JPH03257310A - Probe microscope - Google Patents

Probe microscope

Info

Publication number
JPH03257310A
JPH03257310A JP5745990A JP5745990A JPH03257310A JP H03257310 A JPH03257310 A JP H03257310A JP 5745990 A JP5745990 A JP 5745990A JP 5745990 A JP5745990 A JP 5745990A JP H03257310 A JPH03257310 A JP H03257310A
Authority
JP
Japan
Prior art keywords
probe
sample
microscope
reflecting mirror
sample surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5745990A
Other languages
Japanese (ja)
Other versions
JP3023686B2 (en
Inventor
Akira Inoue
明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2057459A priority Critical patent/JP3023686B2/en
Publication of JPH03257310A publication Critical patent/JPH03257310A/en
Application granted granted Critical
Publication of JP3023686B2 publication Critical patent/JP3023686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent that the surface of a sample works as a mirror face thereby to hinder observation, and to clearly confirm the surface of the sample in a position confronting a probe by providing a reflecting mirror in the vicinity of the probe and enlarging an elevation of the line of vision observing the surface of the sample. CONSTITUTION:In a scanning tunnel microscope, a probe 1 is provided at one end of a microscanner 7. The other end of the scanner 7 is fixed to a moving stage 8a moved by a mechanism 8 for rough adjustment. The moving stage 8a is provided with a reflecting mirror 3 an inclining angle of which is variable via a mounting arm 3a. The vicinity of an end of the probe 1 and the sample face confronting the probe 1 are observed from an observation window 10a of a housing 10 via the reflecting mirror 3. In this manner, an effective elevation A of the line of vision 4 by the reflecting mirror 3 is enlarged, and the state where the probe 1 is close to the sample can be easily and positively observed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、走査型トンネル顕微鏡や原子間力顕微鏡ある
いはイオン伝導度顕微鏡などのように、先端を鋭く尖ら
せた探針を試料表面に近づけて試料表面の微細構造を観
察する顕微鏡(以下「探針顕微鏡」と称す)に関するも
ので、特に探針が試料表面に接近した状況を観ることが
できる探針顕微鏡に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a scanning tunneling microscope, an atomic force microscope, an ion conductivity microscope, etc., in which a probe with a sharp tip is brought close to a sample surface. The present invention relates to a microscope (hereinafter referred to as a "probe microscope") for observing the fine structure of the surface of a sample using a probe, and particularly to a probe microscope that allows observation of the state in which a probe approaches the sample surface.

[発明の概要] 走査型トンネル顕微鏡や原子間力顕微鏡あるいはイオン
伝導度顕微鏡などの探針顕微鏡は、その観察する原理は
異なるが、先端を鋭く尖らせた探針を試料表面に近づけ
て試料表面の微細構造を観察するという共通点をもち、
従って探針と試料との相対位置関係を保持するための構
造上の共通点がある。本発明は前記探針が試料表面上に
接近した状況を観るために、探針近傍に反射鏡を設け、
その反射鏡を通して観ることにより視点の仰角をなるべ
く大きくすることが出来るようにするためのものである
[Summary of the Invention] Probe microscopes such as scanning tunneling microscopes, atomic force microscopes, and ion conductivity microscopes use different principles for observation, but they involve moving a probe with a sharp tip close to the sample surface. They have a common feature of observing the fine structure of
Therefore, there is a common feature in structure for maintaining the relative positional relationship between the probe and the sample. In the present invention, a reflecting mirror is provided near the probe in order to observe the situation in which the probe approaches the sample surface.
This is so that the angle of elevation of the viewpoint can be made as large as possible by viewing through the reflecting mirror.

[従来の技術] 走査型トンネル顕微鏡や原子間角頭1故鏡あるいはイオ
ン伝導度顕微鏡など、先端を鋭(尖らせた探針を試料表
面に近づけて試料表面の微細構造をミクロンから原子ス
ケールで観察する探11顕微鏡の技術は近年大きな進展
をし、広い分野で成果をあげている。
[Prior technology] Scanning tunneling microscopes, interatomic square-head mirrors, ion conductivity microscopes, and other devices bring a probe with a sharp tip close to the sample surface to examine the fine structure of the sample surface from microns to atomic scales. The technology of the 11-scope microscope used for observation has made great progress in recent years, and has produced results in a wide range of fields.

これらに共通している技術は先端を鋭く尖らせた探針を
試料表面に近づけて、探針先端を試料表面に僅かな距離
を置いてなぞることにより、試料表面の微細構造を観察
するという事である。
The common technique for these is to bring a probe with a sharp tip close to the sample surface and trace the tip of the probe over the sample surface at a short distance to observe the fine structure of the sample surface. It is.

例えば走査型トンネル顕微鏡の場合、第6図に基づき説
明すると次のようである。導電性の試料2の表面に金属
の探針1をlnm程度まで近づけて、から両者間に微小
電圧を印加すると、トンネル効果により電流が流れる。
For example, in the case of a scanning tunneling microscope, the explanation will be as follows based on FIG. When the metal probe 1 is brought close to the surface of the conductive sample 2 to about 1 nm and a minute voltage is applied between the two, a current flows due to the tunnel effect.

