込む. 目的 本発明の第一の目的は磁気バブル記憶装置に代わる大規
模な記憶容量を有した不揮発性記憶装置を提供する事で
ある。
The simplicity of the structure of the storage cell is essential for realizing large-scale storage devices. A common drawback of the prior art is that it has a storage cell structure that is commercially unsuitable for constructing large storage capacity devices, e.g. US Pat. No. 3,160,863 requires one multiplexer per storage cell. In US Pat. No. 4,455,626, magnetoresistive elements are connected in series to reduce the number of multiplexers. However, the series connection method introduces other drawbacks. OBJECTS The first object of the present invention is to provide a nonvolatile storage device with a large storage capacity that can replace magnetic bubble storage devices.

本発明の第二の目的はフロッピーディスク装置のような
シーケンシャル記憶装置に代り得る不揮発性の大規模な
ランダムアクセス記憶装置を提供する事である. 本発明の構成 本発明の記憶マトリックスは配列配置された記憶セルと
、記憶セノレの間を接続する読み取り導電線と,磁気書
き込みを行なうための書き込み導電練から構成されてお
り、前記記憶セルは磁気抵抗素子とダイオードおよび記
憶媒体から構成されている. 本発明の記憶マトリックスを薄膜で構成する場合には,
支持基板上に構成するのが適当である.読み取り導電輸
は交差配置された複数の導ms*からなり、接続点以外
は電気的に絶縁されている.交差配置された複数の読み
取り導電線を以下の記述では,カラム線(4)およびロ
ウ線(5)と記す.カラム線(4)はカラム方向の読み
取り導電線を意味し.ワード繰と称される事もある.ロ
ウ線(5)はロウ方向の読み取り導電絵を意味し、デジ
ット絵またはビット繰と称され,る事もある.一本のカ
ラム線(4)と一本のロウ絵(5)の間には、記憶セル
を構成する一つの磁気抵抗素子(1)と一つのダイオー
ド(2)が直列に接続されている.書き込み導電線は交
差配置された複数の導電線(6)および(7)からなり
,書き込み導電線(6)および書き込み導電&Q(7)
と記憶媒体(3)とは磁気的に結合しており,書き込み
導電繰(6)および書き込み導電線(7)に電流が流さ
れたとき記憶媒体(3)に電流一致方式の磁気書き込み
がされる.本発明の記憶マトリックスを構成する記憶セ
ルは単数または複数の記憶媒体(3)と単数または複数
の磁気抵抗素子(1)と単数または複数のダイオード(
2)から構成されている. 一つの磁気抵抗素子(1)と一つのダイオード(2)は
直列接続されている.記憶媒体と磁気抵抗素子は別構造
物または共通構造物からなる.記憶媒体と磁気抵抗素子
が別構造物からなる場合には、記憶媒体(3)と磁気抵
抗素子(1)は近接して配置され磁気的に結合している
.磁気的に結合させる最も単純な実施方法は接触させる
事である. 磁気抵抗素子(1)は磁気抵抗効果を有する導電材料か
らなる抵抗体である.抵抗値を大きくするために通常は
薄膜状に作られる. 磁気抵抗素子(1)はバイアス磁界を加える手段(8)
を付随していてもよい.また磁気抵抗素子(1)はバイ
アス磁界を加える手段を付随せず構成する事もできる. 磁気抵抗効果を有する導電材料には、半導体磁気抵抗効
果材料,強磁性磁気抵抗効果材料.非磁性磁気抵抗効果
材料がある.本発明の記憶マトリックスを構成する磁気
抵抗素子(1)は前記すべての磁気抵抗効果を有する導
電材料を材料として構成可能である. 電流一致方式の書込みでは,記+fX1と記憶Oは記憶
媒体(3)に180度方向差のある磁化方向の差として
書き込まれる。
A second object of the present invention is to provide a nonvolatile large-scale random access storage device that can replace sequential storage devices such as floppy disk drives. Structure of the Present Invention The memory matrix of the present invention is composed of arranged memory cells, read conductive wires connecting the memory cells, and write conductive wires for magnetic writing, and the memory cells are magnetically arranged. It consists of a resistive element, a diode, and a storage medium. When the memory matrix of the present invention is composed of a thin film,
It is appropriate to configure it on a support substrate. The reading conductive transport consists of a plurality of conductive ms* arranged in an intersecting manner, and is electrically insulated except for the connection points. In the following description, the plurality of reading conductive lines arranged in an intersecting manner will be referred to as column lines (4) and row lines (5). Column line (4) means a reading conductive line in the column direction. It is also called word regis- tration. The row line (5) means a conductive picture read in the row direction, and is sometimes called a digit picture or bit line. One magnetoresistive element (1) and one diode (2) constituting a memory cell are connected in series between one column line (4) and one row picture (5). The write conductive line consists of a plurality of conductive lines (6) and (7) arranged in an intersecting manner, and the write conductive line (6) and the write conductive &Q (7)
and the storage medium (3) are magnetically coupled, and when a current is passed through the write conductive line (6) and the write conductive line (7), magnetic writing is performed on the storage medium (3) using a current matching method. Ru. The storage cells constituting the storage matrix of the present invention include one or more storage media (3), one or more magnetoresistive elements (1), and one or more diodes (1).
2). One magnetoresistive element (1) and one diode (2) are connected in series. The storage medium and the magnetoresistive element may be separate structures or a common structure. When the storage medium and the magnetoresistive element are separate structures, the storage medium (3) and the magnetoresistive element (1) are placed close to each other and are magnetically coupled. The simplest way to achieve magnetic coupling is through contact. The magnetoresistive element (1) is a resistor made of a conductive material that has a magnetoresistive effect. It is usually made into a thin film to increase the resistance value. The magnetoresistive element (1) is a means (8) for applying a bias magnetic field.
may be accompanied by Moreover, the magnetoresistive element (1) can also be configured without any means for applying a bias magnetic field. Conductive materials with magnetoresistive effects include semiconductor magnetoresistive materials and ferromagnetic magnetoresistive materials. There are non-magnetic magnetoresistive materials. The magnetoresistive element (1) constituting the memory matrix of the present invention can be constructed using any of the above conductive materials having a magnetoresistive effect. In writing using the current matching method, +fX1 and O are written to the storage medium (3) as a difference in magnetization direction with a 180 degree difference in direction.

