JP2003060261A - Magnetoresistive effect film, memory element, and memory therewith - Google Patents

Magnetoresistive effect film, memory element, and memory therewith

Info

Publication number
JP2003060261A
JP2003060261A JP2001245423A JP2001245423A JP2003060261A JP 2003060261 A JP2003060261 A JP 2003060261A JP 2001245423 A JP2001245423 A JP 2001245423A JP 2001245423 A JP2001245423 A JP 2001245423A JP 2003060261 A JP2003060261 A JP 2003060261A
Authority
JP
Japan
Prior art keywords
film
magnetic
magnetization
magnetoresistive
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001245423A
Other languages
Japanese (ja)
Other versions
JP4944315B2 (en
Inventor
Takashi Ikeda
貴司 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001245423A priority Critical patent/JP4944315B2/en
Priority to TW091106511A priority patent/TW560095B/en
Priority to EP02007503A priority patent/EP1248264B1/en
Priority to KR10-2002-0017937A priority patent/KR100498998B1/en
Priority to US10/113,983 priority patent/US6829121B2/en
Priority to CN021198284A priority patent/CN1384503B/en
Priority to DE60223440T priority patent/DE60223440T2/en
Publication of JP2003060261A publication Critical patent/JP2003060261A/en
Application granted granted Critical
Publication of JP4944315B2 publication Critical patent/JP4944315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer

Abstract

PROBLEM TO BE SOLVED: To provide a magnetoresistive effect film which is easy to fabricate for reducing a magnetization reverse field of a vertical magnetized film, without causing reduction in yield or a significant increase in cost, and to provide a memory with small power consumption. SOLUTION: A first magnetic film 111, having magnetized orientation slanted to a vertical direction of the film face in a zero magnetic field and in non-exchange force with another magnetic body, a second magnetic film 112 as a vertically magnetized film, a non-magnetic film 113, and a third magnetic film 114 as a vertically magnetized film, are formed sequentially. The first magnetic film and the second magnetic film are put in exchange coupling. The second magnetic film is so formed that the magnetization is orientated in the vertical direction of the film face, at least near to an interface with the non-magnetic film in a non-magnetic field, or oriented easily in the vertical direction of the film face, when the field is applied in the vertical direction of the film face. The magnetic film, having magnetization slanted to the vertical direction of film face in a zero-magnetic field and in non-exchange force with another magnetic body, is made to exchange couple with the vertically magnetized film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、垂直磁化膜の磁化
反転磁界を低減させる方法を用いた磁気抵抗効果膜、そ
れを備えたメモリ素子及びそれを用いたメモリに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect film using a method of reducing a magnetization reversal field of a perpendicular magnetization film, a memory device having the same, and a memory using the same.

【0002】[0002]

【従来の技術】近年、固体メモリである半導体メモリは
情報機器に多く用いられ、DRAM、FeRAM、フラッシュEEP
ROM等その種類も様々である。これら半導体メモリの特
性は一長一短であり、現在の情報機器において要求され
るスペックのすべてを満たすメモリが存在しない。例え
ば、DRAMは記録密度が高く書き換え可能回数も多いが、
揮発性であり電源を切ると情報は消えてしまう。また、
フラッシュEEPROMは不揮発であるが消去の時間が長く、
情報の高速処理には不向きである。
2. Description of the Related Art In recent years, semiconductor memories, which are solid-state memories, have been widely used in information equipment, and DRAM, FeRAM, flash EEP
There are various types such as ROM. The characteristics of these semiconductor memories have advantages and disadvantages, and there is no memory that meets all of the specifications required in current information devices. For example, DRAM has a high recording density and a large number of rewritable times,
It is volatile and loses information when the power is turned off. Also,
Flash EEPROM is non-volatile, but it takes a long time to erase,
It is not suitable for high-speed processing of information.

【0003】上記のような半導体メモリの現状に対し
て、磁気抵抗効果を用いたメモリ(MRAM)は、記録時間、
読み出し時間、記録密度、書き換え可能回数、消費電力
等において多くの情報機器から求められるスペックをす
べて満たすメモリとして有望である。特にスピン依存ト
ンネル磁気抵抗(TMR)効果を利用したMRAMは、大きな
読み出し信号が得られることから、高記録密度化あるい
は高速読み出しに有利であり、近年の研究報告において
MRAMとしての実現性が実証されている。
In contrast to the current state of the semiconductor memory as described above, a memory (MRAM) using the magnetoresistive effect is
It is promising as a memory that meets all the specifications required by many information devices in terms of read time, recording density, number of rewritable times, power consumption, and the like. In particular, MRAM using the spin-dependent tunneling magnetoresistance (TMR) effect is advantageous for high recording density or high-speed read because a large read signal can be obtained.
The feasibility as MRAM has been proven.

【0004】MRAMの素子として用いられる磁気抵抗効果
膜の基本構成は、非磁性層を介して磁性層が隣接して形
成されたサンドイッチ構造である。非磁性膜として良く
用いられる材料としてCuやAl2O3が挙げられる。磁気抵
抗効果膜において非磁性層にCu等のような導体を用いた
ものを巨大磁気抵抗効果膜(GMR膜)といい、Al2O3など
の絶縁体を用いたものをスピン依存トンネル磁気抵抗効
果膜(TMR膜)という。一般にTMR膜はGMR膜に比べて大
きな磁気抵抗効果を示す。
The basic structure of the magnetoresistive film used as an element of the MRAM is a sandwich structure in which magnetic layers are formed adjacent to each other with a nonmagnetic layer interposed therebetween. Cu and Al 2 O 3 are examples of materials that are often used as the non-magnetic film. A magnetoresistive film that uses a conductor such as Cu for the non-magnetic layer is called a giant magnetoresistive film (GMR film), and a film that uses an insulator such as Al 2 O 3 is a spin-dependent tunnel magnetoresistive film. It is called an effect film (TMR film). Generally, the TMR film exhibits a larger magnetoresistive effect than the GMR film.

【0005】図13(a)に示すように二つの磁性層の
磁化方向が平行であると磁気抵抗効果膜の電気抵抗は比
較的小さく、図13(b)に示すように磁化方向が反平
行であると電気抵抗は比較的大きくなる。したがって、
一方の磁性層を記録層、他方を読み出し層とし、上記の
性質を利用することで情報の読み出しが可能である。例
えば非磁性層12の上部に位置する磁性層13を記録層、下
部に位置する磁性層14を読み出し層とし、記録層の磁化
方向が右向きの場合を『1』、左向きの場合を『0』とす
る。図14(a)に示すように両磁性層の磁化方向が右
向きの場合、磁気抵抗効果膜の電気抵抗は比較的小さ
く、図14(b)に示すように読み出し層の磁化方向が
右向きでかつ記録層の磁化方向が左向きであると電気抵
抗は比較的大きい。また、図14(c)に示すように読
み出し層の磁化方向が左向きでかつ記録層の磁化方向が
右向きであると電気抵抗は比較的大きく、図14(d)
に示すように両磁性層の磁化方向が左向きの場合電気抵
抗は比較的小さい。つまり、読み出し層の磁化方向が右
向きに固定されている場合に、電気抵抗が大きければ、
記録層には『0』が記録されていることになり、電気抵
抗が小さければ、『1』が記録されていることになる。
あるいは、読み出し層の磁化方向が左向きに固定されて
いる場合に、電気抵抗が大きければ、記録層には『1』
が記録されていることになり、電気抵抗が小さければ、
『0』が記録されていることになる。
When the magnetization directions of the two magnetic layers are parallel as shown in FIG. 13A, the electric resistance of the magnetoresistive film is relatively small, and the magnetization directions are antiparallel as shown in FIG. 13B. Then, the electric resistance becomes relatively large. Therefore,
Information can be read by using one of the magnetic layers as a recording layer and the other as a reading layer and utilizing the above properties. For example, the magnetic layer 13 located above the non-magnetic layer 12 is the recording layer, the magnetic layer 14 located below is the reading layer, and the magnetization direction of the recording layer is "1" when the magnetization direction is right, and "0" when the magnetization direction is left. And When the magnetization directions of both magnetic layers are rightward as shown in FIG. 14A, the electric resistance of the magnetoresistive film is relatively small, and as shown in FIG. 14B, the magnetization direction of the read layer is rightward and When the magnetization direction of the recording layer is leftward, the electric resistance is relatively large. Further, as shown in FIG. 14C, when the magnetization direction of the read layer is leftward and the magnetization direction of the recording layer is rightward, the electric resistance is relatively large, and FIG.
As shown in, the electric resistance is relatively small when the magnetization directions of both magnetic layers are leftward. That is, if the magnetization direction of the read layer is fixed to the right and the electric resistance is large,
"0" is recorded in the recording layer, and if the electric resistance is small, "1" is recorded.
Alternatively, if the magnetization direction of the read layer is fixed to the left and the electrical resistance is high, then “1” is added to the recording layer.
Is recorded, and if the electric resistance is small,
"0" is recorded.

【0006】MRAMの記録密度を高くするために、素子サ
イズを小さくしていくと、面内磁化膜を使用したMRAMは
反磁界あるいは端面の磁化のカーリングといった影響か
ら、情報を保持できなくなるという問題が生じる。この
問題を回避するためには、例えば磁性層の形状を長方形
にすることが挙げられるが、この方法では素子サイズが
小さくできないために記録密度の向上があまり期待され
ない。そこで、例えば特開平11-213650号公報で述べら
れているように垂直磁化膜を用いることにより上記問題
を回避しようとする提案がなされている。この方法では
素子サイズが小さくなっても反磁界は増加しないので、
面内磁化膜を用いたMRAMよりも小さなサイズの磁気抵抗
効果膜が実現可能である。
When the element size is reduced in order to increase the recording density of the MRAM, the MRAM using the in-plane magnetized film cannot hold information due to the demagnetizing field or the curling of the end surface magnetization. Occurs. In order to avoid this problem, for example, the shape of the magnetic layer may be made rectangular. However, since the element size cannot be reduced by this method, improvement in recording density is not expected so much. Therefore, for example, as described in Japanese Patent Laid-Open No. 11-213650, a proposal has been made to avoid the above problem by using a perpendicular magnetization film. With this method, the demagnetizing field does not increase even if the element size is reduced,
It is possible to realize a magnetoresistive film having a size smaller than that of an MRAM using an in-plane magnetized film.

【0007】垂直磁化膜を用いた磁気抵抗効果膜は、面
内磁化膜を用いた磁気抵抗効果膜と同様に、二つの磁性
層の磁化方向が平行であると磁気抵抗効果膜の電気抵抗
は比較的小さく、磁化方向が反平行であると電気抵抗は
比較的大きくなる。非磁性層22の上部に位置する磁性層
23を記録層、下部に位置する磁性層21を読み出し層と
し、記録層の磁化方向が上向きの場合を『1』、下向き
の場合を『0』とする。図15(a)に示すように両磁
性層の磁化方向が上向きの場合、磁気抵抗効果膜の電気
抵抗は比較的小さく、図15(c)に示すように読み出
し層の磁化方向が下向きでかつ記録層の磁化方向が上向
きであると電気抵抗は比較的大きくなる。したがって、
『1』が記録された状態で読み出し層の磁化方向が上向
きとなるように磁界を印加した後、さらに読み出し層の
磁化方向が下向きとなるように磁界を印加すると、磁気
抵抗効果膜の電気抵抗は大きくなるように変化し、この
変化から『1』を読み出すことが可能である。ただし、
読み出しのときに印加する磁界は記録層の磁化方向が変
化しないような大きさである。また、図15(b)に示
すように読み出し層の磁化方向が上向きでかつ記録層の
磁化方向が下向きであると電気抵抗は比較的大きくな
り、図15(d)に示すように両磁性層の磁化方向が下
向きの場合電気抵抗は比較的小さくなる。したがって、
『0』が記録されているときには、読み出しの操作を行
うと電気抵抗が小さくなるように変化するので『0』を
読み出すことが可能である。
The magnetoresistive effect film using the perpendicular magnetization film has the same electric resistance as the magnetoresistive effect film using the in-plane magnetization film when the magnetization directions of the two magnetic layers are parallel to each other. If it is relatively small and the magnetization directions are antiparallel, the electrical resistance becomes relatively large. A magnetic layer located above the non-magnetic layer 22
23 is a recording layer, and the magnetic layer 21 located below is a reading layer. The magnetization direction of the recording layer is "1" when the magnetization direction is upward, and "0" when the magnetization direction is downward. When the magnetization directions of both magnetic layers are upward as shown in FIG. 15A, the electric resistance of the magnetoresistive film is relatively small, and as shown in FIG. 15C, the magnetization direction of the read layer is downward and If the magnetization direction of the recording layer is upward, the electric resistance becomes relatively large. Therefore,
When a magnetic field is applied so that the magnetization direction of the readout layer is upward with "1" recorded, and then a magnetic field is applied so that the magnetization direction of the readout layer is downward, the electrical resistance of the magnetoresistive film is increased. Changes so that it becomes larger, and "1" can be read from this change. However,
The magnetic field applied during reading has a magnitude such that the magnetization direction of the recording layer does not change. When the magnetization direction of the read layer is upward and the magnetization direction of the recording layer is downward as shown in FIG. 15B, the electric resistance becomes relatively large, and as shown in FIG. When the magnetization direction is downward, the electric resistance becomes relatively small. Therefore,
When "0" is recorded, the read operation changes so that the electric resistance decreases, so that "0" can be read.