この電流はトンネル電流と呼ばれ、両者間の距離に非常
に敏感で0.1nmの距離変化に対してほぼ1桁変化す
る。そこで、)・ンネル電流を一定に保つように探針を
駆動制御すると、両者間の距離は高い精度で一定に保つ
ことができ、その状態で探針を試料表面上で走査すれば
、探針の駆動制御信号から探針の試料表面に垂直な方向
の駆動距離が判り、従って試料表面の形状を原子の尺度
で測ることができる。探針と試料間に印加する電圧はバ
イアス電圧発生器14により発生され、トンネル電流は
増幅器15により増幅され、フィードハック回路16を
通して微動アクチユエータ17によりトンネル電流を一
定に保つように探針を駆動制御する。探針の試料表面上
での走査は走査信号発生器18からの走査信号を微動ア
クチュエータ19.20に印加して行う。
This current is called a tunnel current, and is very sensitive to the distance between the two, and changes by approximately one order of magnitude for a change in distance of 0.1 nm. Therefore, by controlling the drive of the probe so as to keep the channel current constant, the distance between the two can be kept constant with high precision, and if the probe is scanned over the sample surface in this state, the tip The driving distance of the probe in the direction perpendicular to the sample surface can be determined from the drive control signal, and therefore the shape of the sample surface can be measured on an atomic scale. The voltage applied between the probe and the sample is generated by a bias voltage generator 14, the tunnel current is amplified by an amplifier 15, and the probe is driven and controlled by a fine movement actuator 17 through a feed hack circuit 16 to keep the tunnel current constant. do. Scanning of the probe over the sample surface is performed by applying a scanning signal from a scanning signal generator 18 to a fine movement actuator 19,20.

微動アクチュエータ17.19.20は例えば圧電素子
を用いる。探針の駆動距離に相当する駆動制御信号21
を探針の試料表面の走査信号22と共にデータ処理装置
23で画像化すれば、試料表面の形状が可視像として観
察できる。
The fine movement actuators 17, 19, 20 use, for example, piezoelectric elements. Drive control signal 21 corresponding to the driving distance of the probe
If this is converted into an image by the data processing device 23 together with the scanning signal 22 of the sample surface of the probe, the shape of the sample surface can be observed as a visible image.

原子間力顕微鏡の場合は、図7に示すように探針1と試
料2の表面との間に働く力(原子間力)を非常に敏感な
ハネ24とハネのたわみのセンサ25で検出して両者間
の距離を保つ。すなわち、走査形トンネル顕微鏡に於&
Jるトンネル電流が原子間力になっているわけである。
In the case of an atomic force microscope, as shown in Figure 7, the force (atomic force) acting between the probe 1 and the surface of the sample 2 is detected by a very sensitive blade 24 and a blade deflection sensor 25. to maintain distance between the two. In other words, in a scanning tunneling microscope &
This means that the tunnel current becomes an atomic force.

ハネのたわみのセンソ′25は例えばレーザダイオード
26、フォトディテクタ27.28及び差動アンプ29
により構成される。レーザダイオード26から発生され
る光30はハネに反射した後2個のフメトディテクタ2
7.28で受光される。ハネのたわみによる光路の変化
によりフォトディテクタ27に入側する光量は増加(減
少)し、逆にフォトディテクタ28に入射する光量は減
少(増加)する。フメトディテクタ27.28の出力を
作動アンプ29に入力すれば作動アンプ29の出力は異
なり、すなわち探針と試料表面との間に作用する原子間
力に相当する信号が得られる。このように、走査形トン
ネル顕微鏡に於けるトンネル電流が原子間力になってい
るわけであり、付帯する制御回路やデータ処理回路等は
第6図と同様であり、第7図に於いては省略しである。
The deflection sensor '25 includes, for example, a laser diode 26, a photodetector 27, 28, and a differential amplifier 29.
Consisted of. The light 30 generated from the laser diode 26 is reflected by the blade and then sent to two fumetodetectors 2.
The light was received at 7.28. Due to the change in the optical path due to the deflection of the wing, the amount of light that enters the photodetector 27 increases (decreases), and conversely, the amount of light that enters the photodetector 28 decreases (increases). If the outputs of the fumeto detectors 27 and 28 are input to the operational amplifier 29, the output of the operational amplifier 29 will be different, that is, a signal corresponding to the atomic force acting between the probe and the sample surface will be obtained. In this way, the tunneling current in a scanning tunneling microscope becomes an atomic force, and the accompanying control circuit, data processing circuit, etc. are the same as in Figure 6, and in Figure 7. It is omitted.

又、イオン伝導度顕微鏡の場合は、図8に示すように電
解液E中に於ける試料2の表面と、ガラス等の絶縁物で
出来たキャピラリの探針1aの間に流れるイオン電流を
検出して両者間の距離を保つ。すなわち、走査形トンネ
ル顕微鏡に於けるトンネル電流がイオン電流になってい
るわけである。
In addition, in the case of an ion conductivity microscope, as shown in Figure 8, the ionic current flowing between the surface of the sample 2 in the electrolytic solution E and the capillary probe 1a made of an insulating material such as glass is detected. and maintain distance between them. In other words, the tunneling current in a scanning tunneling microscope is an ion current.

試料が浸っている電解液Eには電極32があり、前記電
解液と同様の電解液Eを内部にみたしたキャピラリの探
針内には電極31がある。電極31.32の間にバイア
ス電圧発生器14による電圧を印加すると電解液Eを通
してイオン電流が流れる。
There is an electrode 32 in the electrolytic solution E in which the sample is immersed, and an electrode 31 in the probe of a capillary whose inside is filled with an electrolytic solution E similar to the electrolytic solution. When a voltage is applied between the electrodes 31, 32 by the bias voltage generator 14, an ionic current flows through the electrolyte E.

このイオン電流は探針と試料間の距離により変化する。This ion current changes depending on the distance between the probe and the sample.

例えば両者間の距離がゼロの場合はキャピラリの先端と
試料とは密着し、二つの電極31.32が浸っている電
解液Eは遮断され、イオン電流はゼロであるが、両者間
の距離が少しずつ開けばそれに応じてイオン電流は大き
くなる。このように、走査形トンネル顕微鏡に於けるト
ンネル電流がイオン電流になっているわけであり、付帯
する制御回路やデータ処理回路等は第6図と同様であり
、第8図に於いては省略しである。
For example, when the distance between them is zero, the tip of the capillary and the sample are in close contact, the electrolyte E in which the two electrodes 31 and 32 are immersed is cut off, and the ionic current is zero, but the distance between them is If you open it little by little, the ionic current will increase accordingly. In this way, the tunneling current in a scanning tunneling microscope is an ion current, and the accompanying control circuits, data processing circuits, etc. are the same as shown in Figure 6, and are omitted in Figure 8. It is.

これらに関する詳細は、例えば以下の資料に示されてい
る。
Details regarding these can be found, for example, in the documents below.

走査型トンネル顕微鏡については G、B1nn1g、H,Rohrer et al、:
5urface 5tudiasby Scannin
g Tunneling Microscopy、Ap
pl、Phys。
For scanning tunneling microscopy, G. B1nn1g, H. Rohrer et al.:
5urface 5tudiasby Scannin
g Tunneling Microscopy, Ap
pl, Phys.

Lett、 Vol、49.No、1.I)p、178
−180(19B2)あるいは、 梶村皓二、小野雅敏 等:走査型トンネル顕微鏡、固体
物理、Vol、22.No、3.pp、32−47 (
1987)。
Lett, Vol. 49. No, 1. I) p, 178
-180 (19B2) or Koji Kajimura, Masatoshi Ono et al.: Scanning tunneling microscope, Solid State Physics, Vol. 22. No, 3. pp, 32-47 (
1987).

120−123 (1983) 。120-123 (1983).

原子間力顕微鏡の詳細に付いては P、に、Hansma et al、:An Atom
ic−resolutionatomic−force
 m1croscope implemented u
singan optical 1ever、J、Ap
pl、Phys、 Vo165+No、1pp、164
−167(198B) また、イオン伝導度顕微鏡の詳細に付いてはI’、に、
llansma、et al、:Scanning I
on−ConductanceMicroscope、
 5cience、 Vo 1.243. pp、64
1−643 (1989)に記載されている。
For details on atomic force microscopy, see Hansma et al.: An Atom.
ic-resolution atomic-force
m1croscope implemented u
singan optical 1ever, J, Ap
pl, Phys, Vo165+No, 1pp, 164
-167 (198B) For details on ion conductivity microscopy, see I'.
llansma, et al.: Scanning I
on-Conductance Microscope,
5science, Vo 1.243. pp, 64
1-643 (1989).

上述のような探針顕微鏡により試料表面観察をする際、
探針が試料表面上の何処の位置に対向しているかを知る
ことは試料を観察する上で重要なことである。この目的
のための手段として従来は試料表面とそれに対抗した徐
開との状況を第9図のようにハウジングlOの観察用窓
10aから目視あるいは、第10図に示すごとく実体顕
微鏡等の光学顕微鏡33を用いるなどしていた。
When observing the sample surface using a probe microscope as described above,
It is important to know where on the sample surface the probe is facing when observing the sample. Conventionally, as a means for this purpose, the situation of the sample surface and the gradual opening that opposes it can be visually observed through the observation window 10a of the housing IO as shown in FIG. 9, or with an optical microscope such as a stereomicroscope as shown in FIG. 33 was used.

[発明が解決しようとしている課題1 前述のように、走査型トンネル顕微鏡や原子間力顕微鏡
あるいはイオン伝導度顕微鏡は、探針と試料間の相互作
用として検出するものがそれぞれトンネル電流、原子間
力、イオン電流と異なってはいるが、先端を鋭く尖らせ
た探針を試料表面に近づけて試料表面の微細構造を観察
するという点で同しである。そして、本発明の主旨は探
針が試料表面に対抗して接近している状況を観察する手
段に関することであり、両者間の相互作用として検出す
るものがトンネル電流や原子間力あるいはイオン電流で
あるということには全く影響されないことである。それ
故、以降は車に探針顕微鏡として説明する。
[Problem to be solved by the invention 1] As mentioned above, scanning tunneling microscopes, atomic force microscopes, and ion conductivity microscopes detect tunneling current and atomic force as interactions between the probe and the sample, respectively. Although it is different from ion current, it is similar in that a probe with a sharp tip is brought close to the sample surface to observe the fine structure of the sample surface. The gist of the present invention relates to a means for observing the situation in which the probe approaches the sample surface, and what is detected as the interaction between the two is tunnel current, atomic force, or ionic current. It is completely unaffected by the fact that it exists. Therefore, from now on, we will explain the car as a probe microscope.

探針顕微鏡に於いて、探針と試料とは一般的に第9図に
示すような配置をしている。即ち試料2は試料ホルダ5
にクランパ6により固定され、試料ホルダ5は試料を試
料表面の面内方向に移動するための試料ステージ9に取
り付けられる。探針lは試料2の表面上を走査できるよ
うに微動スキャナ7に取り付けられている。この微動ス
キャナは例えばPZT(チタン酸ジルコン酸鉛)の圧電
素子で実現される。さらに微動スキャナ7は粗動機N4
Bに取り付けられる。この粗動機構8は試料2を試料ス
テージ9に試料ホルダ5を介して取り付けた直後の探針
1と試料2との距創が数ミリメートル程度離れた状態か
ら、微動スキャナで制御できる程度の距離である1、、
クロンていど以下の距離にまで予め近づけるための機構
であり実用上きわめて重要な機構である。粗動機構8は
試ネ1側に設けてもよい。モして粗動機構8と試料ステ
ジ9とはハウジング(またはフレーム)10を介して連
結される。またハウジング10は除振機構11のを介し
て設置され外部振動から絶縁されるようにしている。
In a probe microscope, the probe and the sample are generally arranged as shown in FIG. That is, the sample 2 is in the sample holder 5.
The sample holder 5 is attached to a sample stage 9 for moving the sample in the in-plane direction of the sample surface. The probe l is attached to a fine movement scanner 7 so that it can scan the surface of the sample 2. This fine movement scanner is realized, for example, by a piezoelectric element made of PZT (lead zirconate titanate). Furthermore, the fine movement scanner 7 is the coarse movement scanner N4.
It can be attached to B. This coarse movement mechanism 8 moves from a state in which the distance between the probe 1 and the sample 2 immediately after attaching the sample 2 to the sample stage 9 via the sample holder 5 to a distance of several millimeters that can be controlled by a fine movement scanner. is 1,,
This is a mechanism that allows you to approach the target to a distance less than that of a chronograph, and is an extremely important mechanism in practical terms. The coarse movement mechanism 8 may be provided on the trial set 1 side. The coarse movement mechanism 8 and the sample stage 9 are connected via a housing (or frame) 10. Further, the housing 10 is installed via a vibration isolating mechanism 11 so as to be insulated from external vibrations.

この様な探針顕微鏡を実用に供するには観察を安定に行
える様にすることが必要である。即ち、除振機構9を通
り抜けて来るわずかな振動や装置が設置されている部屋
の温度の変化に対して影響が無視し得る程度にしなけれ
ばならない。そのためには探針1と試料2とを取り付け
ている構造体の剛性を高くすることが重要であり、従っ
て形状を小型にしなければならない。
In order to put such a probe microscope into practical use, it is necessary to be able to perform observations stably. That is, the influence of slight vibrations passing through the vibration isolation mechanism 9 and changes in the temperature of the room in which the device is installed must be negligible. To this end, it is important to increase the rigidity of the structure to which the probe 1 and sample 2 are attached, and therefore the shape must be made smaller.

この結果、探針1が対向している試料20表面を観よう
としする場合、その視線の仰角は第11図に示すように
非常に小さな角度にならざるを得なかった。微動スキャ
ナとして高電圧駆動の圧電素子を用いるような場合は、
感電防止と微動スキャナの保護のためにカバー12を取
り付ける場合もあり、この様な場合には視線の仰角はよ
り一層小さくなる。
As a result, when trying to view the surface of the sample 20 facing the probe 1, the elevation angle of the line of sight has to be a very small angle as shown in FIG. When using a high voltage driven piezoelectric element as a fine movement scanner,
In some cases, a cover 12 is attached to prevent electric shock and to protect the fine movement scanner, and in such a case, the elevation angle of the line of sight becomes even smaller.

前述のごとく、探針顕微鏡は試料表面をミクロンから原
子スケールで観察する手段であり、観察しようとする試
料の表面は可視光学的には平坦である。そのため視線の
仰角が大きければ探針が対抗している試料表面の観察部
所を可視出来るが、視線の仰角が小さくなるため試料2
の表面は鏡のように作用して、探針1が対向している所
の試料表面臼1の状況を観るのは非常に困難であるとい
う問題点があった。
As mentioned above, the probe microscope is a means for observing the surface of a sample from a micron to an atomic scale, and the surface of the sample to be observed is flat in terms of visible optics. Therefore, if the elevation angle of the line of sight is large, the observation part on the sample surface that the probe is facing can be seen, but since the elevation angle of the line of sight is small, the sample 2
There is a problem in that the surface acts like a mirror and it is very difficult to see the condition of the sample surface mill 1 where the probe 1 is facing.

[問題点を解決するための手段及び作用]本発明は探針
近傍に反射鏡を設+J、探11が対向している試料の表
面をその反射鏡の反射像を観ることにより、その視線の
仰角を実質的に大きくすることができ、試料の表面が鏡
のように作用させることなく探針が対向している所の試
料表面自身の状況を鮮明に観ることができるのである。
[Means and effects for solving the problems] The present invention includes a reflecting mirror near the probe tip, and the line of sight of the surface of the sample facing the probe 11 is observed by observing the reflected image of the reflecting mirror. The angle of elevation can be substantially increased, and the state of the sample surface itself where the probe is facing can be clearly seen without the sample surface acting like a mirror.

[実施例] 以下、第1図〜第5図に基づいて本発明の実施例につい
て説明する。
[Example] Hereinafter, an example of the present invention will be described based on FIGS. 1 to 5.

第1図(B)は、走査型トンネル顕微鏡に反射鏡を設置
した実施例の図である。
FIG. 1(B) is a diagram of an embodiment in which a reflecting mirror is installed in a scanning tunneling microscope.

探針1は、微動スキャナー7の一端に取り付けられ、微
動スキャナー7の他端は、粗動機構8により移動する移
動台8aに取り付lJられている。
The probe 1 is attached to one end of a fine movement scanner 7, and the other end of the fine movement scanner 7 is attached to a moving stage 8a that is moved by a coarse movement mechanism 8.

粗動機構8には、x、y、z方向の移動機構が内蔵され
、移動台8aは、x、y、z方向に粗動移動が可能とな
っている。
The coarse movement mechanism 8 has a built-in movement mechanism in the x, y, and z directions, and the moving table 8a is capable of coarse movement in the x, y, and z directions.

移動台8aには、反射鏡取付用のアーム3aが取り付け
られ、探針1の先端近傍にあるアーム3aの先端部に傾
斜角度可変に反射鏡3が傾斜して設けられている。
An arm 3a for attaching a reflecting mirror is attached to the movable table 8a, and the reflecting mirror 3 is provided at the tip of the arm 3a near the tip of the probe 1 so as to be inclined at a variable inclination angle.

従って、探針1の先端近傍と、探針1と対向する試料面
を反射鏡3を介して、ハウジング10の観察用窓10a
より仰角を大きくした状態で観察することができる。
Therefore, the vicinity of the tip of the probe 1 and the sample surface facing the probe 1 are viewed through the reflecting mirror 3 through the observation window 10a of the housing 10.
It can be observed at a larger angle of elevation.

第1図(b)は探針1、試料2、反射鏡3の部分の拡大
図であり、この図で明らかなように、反射鏡3による視
線4の実効的な仰角Aが大きくとれることとなる。
FIG. 1(b) is an enlarged view of the probe 1, sample 2, and reflector 3. As is clear from this figure, the effective elevation angle A of the line of sight 4 due to the reflector 3 can be increased. Become.

第2図は、目視ではなく、光学顕微鏡33によ1 2 り反射鏡3の反射像を観察するようにした例を示すもの
で、ハウジング10に光学顕微鏡33を設置したもので
ある。ここに用いる光学顕微鏡は、ワーキングデイスタ
ンス(対物レンズと試料との距#)の長いものがよい。
FIG. 2 shows an example in which the reflected image of the reflecting mirror 3 is observed using an optical microscope 33 instead of visually, and the optical microscope 33 is installed in the housing 10. The optical microscope used here should preferably have a long working distance (distance # between the objective lens and the sample).

この例では、反射鏡3は、微動スキャナー7の保護カバ
ー12に取り付けられたアーム3aの先端部に傾斜して
設けられている。
In this example, the reflecting mirror 3 is provided in an inclined manner at the tip of an arm 3a attached to the protective cover 12 of the fine movement scanner 7.

反射像の観察手段としては、光学顕微鏡の他、拡大レン
ズ、TVカメラ等先光学的観察手段用いることもできる
As a means for observing the reflected image, in addition to an optical microscope, optical observation means such as a magnifying lens and a TV camera can also be used.

第3図は反射鏡3の取り付けの別の実施例を示す図であ
る。この例では、反射鏡3には、第4図のように探針1
が通る穴13が形成されており、この穴13に探針1を
通した状態で反射鏡3が傾斜して反射鏡取付アーム3a
の先端部に設置されている。反射鏡取付アーム3aは前
の実施例と同様、移動台8aや保護カバー12などに取
り付けられる。そして、反射鏡3からの反射像は、第1
図、第2図の如く目視又は光学顕i戚鏡により観察され
る。
FIG. 3 is a diagram showing another example of how the reflecting mirror 3 is attached. In this example, the probe 1 is attached to the reflector 3 as shown in FIG.
A hole 13 is formed through which the probe 1 passes, and when the probe 1 is passed through the hole 13, the reflector 3 is tilted and attached to the reflector mounting arm 3a.
It is installed at the tip of the The reflector mounting arm 3a is attached to the moving table 8a, the protective cover 12, etc., as in the previous embodiment. The reflected image from the reflecting mirror 3 is the first
As shown in Fig. 2, it is observed visually or with an optical microscope.

この例の場合では、視線4の仰角はさらに大きくできる
In this example, the elevation angle of the line of sight 4 can be made even larger.

次に第5図により原子間力顕微鏡に反射鏡を設置した例
について説明する。
Next, an example in which a reflecting mirror is installed in an atomic force microscope will be explained with reference to FIG.

原子間力を検知する非常に敏感な板バネ24は支柱24
aに固定され、他端部には探針1が固定されている。測
定原理は、第7図で前述した通り、板バネ24の原子間
力による変位をレーザダイオド26、フォトディテクタ
27.28等からなるセンサ部25で検出し、試料2の
微細構造を観察する。
A very sensitive leaf spring 24 that detects atomic forces is attached to the strut 24.
a, and a probe 1 is fixed to the other end. As described above with reference to FIG. 7, the measurement principle is to detect the displacement of the leaf spring 24 due to atomic force using the sensor section 25, which includes the laser diode 26, photodetectors 27, 28, etc., and observe the fine structure of the sample 2.

試料2は、試料ホルダー5に載置され、試料ホルダー5
は微動スキャナー7上に取り付けられている。微動アク
チュエータ17.19.20が形成された微動スキャナ
ー7は、粗動機構8の移動台8a上に設置されている。
The sample 2 is placed on the sample holder 5.
is mounted on the fine movement scanner 7. The fine movement scanner 7 in which the fine movement actuators 17, 19, and 20 are formed is installed on the moving table 8a of the coarse movement mechanism 8.

この例でも、反射鏡3は、ハウジング10に取り付けら
れたアーム3aの先端部に傾斜して設けられ、探針1の
先端近傍又は第4図に示す反射鏡の穴に探針lを通して
設置される。
In this example as well, the reflector 3 is installed obliquely at the tip of the arm 3a attached to the housing 10, and is installed near the tip of the probe 1 or through the probe l through the hole in the reflector shown in FIG. Ru.

そして、この反射鏡3からの反射像は、第1図。The reflected image from this reflecting mirror 3 is shown in FIG.

第2図の如く目視又は光学顕微鏡により観察される。As shown in FIG. 2, it is observed visually or with an optical microscope.

第5図(b)はイオン伝導度顕微鏡に反射鏡3を設置し
た例を示す図である。電解液Eを内部にみたしたガラス
等の絶縁物でできたキャピラリの探針1aの近傍あるい
は探針1aを通して、反射鏡3が設置され、その反射像
は目視又は光学8Jii鏡で観察される。イオン伝導度
顕微鏡の観察原理は、第8図を用いて前述した如くであ
る。
FIG. 5(b) is a diagram showing an example in which a reflecting mirror 3 is installed in an ion conductivity microscope. A reflecting mirror 3 is installed near or through the probe 1a of a capillary made of an insulating material such as glass and filled with an electrolytic solution E, and its reflected image is observed visually or with an optical 8Jii mirror. The observation principle of the ion conductivity microscope is as described above with reference to FIG.

このように種々の探針顕微鏡に反射鏡を設置することに
より、実効的な仰角を大きくでき、探針と試料の接近し
た状況を容易かつ確実に観察することができる。
By installing a reflecting mirror in various probe microscopes in this manner, the effective angle of elevation can be increased, and the state in which the probe and the sample are close can be observed easily and reliably.

[発明の効果] 探針顕微鏡で微細な観察をしようとしている試料に対し
て、試料表面で探針が対向している所の状況、いいかえ
ればを探針顕微鏡で観察しようとしている試料表面の状
況を確認することが容易になり、また誤認による無駄な
観察を避けることができる。
[Effects of the invention] The situation where the probe faces the sample surface where the probe is facing the sample to be minutely observed with the probe microscope, in other words, the situation of the sample surface where the probe is to be observed with the probe microscope. This makes it easier to confirm and avoid unnecessary observations due to misidentification.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の実施例で走査型トンネル顕微鏡
に反射鏡を設置した図、第1図(b)は第1図(a)の
部分拡大図、第2図は反射鏡の反射像を観察する光学顕
微鏡を設置した例の図、第3図は探針を通して反射鏡を
設置した例の図、第4図は第3図に於ける反射鏡の実施
例、第5図(a)は原子間力DI鏡に反射を設置した図
、第5図(b)はイオン伝導度顕微鏡に反射鏡を設置し
た図、第6図は走査型トンネル顕微鏡の概念図、第7図
 原子間力顕微鏡の概念図、第8図はイオン伝導度顕微
鏡の概念図、第9図は従来の探針顕微鏡の構造図、第1
O図は従来の光学顕微鏡付き探針顕微鏡の構造図、第1
1図は従来の視線の仰角を示す図である。 1・・・探針 1a・・・キャピラリの探針 5 6 2・・・試料 3・・・反射鏡 3a・・アーム 4・・・視線 5・・・試料ホルダ 6・・・クランパ 7・・・微動スキャナ 8・・・粗動機構 8a・・移動台 9・・・試料ステージ lO・・・ハウジング 10a・・観察用窓 11・・・除振機構 12・・・カバー 13・・・穴 14・・・バイアス電圧発生器 15・・・増幅器 16・・・フィードバンク回路 17・・・微動アクチュエータ 18・・・走査信号発生器 19 ・ ・ 20 ・ ・ 21 ・ ・ 22 ・ ・ 23 ・ ・ 24 ・ ・ 24a  ・ 25 ・ ・ 26 ・ ・ 27 ・ ・ 28 ・ ・ 29 ・ ・ 30 ・ ・ 31 ・ ・ 32 ・ ・ 33 ・ ・ E ・ ・ ・ ・微動アクチュエータ ・微動アクチュエータ ・駆動制御信号 ・走査信号 ・データ処理装置 ・バネ ・支柱 ・センサ ・レーザダイオード ・フォトディテクタ ・フォトディテクタ ・差動アンプ ・光 ・電極 ・電極 ・光学顕微鏡(光学的観察手段) ・電解液 以上
FIG. 1(a) is a diagram of a reflecting mirror installed in a scanning tunneling microscope according to an embodiment of the present invention, FIG. 1(b) is a partially enlarged view of FIG. 1(a), and FIG. 2 is a diagram of a reflecting mirror installed in a scanning tunneling microscope. Figure 3 is a diagram of an example in which an optical microscope is installed to observe reflected images, Figure 3 is a diagram of an example in which a reflector is installed through a probe, Figure 4 is an example of the reflector in Figure 3, and Figure 5 ( a) is a diagram with a reflective mirror installed on an atomic force DI mirror, Figure 5 (b) is a diagram with a reflective mirror installed on an ion conductivity microscope, Figure 6 is a conceptual diagram of a scanning tunneling microscope, and Figure 7: Atomic Figure 8 is a conceptual diagram of a force microscope, Figure 8 is a conceptual diagram of an ion conductivity microscope, Figure 9 is a structural diagram of a conventional probe microscope, Figure 1
Diagram O is a structural diagram of a conventional probe microscope with an optical microscope.
FIG. 1 is a diagram showing the elevation angle of the conventional line of sight. 1... Probe 1a... Capillary probe 5 6 2... Sample 3... Reflector 3a... Arm 4... Line of sight 5... Sample holder 6... Clamper 7...・Fine movement scanner 8...Coarse movement mechanism 8a...Moving table 9...Sample stage lO...Housing 10a...Observation window 11...Vibration isolation mechanism 12...Cover 13...Hole 14 ...Bias voltage generator 15...Amplifier 16...Feed bank circuit 17...Fine movement actuator 18...Scanning signal generator 19 ・ ・ 20 ・ ・ 21 ・ ・ 22 ・ ・ 23 ・ ・ 24 ・・ 24a ・ 25 ・ ・ 26 ・ ・ 27 ・ ・ 28 ・ ・ 29 ・ ・ 30 ・ ・ 31 ・ ・ 32 ・ ・ 33 ・ ・ E ・ ・ ・ ・ Fine movement actuator, fine movement actuator, drive control signal, scanning signal, data processing Equipment, spring, support, sensor, laser diode, photodetector, photodetector, differential amplifier, light, electrode, electrode, optical microscope (optical observation means), electrolyte and above

Claims (5)

【特許請求の範囲】[Claims] (1)試料と、前記試料表面に対向して設けられた探針
と、前記探針の先端と前記試料表面の相対位置を制御す
る機構とからなり、前記探針先端を前記試料表面に僅か
な距離を置いて走査することにより試料表面の微細構造
を観察する探針顕微鏡に於て、前記試料に前記探針が対
向した状況を観ることが出来るように反射鏡を設けたこ
とを特徴とする探針顕微鏡。
(1) Consisting of a sample, a probe provided opposite to the sample surface, and a mechanism for controlling the relative position of the tip of the probe and the sample surface, the tip of the probe is slightly attached to the sample surface. In a probe microscope that observes the fine structure of a sample surface by scanning at a distance, the probe microscope is characterized in that a reflecting mirror is provided so that the situation in which the probe faces the sample can be observed. probe microscope.
(2)反射鏡の反射像を観る観察手段として光学的観察
手段を設けた請求項1記載の探針顕微鏡。
(2) The probe microscope according to claim 1, further comprising optical observation means as an observation means for viewing the reflected image of the reflecting mirror.
(3)探針顕微鏡が走査型トンネル顕微鏡である請求項
1又は2記載の探針顕微鏡。
(3) The probe microscope according to claim 1 or 2, wherein the probe microscope is a scanning tunneling microscope.
(4)探針顕微鏡が原子間力顕微鏡である請求項1又は
2記載の探針顕微鏡。
(4) The probe microscope according to claim 1 or 2, wherein the probe microscope is an atomic force microscope.
(5)探針顕微鏡がイオン伝導度顕微鏡である請求項1
又は2記載の探針顕微鏡。
(5) Claim 1 wherein the probe microscope is an ion conductivity microscope.
Or the probe microscope described in 2.
JP2057459A 1990-03-08 1990-03-08 Tip microscope Expired - Fee Related JP3023686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2057459A JP3023686B2 (en) 1990-03-08 1990-03-08 Tip microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2057459A JP3023686B2 (en) 1990-03-08 1990-03-08 Tip microscope

Publications (2)

Publication Number Publication Date
JPH03257310A true JPH03257310A (en) 1991-11-15
JP3023686B2 JP3023686B2 (en) 2000-03-21

Family

ID=13056259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2057459A Expired - Fee Related JP3023686B2 (en) 1990-03-08 1990-03-08 Tip microscope

Country Status (1)

Country Link
JP (1) JP3023686B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023443A (en) * 2004-07-07 2006-01-26 Keyence Corp Microscope system
JP2006072081A (en) * 2004-09-03 2006-03-16 Keyence Corp Microscopic device
JP4762939B2 (en) * 2007-03-08 2011-08-31 トヨタ自動車株式会社 Vehicle monitoring device
JP2011220937A (en) * 2010-04-13 2011-11-04 Toshiba Corp Automatic analyzer
US8495759B2 (en) 2008-07-31 2013-07-23 Sii Nanotechnology Inc. Probe aligning method for probe microscope and probe microscope operated by the same
CN107402443A (en) * 2017-08-08 2017-11-28 苏州显纳精密仪器有限公司 A kind of optical ultra-discrimination rate imaging system based on inverted microscope and microsphere lens and the dynamic imaging methods using the system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023443A (en) * 2004-07-07 2006-01-26 Keyence Corp Microscope system
JP2006072081A (en) * 2004-09-03 2006-03-16 Keyence Corp Microscopic device
JP4762939B2 (en) * 2007-03-08 2011-08-31 トヨタ自動車株式会社 Vehicle monitoring device
US8495759B2 (en) 2008-07-31 2013-07-23 Sii Nanotechnology Inc. Probe aligning method for probe microscope and probe microscope operated by the same
JP2011220937A (en) * 2010-04-13 2011-11-04 Toshiba Corp Automatic analyzer
CN107402443A (en) * 2017-08-08 2017-11-28 苏州显纳精密仪器有限公司 A kind of optical ultra-discrimination rate imaging system based on inverted microscope and microsphere lens and the dynamic imaging methods using the system

Also Published As

Publication number Publication date
JP3023686B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
EP0406413B1 (en) Scanning type tunnel microscope
EP0564088B1 (en) Scanning force microscope with integrated optics and cantilever mount and method for operating the same
EP0331148B1 (en) Microscope apparatus
US8353060B2 (en) Scanning probe microscope and a measuring method using the same
EP0903606B1 (en) Micromechanical XYZ stage for use with optical elements
US5360977A (en) Compound type microscope
EP0421355B1 (en) Scanning tunneling microscope
RU2571449C2 (en) Scanning probing microscope with compact scanner
KR19980081247A (en) Scanning probe microscope
US6259093B1 (en) Surface analyzing apparatus
EP1653478B1 (en) Surface texture measuring probe and microscope utilizing the same
US5552716A (en) Method of positioning an electrooptic probe of an apparatus for the measurement of voltage
JPH03257310A (en) Probe microscope
US20070144244A1 (en) Probe module with integrated actuator for a probe microscope
KR20210022917A (en) High-speed atomic force microscope
JP3250788B2 (en) Scanning probe microscope
JP3333111B2 (en) Scanning probe microscope and unit used for scanning probe microscope
JPH1054834A (en) Measuring method of scan probe microscope
JP2568385B2 (en) Scanning probe microscope
JPH09229943A (en) Scanning-type probe microscope
JPH03110403A (en) Observation device
JPH06294638A (en) Surface profile measuring equipment
JPH0868799A (en) Scanning type probe microscope
JPH09229942A (en) Scanning type probe microscope
JPH06281445A (en) Scanner system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees