JPH03257396A - Method and apparatus for prospecting collapse of ground by shield method - Google Patents

Method and apparatus for prospecting collapse of ground by shield method

Info

Publication number
JPH03257396A
JPH03257396A JP2059220A JP5922090A JPH03257396A JP H03257396 A JPH03257396 A JP H03257396A JP 2059220 A JP2059220 A JP 2059220A JP 5922090 A JP5922090 A JP 5922090A JP H03257396 A JPH03257396 A JP H03257396A
Authority
JP
Japan
Prior art keywords
current
electrode
electrodes
ground
shield excavator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2059220A
Other languages
Japanese (ja)
Inventor
Masahiko Yamamoto
正彦 山本
Kanji Shibatani
柴谷 寛治
Hiroaki Yamaguchi
山口 博明
Yasuo Kanemitsu
保雄 金光
Tetsuya Shinpo
新保 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2059220A priority Critical patent/JPH03257396A/en
Publication of JPH03257396A publication Critical patent/JPH03257396A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PURPOSE:To obtain a wide range of ground information quickly at a face by selecting a detection signal with a frequency thereof coinciding with a frequency of current from detection signals of a voltage based on currents varied in frequency flowing from a plurality of points in a circumferential direction of a shield excavator. CONSTITUTION:A plurality of electrode trains 14a-14c are mounted on a front skin plate 14 of a shield excavator 10 and the electrode trains 14a-14c are arranged at an equal angular interval with respect to the center of a excavator 10 and the electrode train 4b is positioned at the top thereof 10. The electrode train 14a-14c each comprise an energizing electrode to feed a current to a mud 15 in the perimeter of the excavator 10 and a ground 17 and a detecting electrode to detect a voltage based on the current and are arranged on an insulating body 16 fixed on the skin plate 12 at an equal interval. With such an arrangement, currents varied in frequency flow to the mud 15 and a detection signal alone the same in frequency as the current among those obtained with the detecting electrode is selected to be inputted into a signal processor 22.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、シールド掘削機による掘進中の切羽部におけ
る地山の崩壊を検知する方法に係り、特に地中の比抵抗
を検出して地山の崩壊を検知するシールド工法の地山崩
壊探査方法およびその装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for detecting collapse of the ground at a face portion during excavation by a shield excavator, and in particular, a method for detecting ground collapse by detecting underground resistivity. This invention relates to a ground collapse detection method using a shield construction method for detecting mountain collapse and its device.

〔従来の技術〕[Conventional technology]

一般に、シールド工法においては、切羽面の変化に対応
して裏込注入量の調節を行うこと等を目的として、シー
ルド掘削機の切羽部における地山の崩壊を検知すること
が行われている。そして、地山の崩壊を検知するために
、シールド掘削機と地山との間の泥水の厚さの変化を、
比抵抗の変化として捉える方法が行われている。
Generally, in the shield construction method, the collapse of the ground at the face of the shield excavator is detected for the purpose of adjusting the amount of backfill injection in response to changes in the face. In order to detect the collapse of the ground, changes in the thickness of mud between the shield excavator and the ground are measured.
A method is used to capture it as a change in specific resistance.

この比抵抗による地山の崩壊を検知する方法は、シール
ド掘削機の先端部に一対の通電電極を取り付け、この通
電電極を介して泥水中に電流を流すとともに、泥水に接
触させた一対の検出電極によって電圧を検出し、検出し
た電圧から泥水の比抵抗と地山の比抵抗とからなる合成
比抵抗を求め、この合成比抵抗の変化によって地山の崩
壊を検知するようにしている。
The method for detecting rock collapse due to resistivity is to attach a pair of current-carrying electrodes to the tip of a shield excavator, and then passing an electric current through the current-carrying electrodes into the muddy water. Voltage is detected by electrodes, and a composite resistivity consisting of the resistivity of the muddy water and the resistivity of the ground is determined from the detected voltage, and the collapse of the rock is detected by changes in this composite resistivity.

また、シールド掘削機の周方向における広範囲な地山の
崩壊を検知するために、シールド掘削機の周方向に、通
電電極と測定電極とからなる電極列を複数設けた崩壊探
査装置が提案されている(実開平1−131186号公
報)。
In addition, in order to detect a wide range of ground collapse in the circumferential direction of the shield excavator, a collapse detection device has been proposed in which multiple electrode rows consisting of energized electrodes and measurement electrodes are provided in the circumferential direction of the shield excavator. (Utility Model Application Publication No. 1-131186).

