JPH0499986A - Surveyer for shield excavator front - Google Patents

Surveyer for shield excavator front

Info

Publication number
JPH0499986A
JPH0499986A JP2058377A JP5837790A JPH0499986A JP H0499986 A JPH0499986 A JP H0499986A JP 2058377 A JP2058377 A JP 2058377A JP 5837790 A JP5837790 A JP 5837790A JP H0499986 A JPH0499986 A JP H0499986A
Authority
JP
Japan
Prior art keywords
electrodes
pair
current
electrode
cutter face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2058377A
Other languages
Japanese (ja)
Inventor
Masahiko Yamamoto
正彦 山本
Kanji Shibatani
柴谷 寛治
Hiroaki Yamaguchi
山口 博明
Yasuo Kanemitsu
保雄 金光
Tetsuya Shinpo
新保 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2058377A priority Critical patent/JPH0499986A/en
Publication of JPH0499986A publication Critical patent/JPH0499986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To enable precise detection of soil state at a distant front by arranging one of a multitude of emission electrode pairs on a cutter face (CF) and the other electrode at a symmetrical position to the shield outer surface against a pair of reception electrodes in the center of the CF. CONSTITUTION:When a constant current is sent from an emission electrodes pair 16R and 16L, an emission current is supplied in the ground wall in the state that the electrodes 16R1, 16L1 on the CF 12 side and the electrodes 16R2, 16L2 on the shield main body side are common poles. Therefore, the current line due to the electrodes pair 16R and 16L focus in the center of the CF 12, the current density in the distance from the CF 12 increases, and thus the component perpendicular to the CF 12 increases. And so, even if there is the CF 12 as an electric conductor, the supplied current reaches distant into the ground and the relative resistance in the distance in the ground wall can easily be detected. In other words, if the emission current from the electrodes pair 16R and 16L is set equally and the soil in the front is homogeneous, no electric potential difference appears at the reception electrodes pair 14. Once the homogeneity disrupts, electric potential difference appears at the electrodes pair 14 and therefore, soil change or obstruction existence are detected.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明はシールド掘削前方の地山探査装置に係り、特に
比抵抗測定用電極による収束制御法を利用した地山探査
装置の改良に関する。
The present invention relates to a rock exploration device in front of shield excavation, and more particularly to an improvement of a rock exploration device using a convergence control method using resistivity measuring electrodes.

【従来の技術】[Conventional technology]

従来、シールドマシンによりトンネル掘削を行う場合に
は、掘削前方の地山の状態を知ることが施工管理の上で
重要とされ、従来から各種の検知方法が行われている。 この種の切羽前方の土質を検知する装置として、カッタ
ヘッドの前面に比抵抗測定用電極群を取り付けて比抵抗
法による検知するものがある。これは、電極群の一対の
電極に電流を供給して地山に送信して地山に電場を生じ
させ、他の電極対で電位を測定し地山の比抵抗分布を算
出することにより、土質の状態や障害物の有無を検出す
るようにしたものである。通常、この装置は複数の電極
を一定間隔に配列した比抵抗測定用電極列によって構成
されており、ウェンナー電極列やダイポール電極列とし
て知られている。
Conventionally, when excavating a tunnel using a shield machine, knowing the condition of the ground in front of the excavation is important for construction management, and various detection methods have been used. As a device for detecting soil quality in front of a face of this type, there is one that uses a resistivity method to detect by attaching a group of electrodes for measuring resistivity to the front surface of a cutter head. This is done by supplying a current to one pair of electrodes in the electrode group and transmitting it to the ground to generate an electric field in the ground, measuring the potential with the other pair of electrodes and calculating the resistivity distribution of the ground. It is designed to detect soil conditions and the presence or absence of obstacles. Usually, this device is composed of a resistivity measuring electrode array in which a plurality of electrodes are arranged at regular intervals, and is known as a Wenner electrode array or a dipole electrode array.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところが、上記従来の装置では、電極が取り付けられる
カッタヘッド面は金属導体から形成されているため、送
信電極から供給される電流が導体としてのカッタフェー
ス側に大部分が流れてしまい、計測対象である地山側に
は僅かの電流しか送信されないという問題があった。こ
のため、従来装置ではカッタフェースの近傍の浅い部分
の土質状態しか検出できない欠点があった。 本発明は、上記従来の問題点に着目し、掘削地山の遠方
まで電流を送信して遠方地山の土質状態を確実に検知す
ることができるシールド掘削前方の他山探査装置を提供
することを目的とする。
However, in the above-mentioned conventional device, the cutter head surface to which the electrode is attached is made of a metal conductor, so most of the current supplied from the transmitting electrode flows to the cutter face side as a conductor, causing the current to be measured. There was a problem in that only a small amount of current was transmitted to one side of the mountain. For this reason, the conventional device has the disadvantage that it can only detect the soil condition in a shallow area near the cutter face. The present invention focuses on the above-mentioned conventional problems, and provides an equipment for detecting other mountains in front of shield excavation, which is capable of transmitting a current far away from the excavated ground to reliably detect the soil condition of the distant ground. With the goal.