【0008】[0008]

【発明が解決しようとする課題】垂直磁化膜としては、
Gd、Dy、Tb等の希土類金属から選ばれる少なくとも1種
類の元素とCo、Fe、Ni等の遷移金属から選ばれる少なく
とも1種類の元素の合金膜や人工格子膜、Co/Pt等遷移
金属と貴金属の人工格子膜、CoCr等の膜面垂直方向の結
晶磁気異方性を有する合金膜が主として挙げられる。垂
直磁化膜の磁化反転磁界は、一般に遷移金属による面内
磁気異方性を有するそれよりも大きく、例えば面内磁化
膜であるパーマロイの磁化反転磁界が数百A/m程度であ
るのに対し、垂直磁化膜であるCo/Pt人工格子膜では数
十kA/m程度と著しく大きい。希土類金属と遷移金属の合
金膜は、希土類金属の副格子磁化と遷移金属の副格子磁
化が反平行に向くため、膜組成によって見かけ上の磁化
の大きさが異なる。したがってその磁化反転磁界は組成
により異なる。GdFe合金膜は、希土類金属と遷移金属の
合金膜の中でも比較的磁化反転磁界は小さいが、磁化曲
線の角型比が1から小さくなり始める臨界組成付近で通
常数千A/m程度の磁化反転磁界を有する。
As the perpendicular magnetization film,
An alloy film or artificial lattice film of at least one element selected from rare earth metals such as Gd, Dy and Tb and at least one element selected from transition metals such as Co, Fe and Ni, and transition metals such as Co / Pt An artificial lattice film of a noble metal and an alloy film such as CoCr having crystal magnetic anisotropy in the direction perpendicular to the film surface are mainly mentioned. The magnetization reversal field of a perpendicular magnetization film is generally larger than that having an in-plane magnetic anisotropy due to a transition metal. For example, the magnetization reversal field of permalloy, which is an in-plane magnetization film, is about several hundred A / m. In the case of a Co / Pt artificial lattice film which is a perpendicular magnetization film, it is remarkably large at about several tens kA / m. In an alloy film of a rare earth metal and a transition metal, the sublattice magnetization of the rare earth metal and the sublattice magnetization of the transition metal are antiparallel to each other, so that the apparent magnetization magnitude differs depending on the film composition. Therefore, the magnetization reversal field differs depending on the composition. The GdFe alloy film has a relatively small magnetization reversal magnetic field among the alloy films of rare earth metals and transition metals, but the magnetization reversal is usually about several thousand A / m near the critical composition where the squareness ratio of the magnetization curve starts to decrease from 1. Has a magnetic field.

【0009】垂直磁化膜を用いた磁気抵抗効果膜でセン
サーやメモリ等を構成した場合、上記の理由から大きな
磁界を印加しなければ動作しない。したがって、例えば
センサーにおいては浮遊磁界を磁気抵抗効果膜の磁性層
に集中させる必要があり、メモリにおいては大きな磁界
を発生させる工夫が必要になる。メモリに印加する磁界
は一般的に導線に電流を流し発生させるが、特に携帯端
末に用いるメモリの場合、電源容量の制約から大きな電
流を流すことは好ましくない。このため、例えば磁気抵
抗効果膜からなるメモリ素子の周りに磁界を発生させる
ための導線を巻きつけるなどの対応が必要になる。しか
し、このような対応は磁気抵抗効果膜周辺の構造や電気
回路を煩雑にしてしまうため作成が困難になり、歩留ま
りの低下やコストの著しい増加を招いてしまうという問
題がある。
When a sensor, a memory or the like is composed of a magnetoresistive film using a perpendicular magnetization film, it does not operate unless a large magnetic field is applied for the above reason. Therefore, for example, it is necessary to concentrate the stray magnetic field in the magnetic layer of the magnetoresistive film in the sensor, and it is necessary to devise to generate a large magnetic field in the memory. The magnetic field applied to the memory generally causes a current to flow through the conductive wire to generate the current, but especially in the case of a memory used for a mobile terminal, it is not preferable to flow a large current due to the restriction of the power supply capacity. For this reason, for example, it is necessary to take measures such as winding a conducting wire for generating a magnetic field around the memory element made of the magnetoresistive film. However, such a measure complicates the structure around the magnetoresistive effect film and the electric circuit, which makes it difficult to manufacture the magnetoresistive film, resulting in a decrease in yield and a significant increase in cost.

【0010】本発明は、この点に鑑み、垂直磁化膜の磁
化反転磁界を低減させ、作成が容易で歩留まりの低下や
コストの著しい増加を招くことのない磁気抵抗効果膜を
提供することさらには消費電力の少ないメモリを提供す
ることを目的とする。
In view of this point, the present invention provides a magnetoresistive effect film which reduces the magnetization reversal magnetic field of the perpendicular magnetization film, is easy to manufacture, and does not cause a decrease in yield or a significant increase in cost. It is an object to provide a memory with low power consumption.

【0011】[0011]

【課題を解決するための手段】本発明の磁気抵抗効果膜
は、非磁性膜が磁性膜に挟まれている構造を持った磁気
抵抗効果膜において、磁性膜の少なくとも一方が垂直磁
化膜であり、垂直磁化膜に接して,且つ非磁性膜には接
しない位置に、磁化容易軸が膜面垂直方向から傾いてい
る磁性膜を有する。
The magnetoresistive film of the present invention is a magnetoresistive film having a structure in which a non-magnetic film is sandwiched between magnetic films, and at least one of the magnetic films is a perpendicular magnetization film. , A magnetic film having an easy axis of magnetization inclined from the direction perpendicular to the film surface at a position in contact with the perpendicular magnetic film and not in contact with the non-magnetic film.

【0012】また、磁性膜の少なくとも一方の磁化容易
軸が膜面垂直方向から傾いていてもよい。
Further, the easy axis of at least one of the magnetic films may be inclined from the direction perpendicular to the film surface.

【0013】また、磁性膜と磁化容易軸が膜面垂直方向
から傾いている磁性膜とが交換結合していてもよい。ま
た、更に、垂直磁化膜と非磁性膜の間に垂直磁化膜より
もスピン分極率の大きな層が挿入されていてもよい。
The magnetic film may be exchange-coupled with the magnetic film whose easy axis of magnetization is inclined from the direction perpendicular to the film surface. Further, a layer having a spin polarizability larger than that of the perpendicular magnetic film may be inserted between the perpendicular magnetic film and the non-magnetic film.

【0014】また、垂直磁化膜とスピン分極率の大きな
層が交換結合していてもよい。
Further, the perpendicular magnetization film and the layer having a large spin polarization may be exchange-coupled.

【0015】また、磁化容易軸が膜面垂直方向から傾い
ている第一の磁性膜と、第二の磁性膜と、非磁性膜と、
第三の磁性膜と、磁化容易軸が膜面垂直方向から傾いて
いる第四の磁性膜とがこの順に形成され、少なくとも第
二の磁性膜もしくは第三の磁性膜のどちらか一方が垂直
磁化膜であり、第一の磁性膜と第二の磁性膜、および第
三の磁性膜と第四の磁性膜がそれぞれ交換結合していて
もよい。
Further, a first magnetic film having an axis of easy magnetization inclined from a direction perpendicular to the film surface, a second magnetic film, and a non-magnetic film,
A third magnetic film and a fourth magnetic film having an easy axis of magnetization inclined from the direction perpendicular to the film surface are formed in this order, and at least one of the second magnetic film and the third magnetic film is perpendicularly magnetized. The first magnetic film and the second magnetic film, and the third magnetic film and the fourth magnetic film may be exchange-coupled, respectively.

【0016】また、第二の磁性膜もしくは第三の磁性膜
の少なくとも一方の磁化容易軸が膜面垂直方向から傾い
ていてもよい。
Further, the easy magnetization axis of at least one of the second magnetic film and the third magnetic film may be inclined from the direction perpendicular to the film surface.

【0017】また、第二の磁性膜と非磁性膜との間に第
二の磁性膜よりもスピン分極率の大きな層が形成されて
いてもよい。
A layer having a spin polarizability larger than that of the second magnetic film may be formed between the second magnetic film and the non-magnetic film.

【0018】また、更に、第三の磁性膜と非磁性膜との
間に第三の磁性膜よりもスピン分極率の大きな層が形成
されていてもよい。
Further, a layer having a spin polarizability larger than that of the third magnetic film may be formed between the third magnetic film and the non-magnetic film.

【0019】また、スピン分極率の大きな層と第二の磁
性膜、及びスピン分極率の大きな層と第三の磁性膜が交
換結合していてもよい。
Further, the layer having a large spin polarization and the second magnetic film, and the layer having a large spin polarization and the third magnetic film may be exchange-coupled.

【0020】また、スピン分極率の大きな層が粒形状で
あってもよい。
The layer having a large spin polarizability may have a grain shape.

【0021】また、磁化容易軸が膜面垂直方向から傾い
ている磁性膜の磁化が、4kA/m以下の大きさの磁界によ
って、膜面垂直方向に向いてもよい。
The magnetization of the magnetic film whose easy axis of magnetization is inclined from the direction perpendicular to the film surface may be oriented in the direction perpendicular to the film surface by a magnetic field having a magnitude of 4 kA / m or less.

【0022】また、磁化容易軸が膜面垂直方向から傾い
た方向に向いている磁性膜の磁化が、垂直磁化膜と交換
結合している状態において、少なくとも部分的に膜面垂
直方向に対して傾いていてもよい。
Further, in a state where the magnetization of the magnetic film whose easy axis of magnetization is oriented in a direction inclined from the direction perpendicular to the film surface is exchange-coupled with the perpendicular magnetization film, at least partially with respect to the direction perpendicular to the film surface. You may lean.

【0023】また、垂直磁化膜がフェリ磁性体であって
もよい。
The perpendicularly magnetized film may be a ferrimagnetic material.

【0024】また、フェリ磁性体が希土類金属と遷移金
属の合金であってもよい。
Further, the ferrimagnetic material may be an alloy of a rare earth metal and a transition metal.

【0025】また、希土類金属と遷移金属の合金が非晶
質であってもよい。
The alloy of rare earth metal and transition metal may be amorphous.

【0026】また、フェリ磁性体が希土類金属と遷移金
属の人工格子膜であってもよい。
The ferrimagnetic material may be an artificial lattice film of rare earth metal and transition metal.