[発明が解決しようとする課題] しかし、実開平1−131186号公報に記載の装置は
、各電極列を所定時間毎に切り換えて通電、測定するよ
うにしており、泥水に通した電流が安定するまでに時間
がかかり、シールド掘削機の周方向に沿った切羽郡全体
の情報を得るのに多くの時間を特徴とする特に、測定点
が多くなると、測定時間は測定電極点数の二乗に比例し
て増大するため、詳細な地山の状態を得ようとする場合
に、リアルタイムにデータを取得し、解析することが困
難となる。
[Problems to be Solved by the Invention] However, the device described in Japanese Utility Model Application Publication No. 1-131186 switches each electrode row at predetermined time intervals to energize and measure, and the current passed through the muddy water is stable. In particular, as the number of measurement points increases, the measurement time is proportional to the square of the number of measurement electrode points. This makes it difficult to obtain and analyze data in real time when trying to obtain detailed rock formation conditions.

本発明は、前記従来技術の欠点を解消するためになされ
たもので、シールド掘削機の周方向の複数個所における
測定を迅速に行うことができるシールド工法の地山崩壊
探査方法およびその装置を提供することを目的としてい
る。
The present invention has been made in order to eliminate the drawbacks of the above-mentioned prior art, and provides a method and device for detecting ground failure using a shield construction method, which can quickly perform measurements at multiple locations in the circumferential direction of a shield excavator. It is intended to.

〔課題を解決するための手段および作用]上記目的を達
成するために、本発明に係るシールド工法の地山崩壊探
査方法は、シールド掘削機周囲の泥水に電流を通して比
抵抗を検出し、この比抵抗の変化に基づいて地山の崩壊
を検知するシールド工法の地山崩壊探査方法において、
前記シールド掘削機の周方向の複数個所から前記泥水中
に周波数の異なる電流を通すとともに、これらの電流と
同し周波数の電圧検出信号を得て、前記複数個所におけ
る比抵抗を検出することを特徴としている。
[Means and effects for solving the problem] In order to achieve the above object, the shield construction method of the present invention detects the specific resistance by passing an electric current through the muddy water around the shield excavator, and calculates the ratio In the rock collapse detection method of the shield method, which detects rock collapse based on changes in resistance,
Currents with different frequencies are passed through the muddy water from multiple locations in the circumferential direction of the shield excavator, and voltage detection signals having the same frequency as these currents are obtained to detect specific resistance at the multiple locations. It is said that

また、上記の探査方法を実施するために、本発明に係る
シールド工法の地山崩壊探査装置は、シールド掘削機の
周方向の複数個所に配設した通電電極と検出電極とから
なる電極列と、これら各電極列の前記通電電極に接続さ
れ、各通電型。極に異なった周波数の電流を供給する複
数の電源と、前記電極列の前記検出電極に接続され、対
応する通電電極に供給された電流と同一周波数の電圧検
出信号を通過させる複数のフィルタと、これら各フィル
タの出力に基づいて、前記シールl−″掘削機の周方向
における複数個所の比抵抗を求める信号処理装置とを有
することを特徴としている。
In addition, in order to carry out the above exploration method, the shield construction method rock collapse exploration device according to the present invention includes an electrode array consisting of current-carrying electrodes and detection electrodes arranged at a plurality of locations in the circumferential direction of the shield excavator. , connected to the current-carrying electrodes of each of these electrode rows, each of the current-carrying types. a plurality of power supplies that supply currents of different frequencies to the poles; a plurality of filters that are connected to the detection electrodes of the electrode array and pass voltage detection signals of the same frequency as the current supplied to the corresponding current-carrying electrodes; The present invention is characterized by comprising a signal processing device that calculates the resistivity at a plurality of locations in the circumferential direction of the seal l-'' excavator based on the outputs of these filters.