【課題を解決するための手段】[Means to solve the problem]

一1―記目的を達成するために、本発明に係るシールド
掘削前方の地山探査装置は、シールドマシンに比抵抗測
定用電極を設けて掘削地山前方の土質を探査する装置に
おいて、前記シールドマシンのカッターフェースの中央
部に受信電極対を設けるとともに、複数の送信電極対を
前記受信電極対に対して対称に配置し、かつこの送信電
極対の一方の電極を前記カッタフェース面に取り付け、
他方の電極をシールドマシン外周面に配置して取り付け
たものである。
In order to achieve the above object, the device for detecting the ground in front of the shield excavation according to the present invention is a device for exploring the soil in front of the excavated ground by providing a shield machine with a resistivity measuring electrode. A receiving electrode pair is provided in the center of the cutter face of the machine, a plurality of transmitting electrode pairs are arranged symmetrically with respect to the receiving electrode pair, and one electrode of the transmitting electrode pair is attached to the cutter face surface,
The other electrode is placed and attached to the outer peripheral surface of the shield machine.

【作用】[Effect]

−」−記構酸によれば、前記複数の送信電極対における
カッタフェース側の電極の極性が同極となるように電流
を供給することができる。したがって、送信電極対から
の電気力線がカッタフェースの中央前方に収束し、金属
導体からなるカッタフェース側に短絡して流れることが
防止され、地山の前方還部まで到達する。電流の収束部
位は複数の送信電極対の中央部分となるので、この箇所
に取り付けられた受信電極対は遠方位置の電位を計測し
、比抵抗を検出することができるので、遠方の土質の検
出や生涯物の検知が可能となるのである。
According to the present invention, a current can be supplied so that the electrodes on the cutter face side of the plurality of transmitting electrode pairs have the same polarity. Therefore, the lines of electric force from the pair of transmitting electrodes converge in front of the center of the cutter face, are prevented from short-circuiting and flowing toward the cutter face made of a metal conductor, and reach the front return part of the earth. Since the current convergence point is the central part of the multiple transmitting electrode pairs, the receiving electrode pair attached to this point can measure the potential at a distant position and detect the specific resistance, so it is possible to detect the soil quality at a distance. This makes it possible to detect living objects.

【実施例】【Example】

以下に、本発明に係るシールド掘削前方の探査装置の具
体的実施例を図面を参照して詳細に説明する。 第1図は実施例のシールド掘削前方の探査装置における
電極の配置構成を示すシールドマシン10の断面図であ
る。この図に示すように、シールドマシン10における
カッタフェース12の中心部には一定間隔をあけて配置
された一対の電極14M、14Nから構成される受信電
極対14が取りイ1けられている。これはカッタフェー
ス12の表面に前記電極14M、14Nが露出するよう
にカッタフェース12に形成されている土砂流入用のス
リット開閉装置に絶縁板を介して取り付けられている。 一方、地山に電流を供給送信するために実施例では二つ
の送信電極対16R,16Lを設けている。これらはシ
ールドマシン10の中心部に置かれた受信電極対14に
対して点対称位置に配置されたもので、具体的には、カ
ッタフェース12の直径線に沿って前記受信電極対14
から等距離に位置するように設定配置されている。そし
て、方の送信電極対16Rにおける一方の電極16R5
はカッタフェース12面一1−の外縁寄りの位置に取り
付けられ、これと対をなす他方の電極16R2はシール
ドマシン10の特に本体側の外周面に取りイ」けられて
いる。これらの電極16R1,16R、は前記受信電極
対14の配列線(カッタフェース12の直径線)を含む
平面に沿って配置されており、受信電極対14と同一平
面上に位置するように設定されている。また、上記送信
電極対16Rと前記受信電極対14を挟んで対称の位置
にある送信電極対16Lも同様に配置され、その一方の
電極16L、をカッタフェース12面の外縁寄りの位置
に、他方の電極16L2はシールドマシン10の本体外
周面にそれぞれ取りイ」けられている。この場合も画電
極16 L 、、16L2は受信電極対14と同一平面
」二に位置するように設定されている。これら送信電極
対16R,16Lの各電極はカッタフェース12側では
受信電極対14と同様にスリット開閉装置に絶縁板を介
して取り利け、シールド本体側ではスキンプレートに開
口した窓にやはり絶縁板を介して取り付けられる。 このように配置構成された比抵抗測定用電極14.16
R,,16Lにおいて、前記送信電極対16R,16L
の各々には発振器18R,18Lが接続されて地山に向
けて定電流を送信するようにしている。この場合におい
て、送信電極対16R116Lでは、カッタフェース1
2側に配置された電極16R2,16L +が電流送信
に際して極性が同一になるようにしている。このため、
発振器18R,18Lには極性設定器20が接続され、
これにより一方の送信電極対16Rからの送信極性と他
方の送信電極対16Lからの送信極性とが同一の形態と
なるようにしている。これは極性設定器20を管理する
コンピュータ22によって制御する。 一方、受信電極対14には受信電圧を計測するための電
圧計24が接続され、この入力信号を信号処理装置26
に取込むようにしている。信号処理装置26では計測信
号に基づき、見掛けの比抵抗を算出し、これをコンピュ
ータ22に出力する。 コンピュータ22では入力信号により地山の土質や障害
物のデータとして外部出力装置28に出力し、プリント
アウトあるいはモニター表示を行う。 このように構成されたシールド掘削前方の探査装置では
、送信電極対16R,16Lから定電流を送信した場合
、カッタフェース12側の電極16R,,16L、とシ
ールド本体側の電極16R2,16L2が同極となった
状態で地山に電流が送信供給される。このため、第2図
に示すように、側送信電極対16R,16Lによる電流
線がカッタフェース12の中央部で収束し、カッタフェ
ース12面より離れた地点での電流密度は、例えばウェ
ンナー法やダイポール法よりもおおきくなり、カッタフ
ェース12面に垂直な成分が増大する。 したがって、この供給電流は電気導体としてのカッタフ
ェース12の存在によっても、地中の遠方に達し、地山
遠方の比抵抗を容易に計測することができるのである。 すなわち、側送信電極対16R,16Lからの送信電流
を等しくすると、前方の土質が均一であれば受信電極対
14に電位差が表われないが、土質の変化や障害物があ
って均一性がくずれると、受信電極対14に電位差が表
われ、土質の変化や障害物の検知ができるのである。 なお、上記実施例では二つの送信電極対16R116L
を用いたが、これは三箇所あるいはそれ以上の送信電極
対を設けるようにしてもよい。この場合には受信電極対
14に対してカッタフェース12側の送信電極が受信電
極対14に対して等距離になるようにし、かつ送信電極
対どうしが等間隔となるように取り付ければよい。
EMBODIMENT OF THE INVENTION Below, the specific Example of the exploration device in front of shield excavation based on this invention is described in detail with reference to drawings. FIG. 1 is a sectional view of a shield machine 10 showing the arrangement of electrodes in an exploration device in front of shield excavation according to an embodiment. As shown in this figure, a receiving electrode pair 14 consisting of a pair of electrodes 14M and 14N arranged at a constant interval is provided at the center of the cutter face 12 of the shield machine 10. This is attached via an insulating plate to a slit opening/closing device for soil inflow, which is formed on the cutter face 12 so that the electrodes 14M and 14N are exposed on the surface of the cutter face 12. On the other hand, in order to supply and transmit current to the earth, two transmitting electrode pairs 16R and 16L are provided in the embodiment. These are arranged point-symmetrically with respect to the receiving electrode pair 14 placed at the center of the shield machine 10. Specifically, the receiving electrode pair 14 is placed along the diameter line of the cutter face 12.
It is set and arranged so that it is located equidistant from. Then, one electrode 16R5 in the other transmitting electrode pair 16R
is attached to a position near the outer edge of the cutter face 12, and the other electrode 16R2 paired therewith is disposed on the outer peripheral surface of the shield machine 10, particularly on the main body side. These electrodes 16R1, 16R are arranged along a plane that includes the arrangement line of the receiving electrode pair 14 (the diameter line of the cutter face 12), and are set to be located on the same plane as the receiving electrode pair 14. ing. Further, the transmitting electrode pair 16L and the transmitting electrode pair 16L, which are located at symmetrical positions with the transmitting electrode pair 16R and the receiving electrode pair 14 in between, are arranged in the same way, with one electrode 16L located near the outer edge of the cutter face 12 surface, and the other electrode The electrodes 16L2 are respectively arranged on the outer peripheral surface of the main body of the shield machine 10. In this case as well, the picture electrodes 16L, . . . 16L2 are set to be located on the same plane as the receiving electrode pair 14. Each electrode of these transmitting electrode pairs 16R and 16L is connected to the slit opening/closing device through an insulating plate on the cutter face 12 side in the same way as the receiving electrode pair 14, and on the shield body side, an insulating plate is also connected to the window opened in the skin plate. Attached via. Electrodes for measuring resistivity 14 and 16 arranged in this way
R,, 16L, the transmitting electrode pair 16R, 16L
Oscillators 18R and 18L are connected to each of the oscillators 18R and 18L to transmit a constant current toward the ground. In this case, in the transmission electrode pair 16R116L, the cutter face 1
The electrodes 16R2 and 16L+ arranged on the second side have the same polarity when transmitting current. For this reason,
A polarity setter 20 is connected to the oscillators 18R and 18L,
This ensures that the transmission polarity from one transmission electrode pair 16R and the transmission polarity from the other transmission electrode pair 16L are the same. This is controlled by a computer 22 that manages the polarity setter 20. On the other hand, a voltmeter 24 for measuring the received voltage is connected to the receiving electrode pair 14, and this input signal is sent to the signal processing device 26.
I am trying to incorporate it into The signal processing device 26 calculates the apparent resistivity based on the measurement signal and outputs it to the computer 22. In response to input signals, the computer 22 outputs data on the soil quality of the ground and obstacles to an external output device 28 for printing out or displaying on a monitor. In the shield excavation front exploration device configured in this way, when a constant current is transmitted from the transmitting electrode pair 16R, 16L, the electrodes 16R, 16L on the cutter face 12 side and the electrodes 16R2, 16L2 on the shield body side are the same. Electric current is transmitted and supplied to the ground in the polar state. Therefore, as shown in FIG. 2, the current lines formed by the pair of side transmitting electrodes 16R and 16L converge at the center of the cutter face 12, and the current density at a point away from the cutter face 12 is determined by, for example, the Wenner method or This is larger than the dipole method, and the component perpendicular to the cutter face 12 increases. Therefore, due to the presence of the cutter face 12 as an electric conductor, this supplied current reaches far underground, making it possible to easily measure the specific resistance far away from the ground. That is, when the transmission currents from the side transmitting electrode pairs 16R and 16L are made equal, no potential difference will appear in the receiving electrode pair 14 if the soil quality in front is uniform, but the uniformity will be disrupted due to changes in soil quality or obstacles. Then, a potential difference appears in the receiving electrode pair 14, and changes in soil quality and obstacles can be detected. In addition, in the above embodiment, two transmitting electrode pairs 16R116L
However, three or more pairs of transmitting electrodes may be provided. In this case, the transmitting electrodes on the cutter face 12 side may be placed at the same distance from the receiving electrode pair 14, and the transmitting electrode pairs may be attached at equal intervals.

【発明の効果】【Effect of the invention】

以上説明したように、本発明に係るシールド掘削前方の
探査装置をシールドマシンのカッターフェースの中央部
に受信電極対を設けるとともに、複数の送信電極対を前
記受信電極対に対して対称に配置し、かつこの送信電極
対の一方の電極を前記カッタフェース面に取り付け、他
方の電極をシールドマシン外周面に配置して取り付けた
構成としたので、送信電極から供給される電流が導体と
してのカッタヘッドの存在にかかわらず、計測対象であ
る地山側に大部分の電流を送信できるものとなり、前方
還部の土質状態を確実に検出できるという優れた効果が
得られる。
As explained above, the shield excavation front exploration device according to the present invention is provided with a pair of receiving electrodes in the center of the cutter face of a shield machine, and a plurality of pairs of transmitting electrodes are arranged symmetrically with respect to the pair of receiving electrodes. , and one electrode of this transmitting electrode pair is attached to the cutter face surface, and the other electrode is arranged and attached to the outer peripheral surface of the shield machine, so that the current supplied from the transmitting electrode is connected to the cutter head as a conductor. Regardless of the presence of the current, most of the current can be transmitted to the ground side that is the object of measurement, and the excellent effect of being able to reliably detect the soil condition of the front return area can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に係るシールド掘削前方の探査装置の構
成図、第2図は同装置による電流送信状態の説明図であ
る。 10・・・・・・シールドマシン、12・・・・・・カ
ッタフェース、14・・・・・・受信電極対、16R,
16L・・・・・・送信電極対、20・・・・・・極性
設定器、24・・・・電圧計、26・・・・・・信号処
理装置。
FIG. 1 is a configuration diagram of an exploration device in front of shield excavation according to an embodiment, and FIG. 2 is an explanatory diagram of a current transmission state by the same device. 10... Shield machine, 12... Cutter face, 14... Receiving electrode pair, 16R,
16L... Transmission electrode pair, 20... Polarity setting device, 24... Voltmeter, 26... Signal processing device.

Claims (1)

【特許請求の範囲】[Claims] 1)、シールドマシンに比抵抗測定用電極を設けて掘削
地山前方の土質を探査する装置において、前記シールド
マシンのカッターフェースの中央部に受信電極対を設け
るとともに、複数の送信電極対を前記受信電極対に対し
て対称に配置し、かつこの送信電極対の一方の電極を前
記カッタフェース面に取り付け、他方の電極をシールド
マシン外周面に配置して取り付けたことを特徴とするシ
ールド掘削前方の探査装置。
1) In an apparatus for exploring the soil in front of an excavated ground by providing a shield machine with a resistivity measuring electrode, a receiving electrode pair is provided in the center of the cutter face of the shield machine, and a plurality of transmitting electrode pairs are provided in the cutter face of the shield machine. A shield excavation front which is arranged symmetrically with respect to a pair of receiving electrodes, one electrode of the pair of transmitting electrodes is attached to the cutter face surface, and the other electrode is arranged and attached to the outer peripheral surface of the shield machine. exploration equipment.
JP2058377A 1990-03-09 1990-03-09 Surveyer for shield excavator front Pending JPH0499986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2058377A JPH0499986A (en) 1990-03-09 1990-03-09 Surveyer for shield excavator front

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2058377A JPH0499986A (en) 1990-03-09 1990-03-09 Surveyer for shield excavator front

Publications (1)

Publication Number Publication Date
JPH0499986A true JPH0499986A (en) 1992-03-31

Family

ID=13082638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2058377A Pending JPH0499986A (en) 1990-03-09 1990-03-09 Surveyer for shield excavator front

Country Status (1)

Country Link
JP (1) JPH0499986A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185511A (en) * 2008-02-06 2009-08-20 Kajima Corp Excavator and method of searching front of facing
CN106443797A (en) * 2015-08-11 2017-02-22 田中清作 Metal detector
CN113391359A (en) * 2021-07-26 2021-09-14 中铁工程装备集团有限公司 Real-time detection electric advanced geological prediction system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185511A (en) * 2008-02-06 2009-08-20 Kajima Corp Excavator and method of searching front of facing
CN106443797A (en) * 2015-08-11 2017-02-22 田中清作 Metal detector
CN113391359A (en) * 2021-07-26 2021-09-14 中铁工程装备集团有限公司 Real-time detection electric advanced geological prediction system and method
CN113391359B (en) * 2021-07-26 2022-03-11 中铁工程装备集团有限公司 Real-time detection electric advanced geological prediction system and method

Similar Documents

Publication Publication Date Title
US5365163A (en) Sensor array for circuit tracer
US6348796B2 (en) Image focusing method and apparatus for wellbore resistivity imaging
US9671517B2 (en) Tool for imaging a downhole environment
US8901933B2 (en) Tool for imaging a downhole environment
US8901932B2 (en) Tool for imaging a downhole environment
US7896073B2 (en) Apparatus for formation resistivity imaging in wells with oil-based drilling fluids
US8933700B2 (en) Tool for imaging a downhole environment
NO159966B (en) PROCEDURE AND APPARATUS FOR ELECTRICAL EXPLORATION OF Boreholes.
DZ1663A1 (en) Logging method and device for studying the geometric characteristics of a borehole.
CN105093335B (en) System and method for reducing apparent resistivity measurement error based on focused current method
US9568633B2 (en) Electromagnetic formation evaluation tool apparatus and method
JPH0499986A (en) Surveyer for shield excavator front
CN109557590A (en) A kind of fine detection method of direct current focusing of wall leakage
CN111812728B (en) Well ground resistivity CT observation system and working method thereof
JPH0499988A (en) Surveyer for shield excavator front
CN210742516U (en) Array induced polarization exploration device
CN214660114U (en) Microsphere polar plate and microsphere focusing logging instrument
JPH10260264A (en) Specific resistance electric searching method
AU2021204696B2 (en) System and method for geophysical data collection
JPH03259790A (en) Natural ground survey device for shielding method
JPH0499987A (en) Surveying of shield excavation natural ground
JPH0715897U (en) Ground detection device for shield machine
JPH03259782A (en) Surveying method for underground buried body
JPH03257397A (en) Electrode for ground prospecting device in shield work
JPH04350292A (en) Switching of electrode of bank destruction monitoring device