【0027】また、希土類金属がGd、Tb、Dyから選ばれ
る1種類以上の元素であり、遷移金属がFe、Co、Niから
選ばれる1種類以上の元素であってもよい。
The rare earth metal may be at least one element selected from Gd, Tb and Dy, and the transition metal may be at least one element selected from Fe, Co and Ni.

【0028】また、非磁性膜が絶縁体であってもよい。The non-magnetic film may be an insulator.

【0029】本発明のメモリ素子は、上述の磁気抵抗効
果膜を備えたメモリ素子において、磁気抵抗効果膜の膜
面垂直方向に磁界を印加する手段と、磁気抵抗効果膜の
電気抵抗を検出する手段とを備えている。
The memory element of the present invention is, in the memory element having the above-mentioned magnetoresistive effect film, means for applying a magnetic field in the direction perpendicular to the film surface of the magnetoresistive effect film and electric resistance of the magnetoresistive effect film. And means.

【0030】また、磁界を印加する手段が導線であって
もよい。
The means for applying the magnetic field may be a conducting wire.

【0031】また、更に、磁気抵抗効果膜の膜面垂直方
向から傾いた方向に磁界を印加する手段を備えていても
よい。
Further, a means for applying a magnetic field in a direction inclined from the direction perpendicular to the film surface of the magnetoresistive film may be provided.

【0032】本発明のメモリは、上述の磁気抵抗効果膜
をメモリ素子として用いたメモリにおいて、情報の記録
時に、非磁性膜を挟んでいる磁性膜のうち、磁化容易軸
が膜面垂直方向から傾いている磁性膜と接して設けられ
ている磁性膜の磁化方向を変化させ、他方の磁性膜の磁
化方向は変化させずに情報の記録再生を行なう。
The memory of the present invention is a memory using the above magnetoresistive film as a memory element, and in the recording of information, among the magnetic films sandwiching the non-magnetic film, the easy axis of magnetization is from the direction perpendicular to the film surface. Information is recorded / reproduced by changing the magnetization direction of the magnetic film provided in contact with the tilted magnetic film and without changing the magnetization direction of the other magnetic film.

【0033】また、非磁性膜に接して形成されている磁
性膜のうち、零磁場中で磁化が膜面垂直方向に向いてい
る磁性膜を記録層とし、磁化が膜面垂直方向から傾いて
いる磁性膜を読み出し層としてもよい。
Of the magnetic films formed in contact with the non-magnetic film, the magnetic film whose magnetization is oriented in the direction perpendicular to the film surface in a zero magnetic field is used as the recording layer, and the magnetization is inclined from the direction perpendicular to the film surface. The read magnetic layer may be a magnetic film.

【0034】また、記録あるいは読み出し時に印加され
る磁界に対して、非磁性膜に隣接して形成されている磁
性膜のうち、非磁性膜の一方の膜面に接して形成されて
いる磁性膜の磁化は反転することなく、非磁性膜の他方
の膜面に接して形成されている磁性膜の磁化は反転して
もよい。
Further, of the magnetic films formed adjacent to the non-magnetic film against the magnetic field applied at the time of recording or reading, the magnetic film formed in contact with one surface of the non-magnetic film. The magnetization of the magnetic film formed in contact with the other film surface of the non-magnetic film may be reversed without reversing the magnetization.

【0035】また、磁気抵抗効果膜を複数配列し、所望
の磁気抵抗効果膜に選択的に記録する手段と、所望の磁
気抵抗効果膜に記録された情報を選択的に読み出す手段
とを備えてもよい。
Further, there are provided means for arranging a plurality of magnetoresistive effect films and selectively recording on the desired magnetoresistive effect film, and means for selectively reading out information recorded on the desired magnetoresistive effect film. Good.

【0036】従って、本発明の磁気抵抗効果膜は、比較
的小さな磁界で磁化反転可能であり、特にこの磁気抵抗
効果膜を用いたメモリは消費電力を少なくすることが可
能である。
Therefore, the magnetoresistive effect film of the present invention is capable of reversing the magnetization with a comparatively small magnetic field, and particularly the memory using this magnetoresistive effect film can reduce the power consumption.

【0037】[0037]

【発明の実施の形態】本発明の磁気抵抗効果膜の一例を
図1に示す。無磁場中でかつ他の磁性体との交換力が働
いていない状態で磁化が膜面垂直方向から傾いた方向に
向いている磁性膜、すなわち磁化容易軸が膜面垂直方向
から傾いている第一の磁性膜111、垂直磁化膜である第
二の磁性膜112、非磁性膜113および垂直磁化膜である第
三の磁性膜114が順次形成されている。第一の磁性膜111
と第二の磁性膜112は交換結合している。第二の磁性膜1
12の磁化は、零磁場において少なくとも非磁性膜113と
の界面付近では膜面垂直方向に向いているか、あるいは
膜面垂直方向に磁界を印加したときには容易に膜面垂直
方向に向くようにしておく。MRAMにおいて、導線に流す
電流密度の制限から、メモリ素子に印加可能な磁界の大
きさは4kA/m以下にすることが好ましい。従って零磁場
中で膜面垂直方向から傾いている磁化は4kA/m以下の大
きさの磁界を印加することにより垂直方向に向くように
しておく。垂直磁化膜に無磁場中でかつ他の磁性体との
交換力が働いていない状態で磁化が膜面垂直方向から傾
いた方向に向いている磁性膜を交換結合させると、垂直
磁化膜は、垂直磁気異方性が見かけ上減少する。したが
って、膜面垂直方向での磁化反転磁界を小さくすること
が可能である。
1 shows an example of a magnetoresistive effect film of the present invention. A magnetic film in which the magnetization is oriented in a direction tilted from the direction perpendicular to the film surface in the absence of a magnetic field and in the state where the exchange force with other magnetic materials is not working, that is, the easy axis of magnetization is tilted from the direction perpendicular to the film surface. One magnetic film 111, a second magnetic film 112 that is a perpendicular magnetization film, a non-magnetic film 113, and a third magnetic film 114 that is a perpendicular magnetization film are sequentially formed. First magnetic film 111
And the second magnetic film 112 are exchange-coupled. Second magnetic film 1
The magnetization of 12 is oriented in the direction perpendicular to the film surface at least in the vicinity of the interface with the non-magnetic film 113 at zero magnetic field, or is easily oriented in the direction perpendicular to the film surface when a magnetic field is applied in the direction perpendicular to the film surface. . In the MRAM, the magnitude of the magnetic field that can be applied to the memory element is preferably 4 kA / m or less because of the limitation of the current density flowing in the conductor. Therefore, the magnetization tilted from the direction perpendicular to the film surface in the zero magnetic field should be oriented in the perpendicular direction by applying a magnetic field of 4 kA / m or less. When a magnetic film whose magnetization is oriented in a direction tilted from the direction perpendicular to the film surface is exchange-coupled to the perpendicular magnetic film in the absence of a magnetic field and the exchange force with other magnetic substances is not acting, the perpendicular magnetic film is Perpendicular magnetic anisotropy is apparently reduced. Therefore, it is possible to reduce the magnetization reversal magnetic field in the direction perpendicular to the film surface.

【0038】垂直磁化膜と面内磁化膜の交換結合膜を用
いた磁気抵抗効果膜が、特開2000-306374号公報におい
て開示されている。本発明がこれに対して大きく異なる
点は、磁化が膜面垂直方向から傾いた方向に向いている
磁性膜を配する位置である。特開2000-306374号公報で
は、大きな磁気抵抗効果を得ることを目的とし、大きな
スピン分極率を有する磁性膜を非磁性膜に接する様に形
成することを手段としている。大きなスピン分極率を有
する磁性膜に面内磁化膜が用いられているが、該磁性膜
の磁化は膜面垂直方向に向いている必要があり、これは
接して形成されている垂直磁化膜との交換結合力によっ
て達成されている。
A magnetoresistance effect film using an exchange coupling film of a perpendicular magnetization film and an in-plane magnetization film is disclosed in Japanese Patent Laid-Open No. 2000-306374. The major difference of the present invention from this is the position of the magnetic film whose magnetization is oriented in a direction inclined from the direction perpendicular to the film surface. Japanese Patent Laid-Open No. 2000-306374 aims at obtaining a large magnetoresistive effect, and has a means of forming a magnetic film having a large spin polarizability in contact with a nonmagnetic film. An in-plane magnetized film is used as a magnetic film having a large spin polarizability, but the magnetization of the magnetic film needs to be oriented in the direction perpendicular to the film surface. Is achieved by the exchange coupling force of.

【0039】これに対して本発明は、膜面垂直方向に印
加する磁界に対する磁化反転磁界を減少させることを目
的としており、無磁場中でかつ他の磁性体との交換力が
働いていない状態で磁化が膜面垂直方向から傾いた方向
に向いている磁性膜は非磁性膜とは接しておらず、該磁
性膜の磁化は膜面垂直方向に向いている必要は無い。
On the other hand, the present invention is intended to reduce the magnetization reversal magnetic field with respect to the magnetic field applied in the direction perpendicular to the film surface, and in the absence of magnetic field and in the state in which the exchange force with other magnetic materials is not working. The magnetic film whose magnetization is oriented in a direction inclined from the direction perpendicular to the film surface is not in contact with the non-magnetic film, and the magnetization of the magnetic film need not be oriented perpendicular to the film surface.

【0040】無磁場中でかつ他の磁性体との交換力が働
いていない状態で磁化が膜面垂直方向から傾いた方向に
向いている磁性膜を非磁性膜に接する様に形成しても接
しないように形成しても、該磁性膜と垂直磁化膜の交換
結合膜の磁化反転磁界は、垂直磁化膜単層の場合のそれ
よりも減少する。しかし、膜面垂直方向の磁化反転は、
磁化が膜面垂直方向から傾いた方向に向いている磁性膜
の膜厚に依存しており、磁性膜の膜厚は磁化反転磁界の
大きさによって決められる。特開2000-306374号公報で
は、上記のように磁化を膜面垂直方向に向ける必要があ
るために面内磁化膜の膜厚を厚くすることができず、面
内磁化膜の膜厚を2nm以下にする必要があるために、磁
化反転磁界の減少量はあまり期待できない。これに対し
て本発明の磁気抵抗効果膜では、磁化が膜面垂直方向か
ら傾いた方向に向いている磁性膜の磁化を膜面垂直方向
に向ける必要がないので、該磁性膜の膜厚を比較的厚く
することが可能であり、そのために膜面垂直方向での磁
化反転磁界を十分に小さくすることが容易である。
Even if a magnetic film whose magnetization is oriented in a direction inclined from the direction perpendicular to the film surface is formed in contact with the non-magnetic film in the absence of a magnetic field and in the state where the exchange force with other magnetic material is not working. Even if they are formed so as not to be in contact with each other, the magnetization reversal field of the exchange coupling film between the magnetic film and the perpendicular magnetization film is smaller than that in the case of the single perpendicular magnetization film. However, the magnetization reversal in the direction perpendicular to the film plane is
The magnetization depends on the film thickness of the magnetic film oriented in a direction inclined from the direction perpendicular to the film surface, and the film thickness of the magnetic film is determined by the magnitude of the magnetization reversal magnetic field. In JP-A-2000-306374, the film thickness of the in-plane magnetized film cannot be increased because the magnetization needs to be oriented in the direction perpendicular to the film surface as described above, and the film thickness of the in-plane magnetized film is 2 nm. The amount of decrease in the magnetization reversal magnetic field cannot be expected so much because it needs to be below. On the other hand, in the magnetoresistive film of the present invention, the magnetization of the magnetic film whose magnetization is oriented in the direction inclined from the direction perpendicular to the film surface does not need to be oriented in the direction perpendicular to the film surface. It is possible to make it relatively thick, and therefore it is easy to make the magnetization reversal field in the direction perpendicular to the film surface sufficiently small.

【0041】上述したように図1に記載の膜構成が本発
明の実施の形態の一例として挙げられる。第二の磁性膜
112と交換結合している状態で、第一の磁性膜111の磁化
は膜面垂直方向に向いていても、膜面垂直方向から傾い
ていても構わない。ただし、磁化が膜面垂直方向から傾
いている磁気抵抗効果膜をメモリ素子として用いる場
合、第三の磁性膜114の磁化と第二の磁性膜112の磁化は
どちらも反転可能であることが必要であり、第三の磁性
膜114を記録層、第二の磁性膜112を読み出し層とする。
導線に電流を流し、この電流によって発生する磁界で記
録を行う場合、一般に4 kA/mよりも大きな磁界を発生さ
せることは難しく、したがって、第三の磁性膜114への
記録は4 kA/m以下の磁界で行われることが好ましく、読
み出しの際には、膜面垂直方向から傾いている第二の磁
性膜112の磁化が、第三の磁性膜114の磁化の反転磁界よ
りも小さい磁界によって膜面垂直方向に向くことが好ま
しい。また、第二の磁性膜112の磁化は、第三の磁性膜1
14の磁化よりも小さな磁界によって反転する。
As described above, the film structure shown in FIG. 1 can be cited as an example of the embodiment of the present invention. Second magnetic film
In the state of being exchange-coupled with 112, the magnetization of the first magnetic film 111 may be oriented in the direction perpendicular to the film surface or may be inclined from the direction perpendicular to the film surface. However, when a magnetoresistive effect film whose magnetization is inclined from the direction perpendicular to the film surface is used as a memory element, both the magnetization of the third magnetic film 114 and the magnetization of the second magnetic film 112 must be reversible. Therefore, the third magnetic film 114 is used as the recording layer and the second magnetic film 112 is used as the reading layer.
When a current is applied to the conductor and recording is performed with a magnetic field generated by this current, it is generally difficult to generate a magnetic field larger than 4 kA / m. Therefore, recording on the third magnetic film 114 is 4 kA / m. It is preferable that the magnetic field is set to the following magnetic field, and at the time of reading, the magnetization of the second magnetic film 112 inclined from the direction perpendicular to the film surface is smaller than the reversal magnetic field of the magnetization of the third magnetic film 114. It is preferable to face the direction perpendicular to the film surface. The magnetization of the second magnetic film 112 is the same as that of the third magnetic film 1.
It is inverted by a magnetic field smaller than the magnetization of 14.

【0042】垂直磁化膜としては、上述のようにGd、D
y、Tb等の希土類金属から選ばれる少なくとも1種類の
元素とCo、Fe、Ni等の遷移金属から選ばれる少なくとも
1種類の元素の合金膜や人工格子膜、Co/Pt等遷移金属
と貴金属の人工格子膜、CoCr等の膜面垂直方向の結晶磁
気異方性を有する合金膜が主として使用可能である。無
磁場中でかつ他の磁性体との交換力が働いていない状態
で磁化が膜面垂直方向から傾いた方向に向いている磁性
膜としては、上記の垂直磁気異方性を有する磁性膜と同
様の材料を用いて、Ku−2πMs2<0となるように成膜条件
を調整することにより得られる。これによって磁化容易
軸が膜面垂直方向から傾いた磁性膜を得ることができ
る。ここでKuは垂直磁気異方性エネルギー定数、Msは飽
和磁化の大きさである。また、Co、Fe、Ni等の遷移金属
から選ばれる1種類の元素からなる膜、あるいは2種類
以上の元素からなる合金膜を用いて成る面内磁化膜も使
用可能である。
As the perpendicular magnetization film, as described above, Gd, D
An alloy film or artificial lattice film of at least one element selected from rare earth metals such as y and Tb and at least one element selected from transition metals such as Co, Fe and Ni, and transition metals such as Co / Pt and noble metals An artificial lattice film, an alloy film such as CoCr having crystal magnetic anisotropy in the direction perpendicular to the film surface can be mainly used. As a magnetic film in which the magnetization is oriented in a direction inclined from the direction perpendicular to the film surface in the absence of a magnetic field and in the state where the exchange force with other magnetic materials is not working, a magnetic film having the above perpendicular magnetic anisotropy is used. It can be obtained by using the same material and adjusting the film forming conditions so that Ku−2πMs 2 <0. This makes it possible to obtain a magnetic film in which the axis of easy magnetization is inclined from the direction perpendicular to the film surface. Here, Ku is the perpendicular magnetic anisotropy energy constant, and Ms is the magnitude of saturation magnetization. Also, an in-plane magnetized film formed by using a film made of one kind of element selected from transition metals such as Co, Fe, and Ni or an alloy film made of two or more kinds of elements can be used.

【0043】非磁性膜113としては、CuやCr等の導体あ
るいはAl2O3やNiO等の絶縁体が使用可能である。非磁性
膜113に絶縁体を用いた場合、比較的大きな磁気抵抗変
化が得られるので、メモリ素子として利用する場合には
好ましい。
As the non-magnetic film 113, a conductor such as Cu or Cr or an insulator such as Al 2 O 3 or NiO can be used. When an insulator is used for the nonmagnetic film 113, a relatively large magnetoresistance change can be obtained, which is preferable when used as a memory element.

【0044】図1に示す膜構成の磁気抵抗効果膜をメモ
リ素子として用いる場合、第二の磁性膜112の磁化は印
加される磁界によって反転可能であり、第三の磁性膜11
4の磁化は反転可能であっても不可能であってもどちら
でも良い。ただし、第三の磁性膜114の磁化が反転不可
能である場合は、読み出しの際に、記録されている情報
を破壊しないために、磁化方向を変化させることなく、
素子の電圧を直接読み取ることが好ましい。第三の磁性
膜114の磁化が反転可能である場合には、比較的磁化反
転磁界の小さな、第一の磁性膜111と第二の磁性膜112の
交換結合膜を読み出し層とし、比較的磁化反転磁界の大
きな第三の磁性膜114を記録層とすることが可能であ
り、第二の磁性膜112の磁化方向を反転させることによ
り生じる素子の電圧変化を読み取ることによって、記録
されている情報を非破壊で読み出すことが可能である。
When the magnetoresistive film having the film structure shown in FIG. 1 is used as a memory element, the magnetization of the second magnetic film 112 can be reversed by the applied magnetic field, and the third magnetic film 11 can be inverted.
The magnetization of 4 may or may not be reversible. However, when the magnetization of the third magnetic film 114 is non-reversible, the recorded information is not destroyed at the time of reading, so that the magnetization direction is not changed,
It is preferable to directly read the voltage of the device. When the magnetization of the third magnetic film 114 is reversible, the exchange coupling film of the first magnetic film 111 and the second magnetic film 112, which has a relatively small magnetization reversal magnetic field, is used as the read layer, and the magnetization of the third magnetic film 114 is relatively high. The third magnetic film 114 having a large reversal magnetic field can be used as a recording layer, and information recorded by reading the voltage change of the element caused by reversing the magnetization direction of the second magnetic film 112 is recorded. Can be read nondestructively.

【0045】図2は本発明の実施の形態の一例である膜
構成を模式的に示す断面図であり、第四の磁性膜115が
形成されている点が図1に示す膜構成と異なる。第四の
磁性膜115は、無磁場中でかつ他の磁性体との交換力が
働いていない状態で磁化が膜面垂直方向から傾いた方向
に向いている磁性膜であり、第三の磁性膜114と交換結
合している。つまり、第一の磁性膜111と同様に垂直磁
化膜の磁化反転磁界を小さくする働きをするものであ
る。このような構成にすることによって、第二の磁性膜
112および第三の磁性膜114のどちらも小さな印加磁界で
磁化反転可能である。ただし、第二の磁性膜112の磁化
反転磁界と第三の磁性膜114の磁化反転磁界の大きさは
異なる。このような構成の磁気抵抗効果膜をメモリとし
て用いる場合、第一の磁性膜111と第二の磁性膜112の交
換結合膜と第三の磁性膜114と第四の磁性膜115の交換結
合膜のうち、磁化反転磁界の比較的小さな方を読み出し
層、磁化反転磁界の比較的大きな方を記録層とする。磁
化反転磁界の大きさは、各磁性膜の組成、膜厚あるいは
成膜条件等によって調節することが可能である。
FIG. 2 is a cross-sectional view schematically showing a film structure as an example of the embodiment of the present invention, which is different from the film structure shown in FIG. 1 in that a fourth magnetic film 115 is formed. The fourth magnetic film 115 is a magnetic film in which the magnetization is oriented in a direction inclined from the direction perpendicular to the film surface in the absence of a magnetic field and in the state where the exchange force with another magnetic body is not working, and the third magnetic film 115 Exchange coupled with membrane 114. That is, like the first magnetic film 111, it functions to reduce the magnetization reversal field of the perpendicular magnetization film. With such a structure, the second magnetic film
Both the 112 and the third magnetic film 114 can be magnetized by a small applied magnetic field. However, the magnitudes of the magnetization reversal magnetic field of the second magnetic film 112 and the third magnetic film 114 are different. When the magnetoresistive film having such a structure is used as a memory, the exchange coupling film of the first magnetic film 111 and the second magnetic film 112, the exchange coupling film of the third magnetic film 114 and the fourth magnetic film 115. Among them, the one having a relatively small magnetization reversal magnetic field is the reading layer and the one having a relatively large magnetization reversal magnetic field is the recording layer. The magnitude of the magnetization reversal magnetic field can be adjusted by the composition, film thickness, film forming conditions, etc. of each magnetic film.

【0046】さらに図3のように非磁性膜113と磁性膜
の界面にスピン分極率の大きな材料からなる磁性膜116
や117を形成し、磁気抵抗を大きくすることも可能であ
る。図3においては両界面にそのような膜を形成してい
るが、どちらか一方のみ形成しても良い。界面に形成さ
れる磁性膜116や117は磁化が膜面垂直方向から傾いた方
向に向いているものでも垂直磁化膜でもどちらでも構わ
ないが、それぞれ第二の磁性膜112および第三の磁性膜1
14と交換結合した状態では、非磁性膜113との界面付近
の磁化は膜面垂直に向いている必要がある。
Further, as shown in FIG. 3, a magnetic film 116 made of a material having a large spin polarizability is formed at the interface between the non-magnetic film 113 and the magnetic film.
It is also possible to form or 117 to increase the magnetic resistance. Although such films are formed on both interfaces in FIG. 3, only one of them may be formed. The magnetic films 116 and 117 formed on the interface may be either those whose magnetization is oriented in a direction inclined from the direction perpendicular to the film surface or which are perpendicularly magnetized films. The second magnetic film 112 and the third magnetic film are respectively formed. 1
In the state of being exchange-coupled with 14, the magnetization in the vicinity of the interface with the non-magnetic film 113 needs to be oriented perpendicular to the film surface.

【0047】また、磁性膜116や磁性膜117は、粒形状で
あっても良い。
The magnetic film 116 and the magnetic film 117 may have a grain shape.

【0048】上記の本発明の磁気抵抗効果膜において、
非磁性膜はCu等の金属でも良いし、Al2O3等の誘電体で
あっても良いが、メモリとして用いる場合、非磁性膜を
誘電体とした方が磁気抵抗変化が大きいので好ましい。
In the above magnetoresistive film of the present invention,
The non-magnetic film may be a metal such as Cu or a dielectric such as Al 2 O 3 , but when used as a memory, it is preferable to use a non-magnetic film as a dielectric because a change in magnetic resistance is large.

【0049】上記のようないずれかの膜構成の磁気抵抗
効果膜を複数個並べて配し、所望の一素子にのみ比較的
大きな磁界を印加することにより、選択的に記録が可能
なメモリセルとすることができる。
By arranging a plurality of magnetoresistive films having any one of the above film configurations side by side and applying a relatively large magnetic field to only one desired element, a memory cell capable of selective recording is obtained. can do.