上記の如く構成した本発明においては、シールド掘削機
の周方向に沿った複数個所に配設した電極列のそれぞれ
の通電電極から、同時に周波数の異なった電流をシール
ド掘削機周囲の泥水中に流す。そして、泥水中に流した
電流による電圧を各電極列の検出電極によって検出し、
各検出電極が出力する検出信号の中から、泥水中に流し
た電流と同し周波数の検出信号を取り出して、この取り
出した周波数の異なる検出信号を信号処理装置において
処理し、泥水と地山との比抵抗からなる合成比抵抗を求
め、この合成比抵抗を監視することにより、切羽部の状
態を検知する。
In the present invention configured as described above, currents with different frequencies are simultaneously passed into the muddy water around the shield excavator from the respective current-carrying electrodes of the electrode rows arranged at multiple locations along the circumferential direction of the shield excavator. . Then, the voltage caused by the current flowing into the muddy water is detected by the detection electrodes in each electrode row,
From the detection signals output by each detection electrode, a detection signal with the same frequency as the current flowing into the muddy water is extracted, and the extracted detection signals with a different frequency are processed in a signal processing device to distinguish between the muddy water and the ground. The condition of the face portion is detected by determining the composite resistivity consisting of the resistivity and monitoring the composite resistivity.

従って、各周波数の検出信号をほぼ同時的に信号処理装
置において処理することができるため、シールド掘削機
の周方向における地山の状態を迅速に、リアルタイムで
知ることができ、切羽部の状態の変化に対して正確に対
応することができる。
Therefore, since the detection signals of each frequency can be processed almost simultaneously in the signal processing device, the condition of the ground in the circumferential direction of the shield excavator can be quickly known in real time, and the condition of the face can be known quickly. Able to respond accurately to changes.

C実施例〕 本発明に係るシールド工法の地山崩壊探査方法およびそ
の装置の好ましい実施例を、添付図面に従って詳説する
C Embodiment] Preferred embodiments of the ground collapse exploration method using the shield construction method and the device thereof according to the present invention will be described in detail with reference to the accompanying drawings.

第1図は、本発明の実施例に係るシールド工法の地山崩
壊探査装置の説明図である。
FIG. 1 is an explanatory diagram of a rock collapse exploration device using a shield construction method according to an embodiment of the present invention.

第1図において、シールド掘削機10の前部スキンプレ
ートI2には、複数(実施例の場合、3つ)の電極列1
4a、14b、14cが取り付けである。各電極列14
a、14b、14cは、シールド掘削機10の中心に対
して等角度間隔をもって配置され、電極列14bがシー
ルド掘削機10の頂部に位置している。そして、各電極
列14as14b、14cは、シールド掘削機10の周
囲の泥水15と地山17とに電流を流す通電電極と、こ
の電流に基づく電圧を検出する検出電極とからなり、こ
れらがスキンプレート12に固定した絶縁体16に等間
隔をもって直線的に配置しである。
In FIG. 1, a front skin plate I2 of a shield excavator 10 has a plurality (three in the case of the embodiment) of electrode rows 1.
4a, 14b, and 14c are attachments. Each electrode row 14
a, 14b, and 14c are arranged at equal angular intervals with respect to the center of the shield excavator 10, and the electrode row 14b is located at the top of the shield excavator 10. Each electrode row 14as14b, 14c consists of a current-carrying electrode that flows current through the muddy water 15 and the ground 17 around the shield excavator 10, and a detection electrode that detects a voltage based on this current, and these electrodes are connected to the skin plate. They are arranged linearly at equal intervals on an insulator 16 fixed to 12.

各電極列14a、14b、14cのそれぞれの電極18
は、リレーボックス等の切換器20a、20b、20c
に接続しである。各切換器20 a。
Each electrode 18 of each electrode row 14a, 14b, 14c
are switching devices 20a, 20b, 20c such as relay boxes
It is connected to. Each switch 20a.

20b、20cは、信号処理装置F22が接続さん信号
処理装置22からの切換信号により、各電極列’14a
、14b、14cのそれぞれの任意の一対の電極が通電
電極として切り換えて選択され、残りの電極のうちの任
意の一対が検出電極として選択される。また、各切換器
20a、20b、20cには、それぞれ交流電源24a
、24b、24cと帯域フィルタ26a、26b、26
cとが接続しである。
20b and 20c are connected to each electrode row '14a by a switching signal from the signal processing device F22.
, 14b, and 14c are switched and selected as current-carrying electrodes, and an arbitrary pair of the remaining electrodes is selected as detection electrodes. Each switch 20a, 20b, 20c also has an AC power supply 24a.
, 24b, 24c and bandpass filters 26a, 26b, 26
c is connected.

交流電源24a、24b、24cは、それぞれ出力周波
数が異なっていて、例えば20Hz、30セ、40Hz
の電流を、電極列14a、14b、14Cの選択された
通電電極に供給する。一方、帯域フィルタ26a、26
b、26cは、電極列14a、14b、14cの検出電
極に接続され、中心周波数f0が対応する交流電源24
a、24b、24cの出力周波数に一致していて、一対
の検出電極が検出した電圧のうち、交流電源24a、2
4b、24cの出力周波数と一致した検出信号を通過さ
せ、増幅器28a、24b、24cに送る。
The AC power supplies 24a, 24b, and 24c have different output frequencies, for example, 20Hz, 30Hz, and 40Hz.
is supplied to the selected current-carrying electrodes of the electrode arrays 14a, 14b, and 14C. On the other hand, the bandpass filters 26a, 26
b, 26c are connected to the detection electrodes of the electrode rows 14a, 14b, 14c, and the AC power supply 24 whose center frequency f0 corresponds to
Among the voltages detected by the pair of detection electrodes that correspond to the output frequency of AC power supplies 24a, 24c,
Detection signals matching the output frequencies of 4b and 24c are passed and sent to amplifiers 28a, 24b and 24c.

そして、増幅器28a、24b、24cは、出力側が信
号処理装置22に接続してあり、信号処理装置22が増
幅器28a、24b、24cの出力を受けて、泥水15
の比抵抗と地山17の比抵抗との合成比抵抗を求めて表
示装置30に表示する。
The output sides of the amplifiers 28a, 24b, and 24c are connected to the signal processing device 22, and the signal processing device 22 receives the outputs of the amplifiers 28a, 24b, and 24c,
A composite resistivity of the resistivity of the ground and the resistivity of the ground 17 is determined and displayed on the display device 30.

上記の如く構成した実施例の作用は、次のとおりである
The operation of the embodiment configured as described above is as follows.

信号処理装置22は、切換器20a、20b、20cに
切換信号を与えて、例えば各電極列14a、14b、1
4cの最外側の一対を通電電極として選択し、通電電極
を交流電源24a、24b、24cに接続する。これに
より、電極列14aの通電電極間には2〇七の、電極列
14bの通電電極間には30Hzの、電極列14cの通
電電極間には40Hzの交流電流が泥水15、地山17
を介して流れる。
The signal processing device 22 provides switching signals to the switching devices 20a, 20b, 20c, and switches the electrode rows 14a, 14b, 1, for example.
The outermost pair of electrodes 4c are selected as current-carrying electrodes, and the current-carrying electrodes are connected to AC power sources 24a, 24b, and 24c. As a result, an alternating current of 20 Hz is applied between the current-carrying electrodes in the electrode row 14a, 30 Hz is applied between the current-carrying electrodes in the electrode row 14b, and 40 Hz is applied between the current-carrying electrodes in the electrode row 14c.
flows through.

また、信号処理装置22は、各電極列14a、14b、
14cの通電電極以外の電極のうちから、一対の電極を
切換器20a、20b、20cを介して検出電極として
選択し、帯域フィルタ26a、26b、26cに接続す
る。各電極列14a、14b、14cの一対の検出電極
は、この電極間の電圧を検出し、電圧の大きさに応した
検出信号を帯域フィルタ26a、26b、26cに出力
する。
Further, the signal processing device 22 includes each electrode row 14a, 14b,
A pair of electrodes are selected as detection electrodes from among the electrodes other than the current-carrying electrodes 14c via switchers 20a, 20b, and 20c, and connected to bandpass filters 26a, 26b, and 26c. A pair of detection electrodes in each electrode row 14a, 14b, 14c detects the voltage between the electrodes, and outputs a detection signal corresponding to the magnitude of the voltage to bandpass filters 26a, 26b, 26c.

前記したように、帯域フィルタ26a、26b、26c
は、中心周波数が交流電源24a、24b、24cの出
力周波数と一致している。このため、帯域フィルタ26
aは、入力したきた検出信号のうち、20Hzの信号を
通過させ、帯域フィルタ26bが30止の信号を通過さ
せ、帯域フィルタ26cは40Hzの信号を通過させて
増幅器28a、24b、24cに送出する。増幅器28
a、24b、24cは、入力したきた信号を増幅して信
号処理装置22に送る。
As mentioned above, the bandpass filters 26a, 26b, 26c
The center frequency matches the output frequency of the AC power supplies 24a, 24b, and 24c. Therefore, the bandpass filter 26
Of the input detection signals, a passes a 20Hz signal, a bandpass filter 26b passes a 30Hz signal, and a bandpass filter 26c passes a 40Hz signal and sends it to amplifiers 28a, 24b, and 24c. . amplifier 28
a, 24b, and 24c amplify the input signal and send it to the signal processing device 22.

信号処理装置22は、所定時間毎、例えば10躯毎に各
増幅器28a、24b、24cの出力信号を切り換えて
取り込み、周知の演算式に基づいて、各電極列14a、
14b、14C部における泥水15の比抵抗と地山17
の比抵抗とからなる合成比抵抗を求め、図示しないメモ
リに格納するとともに、表示装置30に表示する。その
後、信号処理装置22は、切換器20a、20b、20
Cに切換信号を送出し、各電極列14a、14b、14
cの電極を次々に切り換えて検出電極を選択し、同様に
して合成比抵抗を求め、これを表示装置30に表示する
とともに、合成比抵抗の二次元または三次元マツプを作
威し、表示装置130に表示し、また図示しないプリン
タによってプリントアウトする。
The signal processing device 22 switches and takes in the output signal of each amplifier 28a, 24b, 24c every predetermined time, for example, every 10 amplifiers, and calculates the output signal of each electrode row 14a, 24c based on a well-known calculation formula.
Resistivity of muddy water 15 and ground mass 17 in parts 14b and 14C
A composite resistivity consisting of the resistivity and resistivity is determined, stored in a memory (not shown), and displayed on the display device 30. After that, the signal processing device 22 switches the switches 20a, 20b, 20
A switching signal is sent to C, and each electrode row 14a, 14b, 14
A detection electrode is selected by switching the electrodes c one after another, and the composite resistivity is determined in the same way.This is displayed on the display device 30, and a two-dimensional or three-dimensional map of the composite resistivity is created and displayed on the display device. 130 and printed out using a printer (not shown).

さらに、信号処理装置22は、選択した一対の通電電極
以外のすべての電極に対する検出電極としての組み合わ
せを終了したならば、次の一対を通電電極として選択し
、前記と同様の処理を行う。
Further, after completing the combination of all electrodes other than the selected pair of current-carrying electrodes as detection electrodes, the signal processing device 22 selects the next pair of current-carrying electrodes and performs the same process as described above.

このように、実施例においては、異なった周波数の電流
を泥水15に流し、検出電極によって得た検出信号のう
ち、電流と周波数の同一の検出信号だけを選択して信号
処理装置22に人力することにより、各電極列14a、
14b、14cの通電電極に同時に電流を供給しても、
検出信号の混信を生ずることがなく、また迅速なデータ
の取り込みと処理が可能になり、各電極列14a、14
b、14cによって検出した切羽部の状態をリアルタイ
ムに検知することができ、切羽部の変化に対して迅速に
、かつ正確な対応をするとかできる。
In this way, in the embodiment, currents of different frequencies are passed through the muddy water 15, and from among the detection signals obtained by the detection electrodes, only detection signals having the same current and frequency are selected and manually input to the signal processing device 22. By this, each electrode row 14a,
Even if current is supplied to the current-carrying electrodes 14b and 14c at the same time,
There is no interference of detection signals, and rapid data acquisition and processing is possible.
The state of the face detected by b and 14c can be detected in real time, and it is possible to respond quickly and accurately to changes in the face.

なお、前記実施例においては、増幅器28a、24b、
24cからの信号の取り込みを時分割で行う場合につい
て説明したが、例えば複数の中央処理装置を用いて同時
に処理するようにしてもよい。また、各電極列14a、
14b、14cは、シールド掘削機10の中心に対して
等角度間隔に配置しなくてもよいし、電極列14bがシ
ールド掘削機10の頂部になくともよい。さらに、電極
列の数は3つに限定されない。そして、前記実施例にお
いては、各電極列14a、14b、14cの通電電極が
離れた一対の電極である場合について説明したが、隣接
した一対の電極を通電電極としてもよい。
Note that in the embodiment, the amplifiers 28a, 24b,
Although a case has been described in which the signals from 24c are taken in in a time-division manner, they may be processed simultaneously using, for example, a plurality of central processing units. In addition, each electrode row 14a,
14b and 14c do not have to be arranged at equal angular intervals with respect to the center of the shield excavator 10, and the electrode array 14b does not need to be on the top of the shield excavator 10. Furthermore, the number of electrode rows is not limited to three. In the embodiment described above, a case has been described in which the current-carrying electrodes of each electrode row 14a, 14b, and 14c are a pair of separated electrodes, but a pair of adjacent electrodes may be a current-carrying electrode.

第2図は、他の実施例を示したものである。FIG. 2 shows another embodiment.

第2図に示した実施例は、電極列14が前記実施例に示
した複数の電極列14a、14b、14Cを一体化させ
たと同様の構造をなし、各電極18が切換器20に接続
しである。そして、切換器20に接続した信号処理装置
22は、電極列14の任意の3対の電極を通電電極とし
て選択し、これらを交流電源24a、24b、24cに
接続し、シールド掘削機10の周方向の3個所から泥水
中に電流を流すとともに、残りの電極から任意の3対を
検出電極として順次選択して帯域フィルタ26a、26
b、26cに接続する。
In the embodiment shown in FIG. 2, the electrode row 14 has a structure similar to that in which the plurality of electrode rows 14a, 14b, and 14C shown in the previous embodiment are integrated, and each electrode 18 is connected to a switch 20. It is. Then, the signal processing device 22 connected to the switch 20 selects any three pairs of electrodes in the electrode row 14 as current-carrying electrodes, connects them to the AC power sources 24a, 24b, and 24c, and connects them to the AC power sources 24a, 24b, and 24c. A current is passed through the muddy water from three locations in the direction, and any three pairs of remaining electrodes are sequentially selected as detection electrodes to pass through the bandpass filters 26a, 26.
b, connect to 26c.

本実施例においても、前記実施例と同様の効果を得るこ
とができる。
In this embodiment as well, the same effects as in the previous embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明によれば、シールド掘削
機の周方向の複数個所から周波数の異なった電流を泥水
中に流し、この電流に基づく電圧の検出信号から、電流
の周波数と一致する周波数の検出信号を選択することに
より、検出信号の処理を同時的に行うことができ、シー
ルド掘削機10の周方向における切羽部の広い範囲にわ
たる地山の情報を迅速に得ることができ、切羽部の変化
番こ対して迅速、正確な対応が可能となる。
As explained above, according to the present invention, currents with different frequencies are passed through muddy water from multiple locations in the circumferential direction of a shield excavator, and a voltage detection signal based on this current is determined to match the frequency of the current. By selecting the frequency of the detection signal, the detection signals can be processed simultaneously, and information on the ground over a wide range of the face in the circumferential direction of the shield excavator 10 can be quickly obtained. It is possible to respond quickly and accurately to changes in parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係るシールド工法の地山崩壊
探査装置の説明図、第2図は他の実施例の説明図である
。 10−−−−シールド掘削機、14.14a、14b、
14 c−−−−−電極列、15−−−−一泥水、17
−地山、18−−−−−電極、22 −一−−信号処理
装置、24a、24b、24 c−−−一交流電源、2
6a、26b、26 c −−−−−−一帯域フィルタ
FIG. 1 is an explanatory diagram of a rock collapse detection device using a shield construction method according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram of another embodiment. 10---Shield excavator, 14.14a, 14b,
14 c-----electrode row, 15-----one muddy water, 17
- Earth, 18 ---- Electrode, 22 - - Signal processing device, 24 a, 24 b, 24 c - - AC power supply, 2
6a, 26b, 26c---One-band filter.

Claims (2)

【特許請求の範囲】[Claims] (1)シールド掘削機周囲の泥水に電流を通して比抵抗
を検出し、この比抵抗の変化に基づいて地山の崩壊を検
知するシールド工法の地山崩壊探査方法において、前記
シールド掘削機の周方向の複数個所から前記泥水中に周
波数の異なる電流を通すとともに、これらの電流と同じ
周波数の電圧検出信号を得て、前記複数個所における比
抵抗を検出することを特徴とするシールド工法の地山崩
壊探査方法。
(1) In the ground collapse exploration method of the shield construction method, which detects resistivity by passing an electric current through the muddy water around the shield excavator and detects the collapse of the ground based on the change in resistivity, the circumferential direction of the shield excavator is A ground collapse using a shield construction method, characterized in that currents with different frequencies are passed through the muddy water from a plurality of locations, and a voltage detection signal having the same frequency as these currents is obtained to detect specific resistance at the plurality of locations. Exploration method.
(2)シールド掘削機の周方向の複数個所に配設した通
電電極と検出電極とからなる電極列と、これら各電極列
の前記通電電極に接続され、各通電電極に異なった周波
数の電流を供給する複数の電源と、前記電極列の前記検
出電極に接続され、対応する通電電極に供給された電流
と同一周波数の電圧検出信号を通過させる複数のフィル
タと、これら各フィルタの出力に基づいて、前記シール
ド掘削機の周方向における複数個所の比抵抗を求める信
号処理装置とを有することを特徴とするシールド工法の
地山崩壊探査装置。
(2) An electrode array consisting of current-carrying electrodes and detection electrodes arranged at multiple locations in the circumferential direction of the shield excavator, connected to the current-carrying electrodes of each of these electrode rows, and applying currents of different frequencies to each current-carrying electrode. A plurality of power supplies to be supplied, a plurality of filters connected to the detection electrodes of the electrode array and passing voltage detection signals having the same frequency as the current supplied to the corresponding current-carrying electrodes, and based on the output of each of these filters. , a signal processing device for determining resistivity at a plurality of locations in the circumferential direction of the shield excavator.
JP2059220A 1990-03-08 1990-03-08 Method and apparatus for prospecting collapse of ground by shield method Pending JPH03257396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2059220A JPH03257396A (en) 1990-03-08 1990-03-08 Method and apparatus for prospecting collapse of ground by shield method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2059220A JPH03257396A (en) 1990-03-08 1990-03-08 Method and apparatus for prospecting collapse of ground by shield method

Publications (1)

Publication Number Publication Date
JPH03257396A true JPH03257396A (en) 1991-11-15

Family

ID=13107078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2059220A Pending JPH03257396A (en) 1990-03-08 1990-03-08 Method and apparatus for prospecting collapse of ground by shield method

Country Status (1)

Country Link
JP (1) JPH03257396A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016000939A (en) * 2014-06-12 2016-01-07 清水建設株式会社 Tunnel excavator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016000939A (en) * 2014-06-12 2016-01-07 清水建設株式会社 Tunnel excavator

Similar Documents

Publication Publication Date Title
US4134063A (en) Apparatus for the time-dependent measurement of physical quantities
CN111239242B (en) Dam leakage channel detection method and device based on magnetic field measurement
EP0243258B1 (en) Method and apparatus for investigating a borehole using an array of elements
US5514963A (en) Method for monitoring an area of the surface of the earth
CN101782621B (en) Method and device for judging fault point locations in cable protective layer fault detection
ES8401630A1 (en) Method and apparatus for electrically investigating a borehole.
NO128130B (en)
CN100483153C (en) Detecting method for bunching DC resistivity
JP2002507517A (en) Method for detecting capacitive objects in vehicles
CA1219634A (en) Detection of ground faults in ungrounded dc power supply systems
EP1060362B1 (en) Item detection/inspection arrangement
US4827213A (en) Apparatus for the contactless determination of variable intervals of distance by pulsatory spark discharges
US4942361A (en) Method and apparatus for determining earth resistivities in the presence of extraneous earth currents
JPH03257396A (en) Method and apparatus for prospecting collapse of ground by shield method
JP6220821B2 (en) Insulation resistance monitoring device and monitoring method in DC ungrounded circuit
JPH03257395A (en) Underground inspector
SU987550A1 (en) Method and device for vertical electric probing
US2172557A (en) Electrical method of geophysical
SU1111120A1 (en) Geoelectric prospecting method
JPH03260286A (en) Bedrock breakdown prospecting method and device in shield method
JPH03259791A (en) Method and device for detecting electrode corrosion of resistivity survey device
SU661354A1 (en) Method of measuring high direct currents in rectangular-section bus-bars
JP2002071726A (en) Voltage sensor
JPH0499986A (en) Surveyer for shield excavator front
JPH04350292A (en) Switching of electrode of bank destruction monitoring device