本発明の記憶マトリックスを構成する磁気抵抗素子(1
)は180度方向の異なる磁界に非対称な磁界一抵抗特
性を有する事が必要である.磁気抵抗素子(1)にバイ
アス磁界を印加する事によって.180度方向の異なる
外部磁界に非対称な磁界一抵抗特性を持たせる事ができ
る.この方法は、バイアス磁界を印加する事によって記
憶媒体(3)の磁束とバイアス磁界の合成された磁束を
等価的に非対称にする方法である.この方法は磁気抵抗
素子(1)が半導体または非磁性磁気抵抗効果材料から
構成されている場合に有効である.(イ)磁気抵抗素子
(1)は磁気抵抗効果を有する導電体よりなり、磁気抵
抗素子(1)はバイアス磁界印加手段(8)を付随し,
バイアス磁界は磁気抵抗素子(1)に流れる電流方向(
11)にたいし略45度方向に印加され,前記バイアス
磁界が加えられる方向(9)と角度εで交差する方向に
記憶媒体の磁束(10)が加えられる構成の磁気抵抗素
子を有した記憶マトリックス. εの値は略45度から略90度が適当である.また、磁
気抵抗素子(1)を半硬質の一軸磁気異方性を有した強
磁性磁気抵抗効果材料から構成する事ができる. 一軸磁気異方性を有する半硬質磁性材料は磁化容易軸方
向に磁化され,磁化容易軸方向に直交する方向の磁界が
加えられたときには磁化方向が回転する.回転した磁化
方向は直交する方向の磁界が除去されたとき元に復帰す
る. 磁化容易軸に直交または交差する方向に記憶媒体(3)
の磁界を加える構成とすれば、バイアス印加手段を伴わ
ず180度方向の異なる記憶媒体(3)の磁界に非対称
な磁界一抵抗特性を磁気抵抗素子(1)にもたせる事が
できる. (口)磁気抵抗素子(1)を一軸磁気異方性を有した半
硬質の強磁性磁気抵抗効果材料から構成し、磁化容易軸
の方向(12)を磁気抵抗素子(1)に流れる電流方向
(l1)に略45度方向とし、記憶媒体の磁束方向(1
0)と磁化容易軸方向(】2)を角度εで交差させる構
成の磁気抵抗素子を有した記憶マトリックス. 角度εの値は略90度から略45度が適当である. 本発明の記憶マトリックスを構成する記憶媒体(3)と
磁気抵抗素子(1)は別の構造物とする事もできる.ま
た,磁気抵抗素子(1)を半硬質磁気抵抗材料で構成し
、記憶媒体(3)と磁気抵抗素子(1)を共通構造物に
する事ができる. さらに,磁気抵抗素子(1)を一軸磁気異方性を有した
半硬質の強磁性磁気抵抗効果材料から構成し、記憶媒体
(3)と磁気抵抗素子(1)を共通構造物にする事がで
きる.この構造ではさらにバイアス磁界印加手段(8)
が必要になる. (ハ)磁気抵抗素子(1)は一軸磁気異方性を有する半
硬質の強磁性磁気抵抗効果材料から構成され、磁気抵抗
素子(1)に流れる電流方向(11)に略45度方向に
バイアス磁界(9)が加えられ、磁化容易軸(12)の
方向はバイアス磁界方向に角度εで交差する方向である
構造の磁気抵抗素子を有した記憶マトリックス. εの値は略45度がら略90度が適当である.本発明の
記憶マトリックスを構成する記憶媒体(3)は少なくと
もその一部分に半硬質磁性体を有し,磁気的に記憶保持
がされる記憶媒体である.記憶媒体(3〉は異方性のな
い半硬質磁性材料から構成されていてもよい.また,一
軸磁気異方性のある半硬質磁性体材料を記憶媒体(3〉
に使用する事ができる. 記憶媒体(3)と磁気抵抗素子(1)が別の構造物であ
る場合には,記憶媒体(3)と磁気抵抗素子(1)は電
気的には絶縁されている事が望ましい.記憶媒体(3)
がフエライトなどの電気絶縁性半硬質磁性体であれば,
絶縁体薄膜を磁気抵抗素子(l)と記憶媒体(3)の間
に介在させる必要がなくなる. 記憶セルは単一または複数の磁気抵抗素子(1)とダイ
オード(2)および記憶媒体から構成されている. (イ)本発明の記憶マトリックスの一つの実施例は,記
憶セルが単一のダイオード(2)と単一の磁気抵抗素子
(1)と単一の記憶媒体(3)から構成された実施例で
ある. (ロ)本発明の記憶マトリックスの第二の実施例は,記
憶セルが対をなすダイオード(2)と対をなす磁気抵抗
素子(1)と対をなす記憶媒体(3〉から構成され,記
憶媒体(3)に対する書き込みの結果、対をなす磁気抵
抗素子(1)の一方は高抵抗に書き込まれ他方は低抵抗
に書き込まれる構成である. この様にするには、書き込み方向を反対にしておくか、
またはバイアス磁界の方向を反対にしておけばよい. (ハ)本発明の第三の実施例は、記憶セルが対をなすダ
イオード(2)と対をなす磁気抵抗素子(1)と一つの
記憶媒体(3)から構成され,対をなす二つの磁気抵抗
素子(1)が一つの記憶媒体(3)に鎖交している構造
のものである.第三の実施例では記憶媒体(3)に対す
る書き込みの結果.対をなす磁気抵抗素子(1)の一方
は高抵抗に書き込まれ他方は低抵抗に書き込まれる.磁
気抵抗素子(1)を強磁性磁気抵抗効果材料から構成し
た場合には,磁気抵抗素子(1)と記憶媒体(3)とで
閉磁気回路を構成する形状にできる.また磁気抵抗素子
(1)と記憶媒体とが共通構造物をなしている場合には
,磁気抵抗素子(1)と別途設けた軟質磁性体よりなる
薄膜とで閉磁気回路を構成する形状にできる。また,磁
気抵抗素子(1)とバイアス磁界を与える硬質磁性体よ
りなる薄膜とで閉磁気回路を構成する形状にする事がで
きる.(二)磁気抵抗素子(1)が強磁性磁気抵抗効果
材料からなり、記憶媒体(3)と磁気抵抗素子(1)が
閉磁気回路を構成する形状にし、記憶媒体(3)と磁気
抵抗素子(1)を磁気的に結合させる構成の記憶マトリ
ックス。
Magnetoresistive element (1
) is required to have an asymmetrical magnetic field-resistance characteristic for magnetic fields that differ by 180 degrees. By applying a bias magnetic field to the magnetoresistive element (1). It is possible to create asymmetrical magnetic field resistance characteristics for external magnetic fields that differ in 180 degree directions. This method applies a bias magnetic field to make the combined magnetic flux of the storage medium (3) and the bias magnetic field equivalently asymmetric. This method is effective when the magnetoresistive element (1) is made of a semiconductor or a non-magnetic magnetoresistive material. (a) The magnetoresistive element (1) is made of a conductor having a magnetoresistive effect, and the magnetoresistive element (1) is accompanied by a bias magnetic field applying means (8),
The bias magnetic field is directed in the direction of the current flowing through the magnetoresistive element (1) (
11) A storage device having a magnetoresistive element configured to apply a magnetic flux (10) of a storage medium in a direction that is applied at an angle of approximately 45 degrees with respect to the direction (9) in which the bias magnetic field is applied and intersects the direction (9) in which the bias magnetic field is applied at an angle ε. matrix. The appropriate value for ε is approximately 45 degrees to approximately 90 degrees. Further, the magnetoresistive element (1) can be constructed from a semi-hard ferromagnetic magnetoresistive material having uniaxial magnetic anisotropy. Semi-hard magnetic materials with uniaxial magnetic anisotropy are magnetized in the direction of the easy axis of magnetization, and the direction of magnetization rotates when a magnetic field is applied in a direction perpendicular to the direction of the easy axis of magnetization. The rotated magnetization direction returns to its original state when the magnetic field in the orthogonal direction is removed. Storage medium (3) in a direction perpendicular to or crossing the axis of easy magnetization
By applying a magnetic field of , it is possible to give the magnetoresistive element (1) a magnetic field resistance characteristic that is asymmetrical to the magnetic field of the storage medium (3) that is 180 degrees different in direction without using a bias applying means. (Example) The magnetoresistive element (1) is constructed from a semi-hard ferromagnetic magnetoresistive material with uniaxial magnetic anisotropy, and the direction of the easy axis of magnetization (12) is the direction of current flowing through the magnetoresistive element (1). (l1) is approximately 45 degrees, and the magnetic flux direction of the storage medium (1
0) and the easy magnetization axis direction (2) intersect at an angle ε. The appropriate value for the angle ε is approximately 90 degrees to approximately 45 degrees. The storage medium (3) and the magnetoresistive element (1) that constitute the storage matrix of the present invention can also be made into different structures. Furthermore, the magnetoresistive element (1) can be made of a semi-hard magnetoresistive material, and the storage medium (3) and the magnetoresistive element (1) can be made into a common structure. Furthermore, it is possible to construct the magnetoresistive element (1) from a semi-hard ferromagnetic magnetoresistive material with uniaxial magnetic anisotropy, and to make the storage medium (3) and the magnetoresistive element (1) a common structure. can. In this structure, a bias magnetic field applying means (8) is further provided.
is required. (c) The magnetoresistive element (1) is made of a semi-hard ferromagnetic magnetoresistive material with uniaxial magnetic anisotropy, and is biased approximately 45 degrees in the direction (11) of the current flowing through the magnetoresistive element (1). A storage matrix having a magnetoresistive element structured such that a magnetic field (9) is applied and the direction of the easy axis of magnetization (12) is in a direction intersecting the direction of the bias magnetic field at an angle ε. The appropriate value for ε is approximately 45 degrees to approximately 90 degrees. The storage medium (3) constituting the storage matrix of the present invention has a semi-hard magnetic material in at least a portion thereof, and is a storage medium in which memory is retained magnetically. The storage medium (3) may be made of a semi-hard magnetic material without anisotropy. Alternatively, the storage medium (3) may be made of a semi-hard magnetic material with uniaxial magnetic anisotropy.
It can be used for. If the storage medium (3) and the magnetoresistive element (1) are separate structures, it is desirable that the storage medium (3) and the magnetoresistive element (1) be electrically insulated. Storage medium (3)
If is an electrically insulating semi-hard magnetic material such as ferrite,
There is no need to interpose an insulating thin film between the magnetoresistive element (l) and the storage medium (3). A memory cell is composed of a single or multiple magnetoresistive element (1), a diode (2), and a storage medium. (B) One embodiment of the storage matrix of the present invention is an embodiment in which the storage cell is composed of a single diode (2), a single magnetoresistive element (1), and a single storage medium (3). It is. (b) In the second embodiment of the memory matrix of the present invention, the memory cell is composed of a pair of diodes (2), a pair of magnetoresistive elements (1), and a pair of storage media (3), and As a result of writing to the medium (3), one of the pair of magnetoresistive elements (1) is written with high resistance and the other is written with low resistance.To do this, reverse the writing direction. Should I leave it?
Alternatively, the direction of the bias magnetic field can be reversed. (c) In the third embodiment of the present invention, the memory cell is composed of a pair of diodes (2), a pair of magnetoresistive elements (1), and one storage medium (3), and It has a structure in which a magnetoresistive element (1) is linked to a single storage medium (3). In the third embodiment, the result of writing to the storage medium (3). One of the paired magnetoresistive elements (1) is written to have a high resistance, and the other is written to have a low resistance. When the magnetoresistive element (1) is made of a ferromagnetic magnetoresistive material, the magnetoresistive element (1) and the storage medium (3) can form a closed magnetic circuit. In addition, when the magnetoresistive element (1) and the storage medium form a common structure, the magnetoresistive element (1) and a separately provided thin film made of a soft magnetic material can form a closed magnetic circuit. . Furthermore, it is possible to configure a closed magnetic circuit with the magnetoresistive element (1) and a thin film made of a hard magnetic material that provides a bias magnetic field. (2) The magnetoresistive element (1) is made of a ferromagnetic magnetoresistive material, and the storage medium (3) and the magnetoresistive element (1) form a closed magnetic circuit, and the storage medium (3) and the magnetoresistive element A memory matrix configured to magnetically couple (1).

(ホ)磁気抵抗素子(1)を磁気抵抗効果を有する半硬
質磁性体から構成し、磁気抵抗素子(1)と記憶媒体(
3)とを共通構造物とし、この共通構造物と軟質磁性体
からなる構造物によって閉磁気回路を構成する形状にし
、記憶媒体(3)と磁気抵抗素子(1)を磁気的に結合
させる構成の記憶マトリックス. このように閉磁気回路構成とし、この閉磁気回路の中心
空間を書込み導電繰が貫流する構成とすれば.磁束漏洩
の点で有利であり.また効果的な書込みが実行できる.
しかしながら,記憶媒体(3〉と磁気抵抗素子(1)か
らなる磁気構造物を閉磁気回路形状にする事は本発明を
実現する必須要件という訳ではない. 書込み速度が早い事、また記憶セルの構造が単純である
事は記憶装置にとって重要である.記憶媒体(3)を一
軸磁気異方性のある半硬質磁性体より構成し,磁化容易
軸方向の一斉回転によって磁気書込みを実行する事がで
きる. (へ)記憶媒体(3)が一軸磁気異方性を有した半硬質
磁性体材料よりなる記憶マトリックス.一軸磁気異方性
を有する半硬質磁性材料は磁化容易軸方向に磁化され,
磁化容易軸方向に平行であって磁化方向と反対方向の磁
界を加えると,磁化の一斉回転現象が発生する.一斉回
転によって磁気書き込みすれば書き込み速度が早くなる
.作用 記憶装置; 本発明の記憶マトリックスは記憶装置に組み込まれて,
記憶装置の一部分として動作する.記憶装置の一例は第
6図、第7図のようなものである. 第6図は、記憶セルが単独の磁気抵抗素子(1)と単独
のダイオード{2)から構成された記憶マトリックス(
15〉の読み取り装置を示す.第7図は,記憶セルが対
をなす磁気抵抗素子(1)と対をなすダイオード(2)
から構成された記憶マトリックス(16)の読み取り装
置を示す. 記憶装置は書き込み装置部分と読み取り装置部分から構
成されており、書き込み装置部分は公知の電流一致方式
の書き込み装置である.書き込み装置部分は書き込み導
電線選択装置と電流駆動装置からなり.記憶マトリック
ス(15)の書き込み導電線〈6)および7に電流を流
し記憶媒体(3〉に選択的な磁気書き込みを行なう.電
流一致方式の書き込みを行なうには,少なくとも交差配
置された二群の導電線を具備し,一つの磁気記憶媒体(
3)に鎖交する書込み導電線の数を2本とする構成であ
れば磁気書込みを実行できる.また、一つの磁気記憶媒
体(3)に鎖交する書き込み導電線(6)および(7)
の数を4本にし、ビット1の書込み導電線とビット0の
書込み導電線を別にする構成であってもよい.しかしな
がら、つの磁気記憶媒体(3〉に鎖交する書き込み導電
線の数を増やす事は記憶マトリックス(15)の構造を
複雑にし、記憶容量を大きくするには不利な構造である
. 第6図および第7図では書き込み装置は示していない. 読み取り装置部分はスイッチ(14)群、記憶マトリッ
クス(15).および出力回路(18)から構成されて
いる. 出力回路(18)は様々な構成とする事が可能である.
出力回路(18)部分は電流比較器によって構成する事
ができる.また、抵抗と電圧比較器によって構成する事
ができる. 第6図、第7図は出力回路(18)を電流比較器によっ
て構成したものである. 記憶マトリックス(l5)のカラム線(4)はスイッチ
(14)群を介して電源(13)に接続されている.記
憶マトリックス(l5〉のロウ線(5)は電流比較器の
入力端子に接続されている. 一本のカラム線(4)と一本のロウ線(5)の間には直
列接続された一つの磁気抵抗素子(1)と一つのダイオ
ード(2)が接続されている. スイッチ(14)群はアドレスデコーダによって制御さ
れており.スイッチ(14)の一つが選ばれて導通状態
になり.スイッチ(14)に接続されたカラム線(4)
の一本が通電状態になる.アドレスデコーダは図示して
いない. カラムI!i(4)の一本が通電状態になると.そのカ
ラム線(4)に接続された磁気抵抗素子(1)とダイオ
ード(2)を通じてロウ線(5)に電流が流れ、さらに
ロウ線(5)に接続された電流比較器に電流が流れる. 記憶セルを構成するダイオード(2)は電流の回り込み
を阻止する.このため,通電状態になっている一本のカ
ラム線(4)に接続された磁気抵抗素子(1)を除く他
の磁気抵抗素子は記憶読み出しには関与しない. 磁気抵抗素子(1)の抵抗値は記憶媒体(3)に書き込
まれた磁化記憶方向によって決定され、ロウ縞(5)に
流れる電流の大きさは磁気抵抗素子(1)の抵抗値によ
って決定される. 通常、スイッチ(14)は半導体から構成されており、
ON状堰にあるときの抵抗値には温度依存性がある. しかしながら,記憶マトリックス(16)を構成する記
憶セルが対をなす磁気抵抗素子(1)と対をなすダイオ
ード(2)から構成され、対をなすロウ線(5)が電流
比較器の二つの差動入力端子に接続された構成では、ス
イッチ(14)の抵抗値の温度依存性によって生じるロ
ウ線(5)に流れる電流値の変化は電流比較凄の二つの
差動入力端子に同相入力電流とし入力されて差し引かれ
るため考慮する必要がなくなる.(第7図) 記憶マトリックス(15)を構成する記憶セルが単一の
磁気抵抗素子(1)と単一のダイオード(2)から構成
されている場合には、ロウ線(5)に流れる電流は基準
電流と比較されて記憶読みだしされる. この場合には,基準電流源(17)をスイッチ(14)
の後方に接続し、ロウMl(5)に流れる電流と比較さ
れる基準電流の温度依存性を同一にし電流比較器の二つ
の差動入力端子に接続し,同相入力電流こして差し引く
構成にする事ができる.また,基準電流源(17)を温
度依存性のある電流源とし、スイッチ(14)の抵抗値
の温度依存性と電流源の温度依存性を近似させる事によ
って、スイッチ(l4)の抵抗値の影響を除去できる.
(第6図) このようにして、記憶媒体(3)である抵抗体の抵抗値
が読み取られ、記憶媒体(3)に書き込まれた記憶が読
み取られる. 以−J二は請求項第一項記載の記憶マトリックス(1.
5)または請求項第二項記載の記憶マトリックス(l6
)が組み込まれた記憶装置の説明である.実施様態 (イ〉本発明の記憶マトリックスは基板上に薄膜で構成
する事もできる.また,本発明の記憶マトリックスを個
別素子で構成してもよい.(口)本発明の記憶マトリッ
クスを構成するダイオードは単結晶半導体から構成され
たダイオードであってもよい.また、多結晶半導体から
構成されたダイオードであってもよい.また、アモルフ
ァス半導体から構成されたダイオードであってもよい.
またPN接合を有したダイオードであってもよい.また
ショットキー接合を有したダイオードであってもよい. (ハ)磁気抵抗効果を有する導電材料には,強磁性磁気
抵抗効果材料、非磁性磁気抵抗効果材料が知られている
.さらに、非磁性磁気抵抗効果材料には半導体磁気抵抗
効果材料、および非磁性金属磁気抵抗効果材料が知られ
ている.本発明の記憶マトリックスを構成する磁気抵抗
素子は,前記すべての磁気抵抗効果を有する導電材料に
よって構成可能である. 本発明の記憶マトリックスを構成する記憶媒体は少なく
ともその一部分に半硬質磁性体を有して構成される.さ
らに.半硬質磁性体が一軸磁気異方性を有する磁性体で
あってもよい. (二)記憶媒体が一軸磁気異方性を有した半硬質磁性体
材料から構成された記憶マトリックス.また、磁気抵抗
素子と記憶媒体を共通構造物としてもよい. (ホ)磁気抵抗素子を半硬質磁性体であって磁気抵抗効
果を有する材料から作り,記憶媒体と磁気抵抗素子が共
通構造物である構造の記憶マトリックス. その場合、前記半硬質磁性体に一軸磁気異方性を有する
材料を選ぶのがよい. 記憶媒体と磁気抵抗素子が共通構造物であり,軸磁気異
方性を有する材料から構成される場合には,記憶は磁化
容易軸方向に書き込まれる。
(e) The magnetoresistive element (1) is composed of a semi-hard magnetic material having a magnetoresistive effect, and the magnetoresistive element (1) and the storage medium (
3) as a common structure, the common structure and a structure made of a soft magnetic material constitute a closed magnetic circuit, and the storage medium (3) and the magnetoresistive element (1) are magnetically coupled. memory matrix. If we have a closed magnetic circuit configuration like this, and a configuration where the writing conductive loop flows through the central space of this closed magnetic circuit. This is advantageous in terms of magnetic flux leakage. Also, effective writing can be performed.
However, forming the magnetic structure consisting of the storage medium (3) and the magnetoresistive element (1) into a closed magnetic circuit shape is not an essential requirement for realizing the present invention. A simple structure is important for a storage device.The storage medium (3) is made of a semi-hard magnetic material with uniaxial magnetic anisotropy, and magnetic writing can be performed by simultaneous rotation in the direction of the easy magnetization axis. (f) The storage medium (3) is a storage matrix made of a semi-hard magnetic material with uniaxial magnetic anisotropy.The semi-hard magnetic material with uniaxial magnetic anisotropy is magnetized in the direction of the easy axis of magnetization.
When a magnetic field parallel to the easy axis of magnetization and opposite to the magnetization direction is applied, a simultaneous rotation of magnetization occurs. If magnetic writing is performed by simultaneous rotation, the writing speed will be faster. Working memory device; the memory matrix of the present invention is incorporated into a memory device,
It operates as part of a storage device. An example of a storage device is shown in FIGS. 6 and 7. FIG. 6 shows a memory matrix (
15〉 reading device is shown. Figure 7 shows a memory cell with a pair of magnetoresistive elements (1) and a pair of diodes (2).
A reading device for a storage matrix (16) consisting of . The storage device consists of a writing device section and a reading device section, and the writing device section is a known current matching type writing device. The writing device part consists of a writing conductive line selection device and a current drive device. A current is applied to the write conductive wires (6) and 7 of the storage matrix (15) to perform selective magnetic writing on the storage medium (3).For writing in the current matching method, at least two groups of A single magnetic storage medium (
3) Magnetic writing can be performed if the number of writing conductive wires interlinked with 2 is set to two. Also, write conductive lines (6) and (7) interlinking with one magnetic storage medium (3)
The number of bits may be four, and the write conductive line for bit 1 and the write conductive line for bit 0 may be separate. However, increasing the number of write conductive lines interlinking with one magnetic storage medium (3) complicates the structure of the storage matrix (15), which is a disadvantageous structure for increasing storage capacity. The writing device is not shown in Fig. 7. The reading device part is composed of a group of switches (14), a storage matrix (15), and an output circuit (18). The output circuit (18) has various configurations. It is possible.
The output circuit (18) can be configured with a current comparator. It can also be configured with a resistor and a voltage comparator. Figures 6 and 7 show the output circuit (18) constructed from a current comparator. The column line (4) of the storage matrix (15) is connected to the power supply (13) via a group of switches (14). The row wire (5) of the storage matrix (l5) is connected to the input terminal of the current comparator. Two magnetoresistive elements (1) and one diode (2) are connected. The switch (14) group is controlled by an address decoder. One of the switches (14) is selected and becomes conductive. Column wire (4) connected to (14)
One of the wires becomes energized. The address decoder is not shown. Column I! When one of i(4) becomes energized. A current flows to the row wire (5) through the magnetoresistive element (1) and diode (2) connected to the column wire (4), and further current flows to the current comparator connected to the row wire (5). The diode (2) that makes up the memory cell prevents current from flowing around. Therefore, the other magnetoresistive elements except the magnetoresistive element (1) connected to the one column line (4) that is in the energized state do not participate in memory reading. The resistance value of the magnetoresistive element (1) is determined by the magnetization storage direction written in the storage medium (3), and the magnitude of the current flowing through the row stripes (5) is determined by the resistance value of the magnetoresistive element (1). Ru. Usually, the switch (14) is made of a semiconductor,
The resistance value when the weir is in the ON state is temperature dependent. However, the memory cells constituting the memory matrix (16) are composed of a pair of magnetoresistive elements (1) and a pair of diodes (2), and the pair of row wires (5) is used to detect the difference between the two current comparators. In the configuration where the switch (14) is connected to a differential input terminal, changes in the current value flowing through the row wire (5) caused by the temperature dependence of the resistance value of the switch (14) are converted into common-mode input currents to the two differential input terminals that compare the currents. Since it is input and subtracted, there is no need to consider it. (Fig. 7) When the memory cells constituting the memory matrix (15) are composed of a single magnetoresistive element (1) and a single diode (2), the current flowing through the row wire (5) is compared with the reference current and read out from memory. In this case, the reference current source (17) is connected to the switch (14).
The current flowing through row Ml (5) and the reference current to be compared have the same temperature dependence, and are connected to the two differential input terminals of the current comparator to subtract the common-mode input current. I can do things. Furthermore, by using a temperature-dependent current source as the reference current source (17) and approximating the temperature dependence of the resistance value of the switch (14) and the temperature dependence of the current source, the resistance value of the switch (l4) can be adjusted. The effect can be removed.
(Fig. 6) In this way, the resistance value of the resistor that is the storage medium (3) is read, and the memory written in the storage medium (3) is read. -J2 is the storage matrix (1.
5) or the storage matrix (l6
) is an explanation of the built-in storage device. Embodiment (A) The memory matrix of the present invention can be constructed as a thin film on a substrate. The memory matrix of the present invention may also be constructed of individual elements. The diode may be a diode made of a single crystal semiconductor, a diode made of a polycrystalline semiconductor, or a diode made of an amorphous semiconductor.
It may also be a diode with a PN junction. It may also be a diode with a Schottky junction. (c) Ferromagnetic magnetoresistive materials and non-magnetic magnetoresistive materials are known as conductive materials that have magnetoresistive effects. Furthermore, semiconductor magnetoresistive materials and nonmagnetic metal magnetoresistive materials are known as nonmagnetic magnetoresistive materials. The magnetoresistive element constituting the memory matrix of the present invention can be constructed from any of the above conductive materials having a magnetoresistive effect. The storage medium constituting the storage matrix of the present invention is constructed so that at least a portion thereof has a semi-hard magnetic material. moreover. The semi-hard magnetic material may be a magnetic material with uniaxial magnetic anisotropy. (2) A storage matrix consisting of a semi-hard magnetic material with uniaxial magnetic anisotropy. Furthermore, the magnetoresistive element and the storage medium may be a common structure. (e) A storage matrix with a structure in which the magnetoresistive element is made from a semi-hard magnetic material that has a magnetoresistive effect, and the storage medium and the magnetoresistive element are a common structure. In that case, it is preferable to select a material having uniaxial magnetic anisotropy as the semi-hard magnetic material. When the storage medium and the magnetoresistive element have a common structure and are made of a material having axial magnetic anisotropy, the memory is written in the easy axis direction.

(へ)磁気抵抗素子を構成する磁気抵抗効果材料が一軸
磁気異方性を有す強磁性磁気抵抗効果材料からなり、磁
気抵抗素子と記憶媒体が共通構造物をなし、磁化容易軸
と鎖交する方向にバイアス磁界を印加する手段を有した
磁気抵抗素子によって構成された記憶マトリックス. 本発明の記憶マトリックスを構成する記憶媒体と磁気抵
抗素子を閉鎖磁気回路構造にする事ができる. (ト)磁気抵抗素子が半硬質の強磁性磁気抵抗効果材料
からなり、磁気抵抗素子と記憶媒体が共通構造物をなし
、軟質磁性体からなる薄膜と前記磁気抵抗素子が閉鎖磁
気回路を構成し、前記閉鎖磁気回路の中心空間を書き込
み導電線が直流する構造の記憶マトリックス. 記憶媒体と磁気抵抗素子が閉鎖磁気回路を構成するよう
にすると磁気漏洩が減少し、書き込みが容易になる. (チ)磁気抵抗素子が強磁性磁気抵抗効果材料がらなり
、半硬質磁性体からなる記憶媒体と前記磁気抵抗素子が
閉磁気回路を構成した記憶マトリックス. (り〉一軸磁気異方性を有する強磁性磁気抵抗効果材料
からなる抵抗体が薄膜状に形成され,前記抵抗体にバイ
アス磁界を加える手段がIjp質磁性体からなる磁気膜
であり. 前記抵抗体膜とバイアスを加える前記磁気膜が閉磁気回
路を構成し、この閉磁気回路の空間を書き込み導電線が
員流する構造の記憶マトリックス. 効果 本発明は磁気バブル記憶装置に代る高速アクセス速度の
不揮発性RAMを提供する事を目的にしたものである.
また,本発明の記憶装置をフロッピーディスク記憶装置
に代えて不揮発性高速記憶装置として使用する事ができ
る。
(f) The magnetoresistive material constituting the magnetoresistive element is made of a ferromagnetic magnetoresistive material with uniaxial magnetic anisotropy, and the magnetoresistive element and the storage medium form a common structure and are interlinked with the axis of easy magnetization. A memory matrix composed of magnetoresistive elements having means for applying a bias magnetic field in the direction of The storage medium and magnetoresistive element constituting the storage matrix of the present invention can have a closed magnetic circuit structure. (g) The magnetoresistive element is made of a semi-hard ferromagnetic magnetoresistive material, the magnetoresistive element and the storage medium form a common structure, and the thin film made of a soft magnetic material and the magnetoresistive element constitute a closed magnetic circuit. , a memory matrix in which the central space of the closed magnetic circuit is written and the conductive wires have a structure in which direct current flows. When the storage medium and the magnetoresistive element form a closed magnetic circuit, magnetic leakage is reduced and writing becomes easier. (H) A storage matrix in which the magnetoresistive element is made of a ferromagnetic magnetoresistive material, and a storage medium made of a semi-hard magnetic material and the magnetoresistive element constitute a closed magnetic circuit. (ri) A resistor made of a ferromagnetic magnetoresistive material having uniaxial magnetic anisotropy is formed in the form of a thin film, and a means for applying a bias magnetic field to the resistor is a magnetic film made of an Ijp-based magnetic material. The body membrane and the magnetic film applying a bias constitute a closed magnetic circuit, and the space of this closed magnetic circuit is filled with writing conductive wires.Effects The present invention provides a high-speed access speed alternative to a magnetic bubble storage device. Its purpose is to provide non-volatile RAM.
Furthermore, the storage device of the present invention can be used as a nonvolatile high-speed storage device in place of a floppy disk storage device.

本発明の記憶マトリックスによって構成された記憶装置
は読み取り速度については半導体記憶装置の読み取り速
度と同等の速度である.磁化反転によって記憶を書き込
む記憶装置の書き込み速度は半導体記憶装置に比較すれ
ば遅い.しかしながら、フロッピーディスク装置などの
シーケンシャル・アクセス・メモリー装置に比べれば遥
かに早い. また本発明の記憶マトリックスによって構成された記憶
装置はバッテリーなしで不揮発性を実現できる.したが
って,本発明の記憶マトリックスによって構成された記
憶装置をカード状に作り,NC装置の補助記憶装置とし
て,加工データを保存する記憶カードとして使う事がで
きる.
The reading speed of a storage device constructed using the storage matrix of the present invention is equivalent to that of a semiconductor storage device. The writing speed of memory devices that write data by magnetization reversal is slow compared to semiconductor memory devices. However, it is much faster than sequential access memory devices such as floppy disk drives. Furthermore, a storage device constructed using the storage matrix of the present invention can achieve non-volatility without a battery. Therefore, a storage device configured by the storage matrix of the present invention can be made in the form of a card and used as an auxiliary storage device for an NC device or as a storage card for storing processed data.

【図面の簡単な説明】[Brief explanation of drawings]

第1図,本発明の記憶マトリックス:磁気抵抗素子と記
憶媒体が別の構造物である構成.第2図、本発明の記憶
マトリックス;磁気抵抗素子と記憶媒体が共通構造物か
らなり2磁気抵抗素子はバイアス磁界印加手段を付随す
る構成.第3図,請求項第三項に記した記憶マトリック
スを構成する磁気抵抗素子のバイアス磁界方向と記憶媒
体磁界方向の関係を示す.記憶媒体と磁気抵抗素子は別
構造物である. 第4図.請求項第4項に記した記憶マトリックスを構成
する磁気抵抗素子の磁化容易軸方向と記憶媒体磁界方向
の関係を示す.記憶媒体と磁気抵抗素子は別構造物であ
る. 第5図、請求項第5項に記{.7た記憶マトリ・Iクス
を構成する磁気抵抗素子のバイアス磁界方向と磁化容易
軸方向の関係を示す.記憶媒体と磁気抵抗素子は共通構
造物からなる. 第6図、本発明の記憶マトリックスが組み込まれた記憶
読み取り装置の実施例. 記憶セルは単一の磁気抵抗素子と争−のダイオ・一ドか
ら構成されている。出力回路は電流比較器によー)て構
成されている. 記憶マトリックスを構成する4き込み導電線↓よ図示(
7ていない.また,淋き込み装置は・ム1、2ていない
ゃ 第7図、本発明の記憶マトリックスが組み込まれた記憶
読み取り装置の実施例. 記憶セルi;t xtをなす\個の磁気抵抗素−Eと−
二個のダ.r t −  ドから構成されている.田力
回路は電流比較器によって構成されている。記憶マトリ
ックスを構成する書き込み導電線は図示していない.ま
た.書き込み装置は示していない. l.磁気抵抗素子 2.ダイオード 3.記憶媒体4.
カラム線 5.ロウ絵 6.書き込み導電線7,書き込
み1!電線 8。バイアス手段9.バイアス磁界方向 
10.記憶媒体磁界方向l1.電流方向 12.磁化容
易軸方向I3.電源 14.スイッチ 15.記憶マトリックス 16.記憶マトリックス17
.基準電流源 tS.出力回路 篇 ! 0邑 ゛砕 ;乙 lΣ 卑 6 1記 富 3 1馳 葛 4.II 鴇 S 1範 鴇 7(記
Figure 1: Storage matrix of the present invention: a configuration in which the magnetoresistive element and the storage medium are separate structures. FIG. 2: Storage matrix of the present invention; a configuration in which the magnetoresistive element and the storage medium have a common structure, and the two magnetoresistive elements are accompanied by bias magnetic field applying means. FIG. 3 shows the relationship between the bias magnetic field direction of the magnetoresistive element constituting the storage matrix described in claim 3 and the storage medium magnetic field direction. The storage medium and the magnetoresistive element are separate structures. Figure 4. The relationship between the easy magnetization axis direction of the magnetoresistive element constituting the storage matrix according to claim 4 and the storage medium magnetic field direction is shown. The storage medium and the magnetoresistive element are separate structures. As described in FIG. 5 and claim 5 {. 7 shows the relationship between the bias magnetic field direction and the easy magnetization axis direction of the magnetoresistive element constituting the memory matrix/Ix. The storage medium and the magnetoresistive element consist of a common structure. FIG. 6: Embodiment of a storage/reading device incorporating the storage matrix of the present invention. The memory cell consists of a single magnetoresistive element and a competing diode. The output circuit consists of a current comparator. The four conductive wires that make up the memory matrix are shown below (
7 Not yet. In addition, the reading device is shown in Figure 7, an embodiment of a memory reading device incorporating the memory matrix of the present invention. \ magnetoresistive elements -E and - forming memory cell i;t xt
Two Da. It consists of r t − . The power circuit consists of a current comparator. The write conductive lines that make up the memory matrix are not shown. Also. Writing device not shown. l. Magnetoresistive element 2. Diode 3. Storage medium 4.
Column line 5. Row painting 6. Write conductive line 7, write 1! Electric wire 8. Biasing means9. Bias magnetic field direction
10. Storage medium magnetic field direction l1. Current direction 12. Easy magnetization axis direction I3. Power supply 14. Switch 15. Memory matrix 16. memory matrix 17
.. Reference current source tS. Output circuit! 0 傑゛broken; OtsulΣ base 6 1kito 3 1 hase katsu 4. II Toki S 1 category 7 (recorded)

Claims (5)

【特許請求の範囲】[Claims] (1)交差配置された複数の書き込み導電線と配列配置
された複数の記憶セルと交差配置された複数の読み取り
導電線からなる記憶マトリックスであって、 前記読み取り導電線はカラム方向の複数の導電線とロウ
方向の複数の導電線からなり、 前記記憶セルは磁気抵抗素子とダイオードと記憶媒体か
ら構成され、前記記憶媒体は少なくとも一部分に半硬質
磁性体を有する構造物であり、前記磁気抵抗素子は磁気
抵抗効果を有する導電体よりなる構造物であり、 前記一本のカラム方向読み取り導電線と前記一本のロウ
方向読み取り導電線の間には一つの前記磁気抵抗素子と
一つの前記ダイオードが直列に接続されており、 前記記憶媒体と前記磁気抵抗素子は磁気的に結合してお
り、さらに前記書き込み導電線と前記記憶媒体は磁気的
に結合しており、すべての前記ダイオードの接続方向は
同一方向である記憶マトリックス。
(1) A memory matrix comprising a plurality of write conductive lines arranged in an intersecting manner, a plurality of memory cells arranged in an array, and a plurality of read conductive lines arranged in an intersecting manner, the read conductive lines comprising a plurality of conductive lines arranged in a column direction. The memory cell is made up of a plurality of conductive lines in the wire and row directions, the memory cell is made up of a magnetoresistive element, a diode, and a storage medium, the storage medium is a structure having at least a portion of a semi-hard magnetic material, and the magnetoresistive element is a structure made of a conductor having a magnetoresistive effect, and one magnetoresistive element and one diode are arranged between the one column direction reading conductive line and the one row direction reading conductive line. are connected in series, the storage medium and the magnetoresistive element are magnetically coupled, the write conductive line and the storage medium are magnetically coupled, and the connection direction of all the diodes is Memory matrix that is in the same direction.
(2)記憶セルが記憶媒体および対をなす二個の磁気抵
抗素子と対をなす二個のダイオードからなり、 前記記憶媒体に磁気書き込みされたとき、前記対をなす
磁気抵抗素子の一つが高抵抗状態に書き込まれ、他の一
つが低抵抗状態に書き込まれる第一項記載の記憶マトリ
ックス。
(2) A storage cell is composed of a storage medium, two paired magnetoresistive elements, and two diodes, and when magnetic writing is performed on the storage medium, one of the paired magnetoresistive elements becomes high. A storage matrix according to claim 1, in which one is written to a resistance state and the other one is written to a low resistance state.
(3)磁気抵抗素子が磁気抵抗効果を有する導電性材料
からなり、バイアス磁界を印加する手段によって前記磁
気抵抗素子にバイアス磁界が加えられ、前記バイアス磁
界の方向は前記磁気抵抗素子に流れる電流方向に略45
度方向であり、記憶媒体の磁束が前記バイアス磁界と交
差する方向に加えられる第一項または第二項記載の記憶
マトリックス。
(3) The magnetoresistive element is made of a conductive material having a magnetoresistive effect, and a bias magnetic field is applied to the magnetoresistive element by means for applying a bias magnetic field, and the direction of the bias magnetic field is the direction of the current flowing through the magnetoresistive element. approx. 45
2. The storage matrix according to claim 1 or 2, wherein the magnetic flux of the storage medium is applied in a direction intersecting the bias magnetic field.
(4)磁気抵抗素子が一軸磁気異方性を有し磁気抵抗効
果を有する磁性体材料の薄膜からなり、前記磁気抵抗素
子の磁化容易軸の方向は前記磁気抵抗素子に流れる電流
方向に略45度方向であり、記憶媒体の磁界が加えられ
る方向は前記磁化容易軸方向に交差する方向である第一
項または第二項記載の記憶マトリックス。
(4) The magnetoresistive element is made of a thin film of a magnetic material having uniaxial magnetic anisotropy and a magnetoresistive effect, and the direction of the axis of easy magnetization of the magnetoresistive element is approximately 45 mm in the direction of the current flowing through the magnetoresistive element. 2. The storage matrix according to claim 1 or 2, wherein the direction in which the magnetic field of the storage medium is applied is a direction intersecting the easy axis direction of magnetization.
(5)磁気抵抗素子が一軸磁気異方性を有し磁気抵抗効
果を有する半硬質磁性体材料の薄膜からなり、磁気抵抗
素子と記憶媒体が共通構造物をなし、 前記磁気抵抗素子の磁化容易軸の方向は前記磁気抵抗素
子に流れる電流方向に略45度方向であり、バイアス磁
界を印加する手段によって前記磁気抵抗素子にバイアス
磁界が加えられ、バイアス磁界が加えられる方向は前記
磁化容易軸方向と交差する方向である第一項または第二
項記載の記憶マトリックス。
(5) The magnetoresistive element is made of a thin film of a semi-hard magnetic material having uniaxial magnetic anisotropy and a magnetoresistive effect, the magnetoresistive element and the storage medium form a common structure, and the magnetoresistive element is easily magnetized. The direction of the axis is approximately 45 degrees to the direction of the current flowing through the magnetoresistive element, and a bias magnetic field is applied to the magnetoresistive element by means for applying a bias magnetic field, and the direction in which the bias magnetic field is applied is in the direction of the easy magnetization axis. The memory matrix according to the first term or the second term, which is in a direction intersecting with .
JP1159882A 1989-06-22 1989-06-22 Storage matrix Pending JPH0325797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1159882A JPH0325797A (en) 1989-06-22 1989-06-22 Storage matrix

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1159882A JPH0325797A (en) 1989-06-22 1989-06-22 Storage matrix

Publications (1)

Publication Number Publication Date
JPH0325797A true JPH0325797A (en) 1991-02-04

Family

ID=15703253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1159882A Pending JPH0325797A (en) 1989-06-22 1989-06-22 Storage matrix

Country Status (1)

Country Link
JP (1) JPH0325797A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168557B2 (en) 2004-01-20 2012-05-01 Shell Oil Company Method of restoring catalytic activity to a spent hydrotreating catalyst, the resulting restored catalyst, and a method of hydroprocessing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168557B2 (en) 2004-01-20 2012-05-01 Shell Oil Company Method of restoring catalytic activity to a spent hydrotreating catalyst, the resulting restored catalyst, and a method of hydroprocessing

Similar Documents

Publication Publication Date Title
EP0972287B1 (en) High-efficiency miniature magnetic integrated circuit structures
US5173873A (en) High speed magneto-resistive random access memory
US6034887A (en) Non-volatile magnetic memory cell and devices
US6956257B2 (en) Magnetic memory element and memory device including same
EP1986196A1 (en) A spin-torque MRAM: spin-RAM, array
US7366009B2 (en) Separate write and read access architecture for a magnetic tunnel junction
US8767446B2 (en) Multi-bit spin-momentum-transfer magnetoresistence random access memory with single magnetic-tunnel-junction stack
CN100550458C (en) Memory element and memory
US5923583A (en) Ferromagnetic memory based on torroidal elements
TW200404308A (en) Magnetoresistive memory cell array and MRAM memory comprising such array
US7218556B2 (en) Method of writing to MRAM devices
JP2005526351A (en) MRAM cell and array structure with maximum read signal and reduced electromagnetic interference
US6326217B1 (en) High-efficiency miniature magnetic integrated circuit structures
TW200907963A (en) Magnetic random access memory and operation method
JP4477829B2 (en) Method of operating a magnetic storage device
US6836429B2 (en) MRAM having two write conductors
US6885576B2 (en) Closed flux magnetic memory
US3461438A (en) Memory element having two orthogonally disposed magnetic films
JPH0325797A (en) Storage matrix
US20020186584A1 (en) High-efficiency miniature magnetic integrated circuit structures
US3302190A (en) Non-destructive film memory element
KR100902850B1 (en) Method for read-out of information in magnetic random access memory
JP2003060261A (en) Magnetoresistive effect film, memory element, and memory therewith
JPH02143980A (en) Storage matrix
US3551901A (en) Coupled magnetic film memories