【0050】[0050]

【実施例】(実施例−1)図4は本発明の磁気抵抗効果
膜を模式的に示した断面図である。基板001としてSiウ
エハーを用い、この表面を酸化処理し約1μmのSiO2膜00
2が形成されている。SiO2膜002上部に第一の磁性膜111
として面内磁化膜である5nmの膜厚のFe膜、第二の磁性
膜112として垂直磁化膜である30nmの膜厚のGd20Fe
80膜、非磁性膜113として2nmの膜厚のAl2O3膜、第三の
磁性膜114として垂直磁化膜である10nmのTb22Fe78膜、
保護膜118として5nmのPt膜を順次形成した。ここで、Fe
膜とGd20Fe8 0膜は交換結合しており、Pt膜は磁性膜の酸
化等の腐食を防ぐための保護膜である。Gd20Fe80膜およ
びTb22Fe78膜はどちらも遷移金属副格子磁化優勢であ
る。次に得られた多層膜の上部に1μm角のレジスト膜を
形成し、ドライエッチングによってレジストに覆われて
いない部分のPt膜およびTb22Fe78膜を除去した。エッチ
ング後15nmの膜厚のAl2O3膜を成膜し、さらにレジスト
およびその上部のAl2O3膜を除去し、上部電極とFe膜お
よびGd20Fe80膜からなる下部電極との短絡を防ぐための
絶縁膜121を形成した。その後、リフトオフ法によって
上部電極122をAl膜により作成し、上部電極からずれた
位置のAl2O3膜を除去して測定回路を接続するための電
極パットとした。さらに得られた磁気抵抗効果膜は膜面
垂直方向に2MA/mの磁界を印加し、Tb22Fe78膜の磁化を
印加磁界方向に向け着磁を行った。ただし、1cm角のTb
22Fe78膜の保磁力は1.6MA/mと大きな値を示し、得られ
た磁気抵抗効果膜の保磁力も同程度の大きな値を示すと
予想される。
EXAMPLE 1 FIG. 4 is a sectional view schematically showing the magnetoresistive film of the present invention. A Si wafer is used as the substrate 001, and its surface is oxidized to a SiO 2 film of about 1 μm 00
2 is formed. The first magnetic film 111 is formed on the SiO 2 film 002.
As an in-plane magnetized film, a Fe film with a thickness of 5 nm, and as the second magnetic film 112, a perpendicularly magnetized film with a thickness of 30 nm of Gd 20 Fe.
80 film, 2 nm thick Al 2 O 3 film as the non-magnetic film 113, 10 nm Tb 22 Fe 78 film which is a perpendicular magnetization film as the third magnetic film 114,
As the protective film 118, a 5 nm Pt film was sequentially formed. Where Fe
Film and Gd 20 Fe 8 0 film is exchange-coupled, Pt film is a protective film for preventing corrosion such as oxidation of the magnetic film. Both the Gd 20 Fe 80 film and the Tb 22 Fe 78 film are dominant in the transition metal sublattice magnetization. Next, a 1 μm square resist film was formed on the obtained multilayer film, and the Pt film and the Tb 22 Fe 78 film in the portion not covered with the resist were removed by dry etching. After etching, form an Al 2 O 3 film with a thickness of 15 nm, remove the resist and the Al 2 O 3 film above it, and short-circuit the upper electrode and the lower electrode consisting of the Fe film and Gd 20 Fe 80 film. An insulating film 121 was formed to prevent this. After that, the upper electrode 122 was formed of an Al film by the lift-off method, and the Al 2 O 3 film at a position deviated from the upper electrode was removed to form an electrode pad for connecting a measurement circuit. Further, the obtained magnetoresistive film was magnetized by applying a magnetic field of 2 MA / m in the direction perpendicular to the film surface and directing the magnetization of the Tb 22 Fe 78 film in the direction of the applied magnetic field. However, 1 cm square Tb
The coercive force of the 22 Fe 78 film is as large as 1.6 MA / m, and the coercive force of the obtained magnetoresistive film is expected to be as large as that.

【0051】磁気抵抗効果膜の上部電極と下部電極に定
電流電源を接続してGd20Fe80膜とTb 22Fe78膜の間のAl2O
3膜を電子がトンネルするように一定電流を流す。磁気
抵抗効果膜の膜面に垂直方向に磁界を印加し、その大き
さと方向を変えることにより磁気抵抗効果膜の電圧の変
化(磁気抵抗曲線)を測定した。その結果を図8に示
す。この測定結果によると磁化反転は約3kA/mであっ
た。
The upper and lower electrodes of the magnetoresistive film are fixed.
Connect current power supply and Gd20Fe80Membrane and Tb twenty twoFe78Al between the membranes2O
3A constant current is passed so that electrons tunnel through the film. Magnetic
Applying a magnetic field in the direction perpendicular to the film surface of the resistance effect film,
And the direction of the magnetoresistive film.
Was measured (magnetoresistance curve). The result is shown in Fig. 8.
You According to this measurement result, the magnetization reversal is about 3 kA / m.
It was

【0052】(実施例−2)図6は本発明の磁気抵抗効
果膜を模式的に示した断面図である。基板001としてSi
ウエハーを用い、この表面を酸化処理し約1μmのSiO2
002が形成されている。SiO2膜002上部に第一の磁性膜11
1として面内磁化膜である3nmの膜厚のFe膜、第二の磁性
膜112として垂直磁化膜である50nmの膜厚のGd25Fe
75膜、第二の磁性膜よりも大きなスピン分極率を示す第
五の磁性膜116として面内磁化膜である1nmの膜厚のCo50
Fe50膜、非磁性膜113として2nmの膜厚のAl2O3膜、さら
に第三の磁性膜よりも大きなスピン分極率を示す第六の
磁性膜117として面内磁化膜である1nmの膜厚のCo50Fe50
膜、第三の磁性膜114として垂直磁化膜である30nmの膜
厚のTb25Fe75膜、第四の磁性膜115として面内磁化膜で
ある3nmの膜厚のFe膜、保護膜118として5nmのPt膜を順
次形成した。ここで、Fe膜とGd25Fe75膜、Gd25Fe75膜と
Co50Fe50膜はそれぞれ交換結合しており、さらにCo50Fe
50膜とTb25Fe75膜、Tb 25Fe75膜とFe膜はそれぞれ交換結
合している。Gd25Fe75膜とTb25Fe75膜はどちらも希土類
金属副格子磁化優勢である。2層のCo50Fe50膜はGd25Fe
75膜やTb25Fe75膜よりもスピン分極率が大きく、その磁
化の方向は交換結合力により膜面垂直方向に向いてい
る。Pt膜は磁性膜の酸化等の腐食を防ぐための保護膜で
ある。次に得られた多層膜の上部に1μm角のレジスト膜
を形成し、ドライエッチングによってレジストに覆われ
ていない部分のPt膜およびTb25Fe75膜を除去した。エッ
チング後39nmの膜厚のAl2O3膜を成膜し、さらにレジス
トおよびその上部のAl2O3膜を除去し、上部電極とFe膜
およびGd25Fe75膜からなる下部電極との短絡を防ぐため
の絶縁膜121を形成した。その後、リフトオフ法によっ
て上部電極122をAl膜により作成し、上部電極からずれ
た位置のAl2O3膜を除去して測定回路を接続するための
電極パットとした。
(Example-2) FIG. 6 shows the magnetoresistive effect of the present invention.
It is sectional drawing which showed the peritoneum typically. Si as substrate 001
Using a wafer, this surface is oxidized and the SiO2 film is about 1 μm.2film
002 is formed. SiO2First magnetic film 11 on top of film 002
1 as an in-plane magnetized film, a 3 nm thick Fe film, the second magnetic
As the film 112, a Gd film having a film thickness of 50 nm, which is a perpendicular magnetization film, is used.twenty fiveFe
75The film, which exhibits a spin polarizability greater than that of the second magnetic film
As the magnetic film 116 of the fifth example, Co having a film thickness of 1 nm, which is an in-plane magnetized film, is used.50
Fe502 nm thick Al film and non-magnetic film 1132O3Membrane, further
The sixth magnetic film showing a spin polarizability larger than that of the third magnetic film.
As the magnetic film 117, an in-plane magnetized film of 1 nm thick Co50Fe50
Film, 30 nm film that is a perpendicular magnetization film as the third magnetic film 114
Thick Tbtwenty fiveFe75Film, an in-plane magnetized film as the fourth magnetic film 115
An Fe film with a thickness of 3 nm and a Pt film with a thickness of 5 nm are formed in order as the protective film 118.
Formed next. Where Fe film and Gdtwenty fiveFe75Membrane, Gdtwenty fiveFe75With a membrane
Co50Fe50The membranes are exchange-coupled and Co50Fe
50Membrane and Tbtwenty fiveFe75Membrane, Tb twenty fiveFe75Exchanged film and Fe film
I am fit. Gdtwenty fiveFe75Membrane and Tbtwenty fiveFe75Both films are rare earth
The metal sublattice magnetization is dominant. 2 layers of Co50Fe50Membrane is Gdtwenty fiveFe
75Membrane or Tbtwenty fiveFe75The spin polarizability is larger than that of the film, and its magnetic
The direction of crystallization is in the direction perpendicular to the membrane surface due to the exchange coupling force.
It The Pt film is a protective film to prevent corrosion such as oxidation of the magnetic film.
is there. Next, a 1 μm square resist film is formed on top of the obtained multilayer film.
And covered with resist by dry etching
Not the part of Pt film and Tbtwenty fiveFe75The film was removed. Eh
Al with a thickness of 39 nm after etching2O3Form a film, then register
And the upper Al2O3The film is removed, and the upper electrode and Fe film
And Gdtwenty fiveFe75To prevent short circuit with the lower electrode made of film
The insulating film 121 was formed. After that, by the lift-off method
The upper electrode 122 with an Al film,
Position of Al2O3For removing the membrane and connecting the measuring circuit
The electrode pad was used.

【0053】磁気抵抗効果膜の上部電極と下部電極に定
電流電源を接続してGd25Fe75膜とTb 25Fe75膜の間のAl2O
3膜を電子がトンネルするように一定電流を流す。磁気
抵抗効果膜の膜面に垂直方向に磁界を印加し、その大き
さと方向を変えることにより磁気抵抗効果膜の電圧の変
化を測定した。その結果を図7に示す。磁化反転は約2.
5kA/mと3.8kA/mで生じている。
The upper electrode and the lower electrode of the magnetoresistive film are fixed.
Connect current power supply and Gdtwenty fiveFe75Membrane and Tb twenty fiveFe75Al between the membranes2O
3A constant current is passed so that electrons tunnel through the film. Magnetic
Applying a magnetic field in the direction perpendicular to the film surface of the resistance effect film,
And the direction of the magnetoresistive film.
Was measured. The result is shown in FIG. 7. The magnetization reversal is about 2.
It occurs at 5kA / m and 3.8kA / m.

【0054】(実施例−3)実施例-2で用いた磁気抵抗
効果膜101、102、103、104、105、106、107、108、109
をメモリ素子として3行3列に配列した場合のメモリセ
ルの電気回路図を図8および図9に示す。図8は磁気抵
抗効果膜に印加する磁界を発生させるための回路であ
り、図9は磁気抵抗効果膜の抵抗変化を検出するための
回路である。
(Example-3) The magnetoresistive film 101, 102, 103, 104, 105, 106, 107, 108, 109 used in Example-2.
8 and 9 are electric circuit diagrams of the memory cells in which the memory cells are arranged in 3 rows and 3 columns. FIG. 8 shows a circuit for generating a magnetic field applied to the magnetoresistive film, and FIG. 9 shows a circuit for detecting a resistance change of the magnetoresistive film.

【0055】任意の素子の磁性膜の磁化を選択的に反転
させる方法について説明する。例えば、磁気抵抗効果膜
105の磁化を選択的に反転させる場合、トランジスタ21
2、217、225、220をONにし、その他のトランジスタはOF
Fにしておく。このようにすると電流は導線312、313、3
23、322を流れそれらの周りに磁界を発生させる。した
がって磁気抵抗効果膜105にのみ4つの導線から同方向
の磁界が印加され、これらの合成磁界が素子の磁性膜の
磁化反転磁界よりも僅かに大きくなるように調整してお
けば、選択的に磁気抵抗効果膜105の磁化のみ反転させ
ることが可能である。また上下逆方向の磁界を磁気抵抗
効果膜105に印加する場合はトランジスタ213、216、22
4、221をONにし、その他のトランジスタはOFFにしてお
く。このようにすると電流は導線312、313、323、322を
先程とは逆の方向に流れ磁気抵抗効果膜105へは逆方向
の磁界が印加される。
A method of selectively reversing the magnetization of the magnetic film of an arbitrary element will be described. For example, magnetoresistive film
To selectively reverse the magnetization of 105, transistor 21
Turn on 2, 217, 225, 220, and other transistors are OF
Leave it at F. In this way, the current will flow through conductors 312, 313, 3
It flows through 23, 322 and creates a magnetic field around them. Therefore, magnetic fields in the same direction are applied to the magnetoresistive film 105 only from the four conductors, and if the combined magnetic field is adjusted to be slightly larger than the magnetization reversal field of the magnetic film of the element, it is possible to selectively. Only the magnetization of the magnetoresistive effect film 105 can be reversed. When applying a magnetic field in the upside down direction to the magnetoresistive effect film 105, the transistors 213, 216, 22
Turn on 4 and 221 and turn off other transistors. By doing so, the current flows through the conductors 312, 313, 323, and 322 in the opposite direction to the previous direction, and the opposite magnetic field is applied to the magnetoresistive effect film 105.

【0056】次に読み出し時の動作を説明する。例え
ば、磁気抵抗効果膜105に記録された情報を読み出す場
合、トランジスタ235およびトランジスタ241をONにす
る。すると電源412、固定抵抗100および磁気抵抗効果膜
105が直列に接続された回路となる。したがって、電源
電圧は固定抵抗100の抵抗値と磁気抵抗効果膜105の抵抗
値の割合でそれぞれの抵抗に分圧される。電源電圧は固
定されているので磁気抵抗効果膜の抵抗値が変化すると
それにしたがって、磁気抵抗効果膜にかかる電圧は異な
る。この電圧値をセンスアンプ500で読み出す。ここで
読み出し方法には主に二通り挙げられる。一方は、磁気
抵抗効果膜にかかっている電圧値の大きさを検出しその
大きさによって情報を識別する方法であり、これを絶対
検出という。他方は磁気抵抗効果膜の読み出し層の磁化
方向のみ変化させ、そのときに生じる電圧の変化の違い
によって情報を識別する方法である。読み出し層の磁化
を反転させたとき、電圧値が例えば下がりこれを『1』
とするならば、逆に電圧値が上がった場合は『0』であ
る。このような読み出し方法を相対検出という。
Next, the read operation will be described. For example, when reading the information recorded on the magnetoresistive effect film 105, the transistors 235 and 241 are turned on. Then power supply 412, fixed resistance 100 and magnetoresistive effect film
It becomes a circuit in which 105 is connected in series. Therefore, the power supply voltage is divided into respective resistances at the ratio of the resistance value of the fixed resistance 100 and the resistance value of the magnetoresistive effect film 105. Since the power supply voltage is fixed, when the resistance value of the magnetoresistive effect film changes, the voltage applied to the magnetoresistive effect film changes accordingly. This voltage value is read by the sense amplifier 500. There are mainly two reading methods. One is a method of detecting the magnitude of a voltage value applied to the magnetoresistive film and discriminating information by the magnitude, which is called absolute detection. The other is a method in which only the magnetization direction of the read layer of the magnetoresistive film is changed, and the information is identified by the difference in the voltage change that occurs at that time. When the magnetization of the readout layer is reversed, the voltage value drops, for example,
Then, if the voltage value rises, it is "0". Such a reading method is called relative detection.

【0057】図10に1つの素子の周辺部分を模式的に
示す断面図を示す。p型Si基板011に2つのn型拡散領域1
19および120を形成し、その間に絶縁層123を介してワー
ド線(ゲート電極)342を形成する。n型拡散領域013に
接地線356を接続し、他方にコンタクトプラグ352、35
3、354、357とローカル配線358を介して磁気抵抗効果膜
105を接続する。磁気抵抗効果膜はさらにビット線332に
接続されている。磁気抵抗効果膜105の横には磁界を発
生させるための導線322および導線323が配されている。
FIG. 10 is a sectional view schematically showing the peripheral portion of one element. Two n-type diffusion regions 1 on p-type Si substrate 011
19 and 120 are formed, and the word line (gate electrode) 342 is formed therebetween with the insulating layer 123 interposed. The ground wire 356 is connected to the n-type diffusion region 013, and the other contact plugs 352, 35 are connected.
Magnetoresistive film through 3, 354, 357 and local wiring 358
Connect 105. The magnetoresistive film is further connected to the bit line 332. A conductor 322 and a conductor 323 for generating a magnetic field are arranged beside the magnetoresistive film 105.

【0058】(比較例)図11は従来の磁気抵抗効果膜
を模式的に示した断面図である。基板001としてSiウエ
ハーを用い、この表面を酸化処理し約1μmのSiO2膜002
が形成されている。SiO2膜002上部に比較的磁化反転磁
界の小さな磁性膜21として垂直磁化膜である30nmの膜厚
のGd20Fe80膜、非磁性膜22として2nmの膜厚のAl2O3膜、
比較的保磁力の大きな磁性膜23として垂直磁化膜である
10nmのTb22Fe78膜、保護膜118として5nmのPt膜を順次形
成した。ここで、Pt膜は磁性膜の酸化等の腐食を防ぐた
めの保護膜である。Gd20Fe80膜およびTb22Fe78膜はどち
らも遷移金属副格子磁化優勢である。次に得られた多層
膜の上部に1μm角のレジスト膜を形成し、ドライエッチ
ングによってレジストに覆われていない部分のPt膜およ
びTb22Fe78膜を除去した。エッチング後15nmの膜厚のAl
2O3膜を成膜し、さらにレジストおよびその上部のAl2O3
膜を除去し、上部電極とGd20Fe80膜からなる下部電極と
の短絡を防ぐための絶縁膜121を形成した。その後、リ
フトオフ法によって上部電極122をAl膜により作成し、
上部電極からずれた位置のAl2O3膜を除去して測定回路
を接続するための電極パットとした。さらに得られた磁
気抵抗効果膜は膜面垂直方向に2MA/mの磁界を印加し、T
b22Fe78膜の磁化を印加磁界方向に向け着磁を行った。
ただし、1cm角のTb22Fe78膜の保磁力は1.6MA/mと大きな
値を示し、得られた磁気抵抗効果膜の保磁力も同程度の
大きな値を示すと予想される。
(Comparative Example) FIG. 11 is a sectional view schematically showing a conventional magnetoresistive effect film. A Si wafer is used as the substrate 001, and the surface of this is subjected to an oxidation treatment to a SiO 2 film 002 of about 1 μm.
Are formed. On the SiO 2 film 002, a Gd 20 Fe 80 film having a film thickness of 30 nm, which is a perpendicular magnetization film, is used as the magnetic film 21 having a relatively small magnetization switching field, and an Al 2 O 3 film having a film thickness of 2 nm is used as the non-magnetic film 22.
A perpendicular magnetization film is used as the magnetic film 23 having a relatively large coercive force.
A 10 nm Tb 22 Fe 78 film and a 5 nm Pt film as a protective film 118 were sequentially formed. Here, the Pt film is a protective film for preventing corrosion such as oxidation of the magnetic film. Both the Gd 20 Fe 80 film and the Tb 22 Fe 78 film are dominant in the transition metal sublattice magnetization. Next, a 1 μm square resist film was formed on the obtained multilayer film, and the Pt film and the Tb 22 Fe 78 film in the portion not covered with the resist were removed by dry etching. 15 nm thick Al after etching
2 O 3 film is formed, and the resist and Al 2 O 3 on top of it are also formed.
The film was removed to form an insulating film 121 for preventing a short circuit between the upper electrode and the lower electrode composed of the Gd 20 Fe 80 film. After that, the upper electrode 122 is formed by an Al film by the lift-off method,
The Al 2 O 3 film at a position deviated from the upper electrode was removed to provide an electrode pad for connecting a measurement circuit. Furthermore, the obtained magnetoresistive film was applied with a magnetic field of 2 MA / m in the direction perpendicular to the film surface,
Magnetization was performed by directing the magnetization of the b 22 Fe 78 film in the direction of the applied magnetic field.
However, the coercive force of the 1 cm square Tb 22 Fe 78 film is as large as 1.6 MA / m, and the coercive force of the obtained magnetoresistive film is expected to be as large as that.

【0059】磁気抵抗効果膜の上部電極と下部電極に定
電流電源を接続してGd20Fe80膜とTb 22Fe78膜の間のAl2O
3膜を電子がトンネルするように一定電流を流す。磁気
抵抗効果膜の膜面に垂直方向に磁界を印加し、その大き
さと方向を変えることにより磁気抵抗効果膜の電圧の変
化(磁気抵抗曲線)を測定した。その結果を図12に示
す。この測定結果によると磁化反転磁界は約24kA/mであ
った。
The upper electrode and the lower electrode of the magnetoresistive film are fixed.
Connect current power supply and Gd20Fe80Membrane and Tb twenty twoFe78Al between the membranes2O
3A constant current is passed so that electrons tunnel through the film. Magnetic
Applying a magnetic field in the direction perpendicular to the film surface of the resistance effect film,
And the direction of the magnetoresistive film.
Was measured (magnetoresistance curve). The result is shown in Figure 12.
You According to this measurement result, the magnetization reversal field is about 24 kA / m.
It was.

【0060】[0060]

【発明の効果】上記の様に、本発明の磁気抵抗効果膜
は、比較的小さな磁界で磁化反転可能であり、特にこの
磁気抵抗効果膜を用いたメモリは消費電力を少なくする
ことが可能であるという効果がある。
As described above, the magnetoresistive effect film of the present invention is capable of reversing the magnetization with a comparatively small magnetic field, and particularly the memory using this magnetoresistive effect film can reduce the power consumption. There is an effect that there is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気磁気抵抗効果膜の一例を示す断面
を模式的に示した図である。
FIG. 1 is a view schematically showing a cross section showing an example of a magnetoresistive effect film of the present invention.

【図2】本発明の磁気磁気抵抗効果膜の一例を示す断面
を模式的に示した図。
FIG. 2 is a diagram schematically showing a cross section showing an example of a magneto-resistance effect film of the present invention.

【図3】本発明の磁気磁気抵抗効果膜の一例を示す断面
を模式的に示した図である。
FIG. 3 is a diagram schematically showing a cross section showing an example of the magneto-resistive effect film of the present invention.

【図4】実施例−1で用いた磁気抵抗効果膜の断面を模
式的に示した図である。
FIG. 4 is a view schematically showing a cross section of a magnetoresistive effect film used in Example-1.

【図5】実施例−1で用いた磁気抵抗効果膜の磁気抵抗
曲線を示した図である。
FIG. 5 is a diagram showing a magnetoresistive curve of the magnetoresistive film used in Example-1.

【図6】実施例−2で用いた磁気抵抗効果膜の断面を模
式的に示した図である。
FIG. 6 is a diagram schematically showing a cross section of a magnetoresistive effect film used in Example-2.

【図7】実施例−2で用いた磁気抵抗効果膜の磁気抵抗
曲線を示した図である。
FIG. 7 is a diagram showing a magnetoresistive curve of a magnetoresistive film used in Example-2.

【図8】実施例−3のメモリに用いた磁気抵抗効果膜に
磁界を印加するための電気回路の概略図である。
FIG. 8 is a schematic diagram of an electric circuit for applying a magnetic field to the magnetoresistive film used in the memory of Example-3.

【図9】実施例−3のメモリに用いた読み出し回路の概
略図である。
FIG. 9 is a schematic diagram of a read circuit used in the memory of Example-3.

【図10】実施例−3のメモリの一部分の断面を示した
模式図である。
FIG. 10 is a schematic view showing a cross section of a part of the memory of Example-3.

【図11】比較例で用いた磁気抵抗効果膜の断面を示し
た模式図である。
FIG. 11 is a schematic view showing a cross section of a magnetoresistive effect film used in a comparative example.

【図12】比較例で用いた磁気抵抗効果膜の磁気抵抗曲
線を示した図である。
FIG. 12 is a diagram showing a magnetoresistive curve of a magnetoresistive effect film used in a comparative example.

【図13】(a)磁気抵抗効果膜の磁化が平行な状態を
模式的に示す断面図である。 (b)磁抵抗効果膜の磁化が反平行な状態を模式的に示
す断面図である。
FIG. 13A is a sectional view schematically showing a state where the magnetizations of the magnetoresistive effect film are parallel to each other. (B) It is sectional drawing which shows typically the state where the magnetization of a magnetoresistive effect film is antiparallel.

【図14】面内磁化膜を用いた従来の磁気抵抗効果膜に
おける記録再生原理を説明するための図である。 (a)記録情報「1」の読み出しを行う場合の磁化の状
態を模式的に示す断面図である。 (b)記録情報「0」の読み出しを行う場合の磁化の状
態を模式的に示す断面図である。 (c)記録情報「1」の読み出しを行う場合の磁化の状
態を模式的に示す断面図である。 (d)記録情報「0」の読み出しを行う場合の磁化の状
態を模式的に示す断面図である。
FIG. 14 is a diagram for explaining a recording / reproducing principle in a conventional magnetoresistive effect film using an in-plane magnetized film. (A) It is sectional drawing which shows typically the state of magnetization at the time of reading recording information "1". (B) A sectional view schematically showing the state of magnetization when reading recorded information “0”. (C) It is sectional drawing which shows typically the state of magnetization when reading the recording information "1". (D) It is sectional drawing which shows typically the state of magnetization when recording information "0" is read.

【図15】垂直磁化膜を用いた従来の磁気抵抗効果膜に
おける記録再生原理を説明するための図である。 (a)記録情報「1」の読み出しを行う場合の磁化の状
態を模式的に示す断面図である。 (b)記録情報「0」の読み出しを行う場合の磁化の状
態を模式的に示す断面図である。 (c)記録情報「1」の読み出しを行う場合の磁化の状
態を模式的に示す断面図である。 (d)記録情報「0」の読み出しを行う場合の磁化の状
態を模式的に示す断面図である。
FIG. 15 is a diagram for explaining a recording / reproducing principle in a conventional magnetoresistive effect film using a perpendicular magnetization film. (A) It is sectional drawing which shows typically the state of magnetization at the time of reading recording information "1". (B) A sectional view schematically showing the state of magnetization when reading recorded information “0”. (C) It is sectional drawing which shows typically the state of magnetization when reading the recording information "1". (D) It is sectional drawing which shows typically the state of magnetization when recording information "0" is read.

【符号の説明】[Explanation of symbols]

001 Si基板 002 SiO2膜 011 p型Si基板 12、22 非磁性層 13、14、21、23 磁性層 100 固定抵抗 101〜109 磁気抵抗効果膜 111 第一の磁性膜 112 第二の磁性膜 113 非磁性膜 114 第三の磁性膜 116、117 スピン分極率の大きな材料からなる磁性膜 118 保護膜 119、120 n型拡散領域 121、123 絶縁膜 122 上部電極 211〜226、231〜242 トランジスタ 311〜314、321〜324 導線(書き込み線) 331〜333 ビット線 341〜343 ワード線(ゲート電極) 351〜355、357 コンタクトプラグ 356 接地線 357 ローカル配線 411、412 電源 500 センスアンプ001 Si substrate 002 SiO 2 film 011 p-type Si substrate 12, 22 Non-magnetic layer 13, 14, 21, 23 Magnetic layer 100 Fixed resistance 101-109 Magnetoresistive film 111 First magnetic film 112 Second magnetic film 113 Non-magnetic film 114 Third magnetic film 116, 117 Magnetic film made of material with high spin polarization 118 Protective film 119, 120 n-type diffusion regions 121, 123 Insulating film 122 Upper electrodes 211-226, 231-242 Transistor 311- 314, 321-324 Conductive wire (write wire) 331-333 Bit line 341-343 Word line (gate electrode) 351-355, 357 Contact plug 356 Ground wire 357 Local wire 411, 412 Power supply 500 Sense amplifier

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 10/16 H01F 10/16 10/187 10/187 10/32 10/32 H01L 27/105 H01L 27/10 447 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01F 10/16 H01F 10/16 10/187 10/187 10/32 10/32 H01L 27/105 H01L 27 / 10 447

Claims (26)

【特許請求の範囲】[Claims] 【請求項1】 非磁性膜が磁性膜に挟まれている構造を
持った磁気抵抗効果膜において、 前記磁性膜の少なくとも一方が垂直磁化膜であり、該垂
直磁化膜に接して,且つ前記非磁性膜には接しない位置
に、磁化容易軸が膜面垂直方向から傾いている磁性膜を
有することを特徴とする磁気抵抗効果膜。
1. A magnetoresistive effect film having a structure in which a non-magnetic film is sandwiched between magnetic films, wherein at least one of the magnetic films is a perpendicular magnetization film, and the non-magnetic film is in contact with the perpendicular magnetization film. A magnetoresistive film having a magnetic film having an axis of easy magnetization inclined from a direction perpendicular to the film surface at a position not in contact with the magnetic film.
【請求項2】 前記磁性膜の少なくとも一方の磁化容易
軸が膜面垂直方向から傾いていることを特徴とする請求
項1に記載の磁気抵抗効果膜。
2. The magnetoresistive film according to claim 1, wherein at least one of the magnetic easy axes of the magnetic film is inclined from the direction perpendicular to the film surface.
【請求項3】 前記磁性膜と前記磁化容易軸が膜面垂直
方向から傾いている磁性膜とが交換結合していることを
特徴とする請求項1に記載の磁気抵抗効果膜。
3. The magnetoresistive effect film according to claim 1, wherein the magnetic film and the magnetic film having the easy axis of magnetization inclined from the direction perpendicular to the film surface are exchange-coupled.
【請求項4】 更に、前記垂直磁化膜と前記非磁性膜の
間に前記垂直磁化膜よりもスピン分極率の大きな層が挿
入されていることを特徴とする請求項1に記載の磁気抵
抗効果膜。
4. The magnetoresistive effect according to claim 1, further comprising a layer having a spin polarizability larger than that of the perpendicular magnetic film between the perpendicular magnetic film and the non-magnetic film. film.
【請求項5】 前記垂直磁化膜と前記スピン分極率の大
きな層が交換結合していることを特徴とする請求項4に
記載の磁気抵抗効果膜。
5. The magnetoresistive film according to claim 4, wherein the perpendicular magnetization film and the layer having a large spin polarizability are exchange-coupled with each other.
【請求項6】 磁化容易軸が膜面垂直方向から傾いてい
る第一の磁性膜と、第二の磁性膜と、非磁性膜と、第三
の磁性膜と、磁化容易軸が膜面垂直方向から傾いている
第四の磁性膜とがこの順に形成され、 少なくとも前記第二の磁性膜もしくは第三の磁性膜のど
ちらか一方が垂直磁化膜であり、 前記第一の磁性膜と前記第二の磁性膜、および前記第三
の磁性膜と前記第四の磁性膜がそれぞれ交換結合してい
ることを特徴とする磁気抵抗効果膜。
6. A first magnetic film having an easy axis of magnetization inclined from a direction perpendicular to the film surface, a second magnetic film, a non-magnetic film, a third magnetic film, and an easy axis of magnetization perpendicular to the film surface. A fourth magnetic film inclined from the direction is formed in this order, at least one of the second magnetic film and the third magnetic film is a perpendicular magnetization film, and the first magnetic film and the third magnetic film are formed. A magnetoresistive film, wherein the second magnetic film and the third magnetic film and the fourth magnetic film are exchange-coupled with each other.
【請求項7】 前記第二の磁性膜もしくは第三の磁性膜
の少なくとも一方の磁化容易軸が膜面垂直方向から傾い
ていることを特徴とする請求項6に記載の磁気抵抗効果
膜。
7. The magnetoresistive film according to claim 6, wherein the easy magnetization axis of at least one of the second magnetic film and the third magnetic film is inclined from the direction perpendicular to the film surface.
【請求項8】 前記第二の磁性膜と前記非磁性膜との間
に前記第二の磁性膜よりもスピン分極率の大きな層が形
成されていることを特徴とする請求項6に記載の磁気抵
抗効果膜。
8. The layer according to claim 6, wherein a layer having a spin polarizability larger than that of the second magnetic film is formed between the second magnetic film and the non-magnetic film. Magnetoresistive film.
【請求項9】 更に、前記第三の磁性膜と前記非磁性膜
との間に前記第三の磁性膜よりもスピン分極率の大きな
層が形成されていることを特徴とする請求項8に記載の
磁気抵抗効果膜。
9. A layer having a larger spin polarization than the third magnetic film is formed between the third magnetic film and the non-magnetic film. The magnetoresistive film described.
【請求項10】 前記スピン分極率の大きな層と前記第
二の磁性膜、及び前記スピン分極率の大きな層と前記第
三の磁性膜が交換結合していることを特徴とする請求項
9に記載の磁気抵抗効果膜。
10. The layer having a large spin polarization and the second magnetic film, and the layer having a large spin polarization and the third magnetic film are exchange-coupled with each other. The magnetoresistive film described.
【請求項11】 前記スピン分極率の大きな層が粒形状
であることを特徴とする請求項4、5、8、9、10の
いずれか1項に記載の磁気抵抗効果膜。
11. The magnetoresistive effect film according to claim 4, wherein the layer having a large spin polarization has a grain shape.
【請求項12】 前記磁化容易軸が膜面垂直方向から傾
いている磁性膜の磁化が、4kA/m以下の大きさの磁界に
よって、膜面垂直方向に向くことを特徴とする請求項1
または6に記載の磁気抵抗効果膜。
12. The magnetization of a magnetic film, the axis of easy magnetization of which is inclined from the direction perpendicular to the film surface, is oriented in the direction perpendicular to the film surface by a magnetic field having a magnitude of 4 kA / m or less.
Alternatively, the magnetoresistive film according to item 6.
【請求項13】 前記磁化容易軸が膜面垂直方向から傾
いた方向に向いている磁性膜の磁化が、前記垂直磁化膜
と交換結合している状態において、少なくとも部分的に
膜面垂直方向に対して傾いていることを特徴とする請求
項1から11のいずれか1項に記載の磁気抵抗効果膜。
13. The magnetization direction of the magnetic film, wherein the easy axis of magnetization is oriented in a direction inclined from the direction perpendicular to the film surface, is at least partially in the direction perpendicular to the film surface in a state of being exchange-coupled with the perpendicular magnetization film. The magnetoresistive film according to claim 1, wherein the magnetoresistive film is inclined with respect to the film.
【請求項14】 前記垂直磁化膜がフェリ磁性体である
ことを特徴とする請求項1から11のいずれか1項に記
載の磁気抵抗効果膜。
14. The magnetoresistive film according to claim 1, wherein the perpendicular magnetization film is a ferrimagnetic material.
【請求項15】 前記フェリ磁性体が希土類金属と遷移
金属の合金であることを特徴とする請求項14に記載の
磁気抵抗効果膜。
15. The magnetoresistive film according to claim 14, wherein the ferrimagnetic material is an alloy of a rare earth metal and a transition metal.
【請求項16】 前記希土類金属と遷移金属の合金が非
晶質であることを特徴とする請求項15に記載の磁気抵
抗効果膜。
16. The magnetoresistive film according to claim 15, wherein the alloy of the rare earth metal and the transition metal is amorphous.
【請求項17】 前記フェリ磁性体が希土類金属と遷移
金属の人工格子膜であることを特徴とする請求項14に
記載の磁気抵抗効果膜。
17. The magnetoresistive effect film according to claim 14, wherein the ferrimagnetic material is an artificial lattice film of a rare earth metal and a transition metal.
【請求項18】 前記希土類金属がGd、Tb、Dyから選ば
れる1種類以上の元素であり、かつ前記遷移金属がFe、C
o、Niから選ばれる1種類以上の元素であることを特徴と
する請求項15から17のいずれか1項に記載の磁気抵
抗効果膜。
18. The rare earth metal is at least one element selected from Gd, Tb and Dy, and the transition metal is Fe or C.
18. The magnetoresistive effect film according to claim 15, wherein the magnetoresistive film is one or more kinds of elements selected from o and Ni.
【請求項19】 前記非磁性膜が絶縁体であることを特
徴とする請求項1から18のいずれか1項に記載の磁気
抵抗効果膜。
19. The magnetoresistive film according to claim 1, wherein the nonmagnetic film is an insulator.
【請求項20】 請求項1から19のいずれか1項に記
載の磁気抵抗効果膜を備えたメモリ素子において、 前記磁気抵抗効果膜の膜面垂直方向に磁界を印加する手
段と、 前記磁気抵抗効果膜の電気抵抗を検出する手段とを備え
たことを特徴とするメモリ素子。
20. A memory element comprising the magnetoresistive effect film according to claim 1, wherein the magnetoresistive effect film is applied with a magnetic field in a direction perpendicular to a film surface of the magnetoresistive effect film. A memory device comprising a means for detecting the electric resistance of an effect film.
【請求項21】 前記磁界を印加する手段が導線である
ことを特徴とする請求項20に記載のメモリ素子。
21. The memory device according to claim 20, wherein the means for applying the magnetic field is a conductive wire.
【請求項22】 更に、前記磁気抵抗効果膜の膜面垂直
方向から傾いた方向に磁界を印加する手段を備えたこと
を特徴とする請求項20に記載のメモリ素子。
22. The memory device according to claim 20, further comprising means for applying a magnetic field in a direction inclined from a direction perpendicular to the film surface of the magnetoresistive effect film.
【請求項23】 請求項1に記載の磁気抵抗効果膜をメ
モリ素子として用いたメモリにおいて、 情報の記録時に、非磁性膜を挟んでいる磁性膜のうち、
磁化容易軸が膜面垂直方向から傾いている磁性膜と接し
て設けられている磁性膜の磁化方向を変化させ、他方の
磁性膜の磁化方向は変化させずに情報の記録再生を行な
うことを特徴とするメモリ。
23. A memory using the magnetoresistive film according to claim 1 as a memory element, wherein among the magnetic films sandwiching a non-magnetic film at the time of recording information,
It is possible to change the magnetization direction of the magnetic film provided in contact with the magnetic film whose easy axis of magnetization is inclined from the direction perpendicular to the film surface, and to record / reproduce information without changing the magnetization direction of the other magnetic film. Characteristic memory.
【請求項24】 請求項2に記載の磁気抵抗効果膜をメ
モリ素子として用いたメモリにおいて、 非磁性膜に接して形成されている磁性膜のうち、零磁場
中で磁化が膜面垂直方向に向いている磁性膜を記録層と
し、磁化が膜面垂直方向から傾いている磁性膜を読み出
し層とすることを特徴とするメモリ。
24. A memory using the magnetoresistive effect film according to claim 2 as a memory element, wherein in a magnetic film formed in contact with a non-magnetic film, magnetization is perpendicular to a film surface in a zero magnetic field. A memory characterized in that a magnetic film facing the recording layer is used, and a magnetic film whose magnetization is inclined from a direction perpendicular to the film surface is used as a reading layer.
【請求項25】 請求項1から19のいずれか1項に記
載の磁気抵抗効果膜をメモリ素子として用いたメモリに
おいて、 記録あるいは読み出し時に印加される磁界に対して、非
磁性膜に隣接して形成されている磁性膜のうち、非磁性
膜の一方の膜面に接して形成されている磁性膜の磁化は
反転することなく、非磁性膜の他方の膜面に接して形成
されている磁性膜の磁化は反転することを特徴とするメ
モリ。
25. In a memory using the magnetoresistive film according to claim 1 as a memory element, a non-magnetic film is adjacent to a magnetic field applied during recording or reading. Of the formed magnetic film, the magnetization of the magnetic film formed in contact with one film surface of the non-magnetic film is not reversed, and the magnetic film formed in contact with the other film surface of the non-magnetic film is not reversed. A memory characterized in that the magnetization of the film is reversed.
【請求項26】 請求項1から19のいずれか1項に記
載の磁気抵抗効果膜をメモリ素子として用いたメモリに
おいて、 前記磁気抵抗効果膜を複数配列し、所望の磁気抵抗効果
膜に選択的に記録する手段と、 所望の磁気抵抗効果膜に記録された情報を選択的に読み
出す手段とを備えたことを特徴とするメモリ。
26. A memory using the magnetoresistive effect film according to claim 1 as a memory element, wherein a plurality of the magnetoresistive effect films are arranged to selectively form a desired magnetoresistive effect film. And a means for selectively reading information recorded on a desired magnetoresistive film.
JP2001245423A 2001-04-02 2001-08-13 Magnetoresistive film, memory element including the same, and memory using the same Expired - Fee Related JP4944315B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001245423A JP4944315B2 (en) 2001-08-13 2001-08-13 Magnetoresistive film, memory element including the same, and memory using the same
TW091106511A TW560095B (en) 2001-04-02 2002-04-01 Magnetoresistive element, memory element having the magnetoresistive element, and memory using the memory element
KR10-2002-0017937A KR100498998B1 (en) 2001-04-02 2002-04-02 Magnetoresistive element, memory element having the magnetoresistive element, and memory using the memory element
US10/113,983 US6829121B2 (en) 2001-04-02 2002-04-02 Magnetoresistive element, memory element having the magnetoresistive element, and memory using the memory element
EP02007503A EP1248264B1 (en) 2001-04-02 2002-04-02 Magnetoresistive element, memory element having the magnetoresistive element, and memory using the memory element
CN021198284A CN1384503B (en) 2001-04-02 2002-04-02 Magnetic resistance element, memory unit with the element and memory constituted by the memory units
DE60223440T DE60223440T2 (en) 2001-04-02 2002-04-02 Magnetoresistive element, memory element with such magnetoresistive element, and memory using such a memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001245423A JP4944315B2 (en) 2001-08-13 2001-08-13 Magnetoresistive film, memory element including the same, and memory using the same

Publications (2)

Publication Number Publication Date
JP2003060261A true JP2003060261A (en) 2003-02-28
JP4944315B2 JP4944315B2 (en) 2012-05-30

Family

ID=19075176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001245423A Expired - Fee Related JP4944315B2 (en) 2001-04-02 2001-08-13 Magnetoresistive film, memory element including the same, and memory using the same

Country Status (1)

Country Link
JP (1) JP4944315B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525033A (en) * 2004-02-25 2007-08-30 グランディス インコーポレイテッド Perpendicular magnetic element by spin transfer
US7787220B2 (en) 2005-04-04 2010-08-31 Tdk Corporation Magnetoresistance element with improved magentoresistance change amount and with free layer having improved soft magnetic characteristics
CN102165530A (en) * 2008-09-24 2011-08-24 高通股份有限公司 Reducing spin pumping induced damping of a free layer of a memory device
JP2012119715A (en) * 2004-02-26 2012-06-21 Grandis Inc Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
JP2012525710A (en) * 2009-04-28 2012-10-22 シーゲイト テクノロジー エルエルシー Magnetic layered body having spin torque switching and having a layer for assisting switching of spin torque
JP5445133B2 (en) * 2007-09-19 2014-03-19 日本電気株式会社 Magnetic random access memory, writing method thereof, and magnetoresistive element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08274386A (en) * 1995-03-31 1996-10-18 Mitsubishi Electric Corp Electromagnetic transducer element
JPH1187803A (en) * 1997-09-09 1999-03-30 Sanyo Electric Co Ltd Magnetic resistance effect element
JPH11213650A (en) * 1998-01-28 1999-08-06 Canon Inc Magnetic thin film device and magnetic thin film memory device and recording and reproducing method for the same
JP2000306374A (en) * 1999-04-16 2000-11-02 Canon Inc Magnetoresistance effect element
JP2002261352A (en) * 2000-12-07 2002-09-13 Commiss Energ Atom Magnetic spin magnetization device and magnetization rotating device having storage function, and writing method using the device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08274386A (en) * 1995-03-31 1996-10-18 Mitsubishi Electric Corp Electromagnetic transducer element
JPH1187803A (en) * 1997-09-09 1999-03-30 Sanyo Electric Co Ltd Magnetic resistance effect element
JPH11213650A (en) * 1998-01-28 1999-08-06 Canon Inc Magnetic thin film device and magnetic thin film memory device and recording and reproducing method for the same
JP2000306374A (en) * 1999-04-16 2000-11-02 Canon Inc Magnetoresistance effect element
JP2002261352A (en) * 2000-12-07 2002-09-13 Commiss Energ Atom Magnetic spin magnetization device and magnetization rotating device having storage function, and writing method using the device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525033A (en) * 2004-02-25 2007-08-30 グランディス インコーポレイテッド Perpendicular magnetic element by spin transfer
JP2012119715A (en) * 2004-02-26 2012-06-21 Grandis Inc Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
US7787220B2 (en) 2005-04-04 2010-08-31 Tdk Corporation Magnetoresistance element with improved magentoresistance change amount and with free layer having improved soft magnetic characteristics
JP5445133B2 (en) * 2007-09-19 2014-03-19 日本電気株式会社 Magnetic random access memory, writing method thereof, and magnetoresistive element
CN102165530A (en) * 2008-09-24 2011-08-24 高通股份有限公司 Reducing spin pumping induced damping of a free layer of a memory device
US9929211B2 (en) 2008-09-24 2018-03-27 Qualcomm Incorporated Reducing spin pumping induced damping of a free layer of a memory device
JP2012525710A (en) * 2009-04-28 2012-10-22 シーゲイト テクノロジー エルエルシー Magnetic layered body having spin torque switching and having a layer for assisting switching of spin torque

Also Published As

Publication number Publication date
JP4944315B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
KR100436318B1 (en) Magneto-resistance effect element, magneto-resistance effect memory cell, and MRAM
KR100989792B1 (en) Magnetoresistance effect element and magnetic memory device
US7348589B2 (en) Low power consumption magnetic memory and magnetic information recording device
KR100991674B1 (en) Magnetoresistive effect element and magnetic memory device
JP2005191032A (en) Magnetic storage device and method of writing magnetic information
US7366009B2 (en) Separate write and read access architecture for a magnetic tunnel junction
JP2000132961A (en) Magnetic thin film memory, method for reading out magnetic thin film memory, and method for writing to magnetic thin film memory
KR20050039842A (en) Magnetoresistant device and magnetic memory device further comme nts
US6721201B2 (en) Magnetoresistive film and memory using the same
JP2005116658A (en) Magnetoresistive memory device
EP1793385A1 (en) Spin transfer magnetic memory
JP3592282B2 (en) Magnetoresistive film and memory using the same
KR100446888B1 (en) Magneto-resistance effect film and memory using it
JP4944315B2 (en) Magnetoresistive film, memory element including the same, and memory using the same
KR100985001B1 (en) Magnetoresistive device and magnetic memory device
JPH11154389A (en) Magnetoresistive element, magnetic thin film memory element, and recording and reproducing method for the memory element
JP4065486B2 (en) Method for manufacturing magnetoresistive film
JP2003197872A (en) Memory using magneto-resistance effect film
JP2003124539A (en) Magnetoresistive effect film and memory using the same
JP2003110166A (en) Magnetoresistance effect film, and memory using it
US20100151276A1 (en) Magnetic storage device
JP2003178917A (en) Magnetoresistive effect film and memory using it
JP2004039757A (en) Magnetoresistive effect element and magnetic memory device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees