JPH03110403A - Observation device - Google Patents

Observation device

Info

Publication number
JPH03110403A
JPH03110403A JP1246477A JP24647789A JPH03110403A JP H03110403 A JPH03110403 A JP H03110403A JP 1246477 A JP1246477 A JP 1246477A JP 24647789 A JP24647789 A JP 24647789A JP H03110403 A JPH03110403 A JP H03110403A
Authority
JP
Japan
Prior art keywords
probe
sample
tip
microscope
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1246477A
Other languages
Japanese (ja)
Inventor
Tetsuji Konuki
哲治 小貫
Masatoshi Tokai
渡海 正敏
Toru Fujii
透 藤井
Masayuki Miyashita
宮下 正之
Masataka Yamaguchi
正高 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP1246477A priority Critical patent/JPH03110403A/en
Publication of JPH03110403A publication Critical patent/JPH03110403A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately align the tip of a probe on an observing point by arranging the tip of the probe of a scanning tunnel microscope so that it may be positioned in a luminous flux from the objective lens of an optical microscope to a sample. CONSTITUTION:The surface of the sample 6 is two-dimensionally scanned by the probe 4 and a probe scanning and finely adjusting mechanism part 22 which finely adjusts the probe 4 in an optical axis direction is arranged in the center part of an objective lens 21. The mechanism part 22 is constituted by using a piezo-electric element and supported by a frame(not illustrated) separately provided above the objective lens 21 in order to avoid vibration. The mechanism 22 and the frame are connected through about four thin couplers so as not to intercept the luminous flux wherever practicable. In order to observe the surface of the sample 6 by an observation device, the focal point 9 of the microscope is adjusted to the surface of the sample 6 and a stage 7 is moved to observe the sample 6 in a wide range. By moving the stage 7 so that the observation point 8 of the sample 6 may be in a visual field, adjusting the focal point 9 to the tip of the probe 4 and alternately focusing on the tip of the probe 4 and the surface of the sample 6 if necessary, the accurate alignment is accomplished.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、例えば半導体チップの表面や結晶の臂開面
等を観察するための観察装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an observation device for observing, for example, the surface of a semiconductor chip or the open face of a crystal.

[従来の技術] 従来、物体の表面構造を広範囲に観察するには光学顕微
鏡が用いられているが、その分解能は0.2μm程度が
限界であり、微細構造の観察は不可能であった。
[Prior Art] Conventionally, an optical microscope has been used to observe the surface structure of an object over a wide range, but its resolution is limited to about 0.2 μm, making it impossible to observe the fine structure.

一方、近年開発された走査トンネル顕@鏡を用いると、
原子像レベルの微細な構造の観察を行なうことができる
。この走査トンネル顕微鏡では、導電性の探針の先端を
試料表面に接近させて二次元に走査し、探針先端から試
料に流れるトンネル電流を検出することにより、試料表
面の微細な凹凸構造が観察される。
On the other hand, using the recently developed scanning tunneling microscope,
It is possible to observe fine structures at the atomic image level. In this scanning tunneling microscope, the tip of a conductive probe is brought close to the sample surface and scanned in two dimensions, and the fine uneven structure of the sample surface is observed by detecting the tunnel current flowing from the tip of the probe into the sample. be done.

しかし、走査トンネル顕微鏡での観察領域は非常に狭い
ので(例えば10μmXIQμl程度)、試料中の任意
の微小領域を特定して観察することが極めて困難である
。このため、探針を目的とする観察点に位置合せするた
めに、光学顕微鏡で探針と試料を斜め方向から観察する
ということが提案されている。また、試料の表裏に走査
トンネル顕微鏡と光学顕微鏡を対向させて配置し、試料
の裏側から走査面と探針を観察するという方法も試みら
れている。
However, since the observation area with a scanning tunneling microscope is very narrow (for example, about 10 μm×IQ μl), it is extremely difficult to specify and observe an arbitrary micro region in a sample. For this reason, it has been proposed to observe the probe and sample from an oblique direction using an optical microscope in order to align the probe with the intended observation point. Another method has also been attempted in which a scanning tunneling microscope and an optical microscope are placed facing each other on the front and back sides of a sample, and the scanning surface and probe are observed from the back side of the sample.

[発明が解決しようとする課題] しかし、上記のような従来の技術において、光学顕微鏡
で斜め方向から探針と試料を観察する方法では、光学顕
微鏡で高分解能を得ようとすると焦点深度が浅くなって
焦点の合う領域がライン状に狭くなってしまうため、試
料表面を広範囲に観察しながら任意の観察点に探針を合
せることができないという問題点があった。
[Problems to be Solved by the Invention] However, in the conventional technology described above, the depth of focus is shallow when trying to obtain high resolution with an optical microscope. As a result, the in-focus area becomes narrow in the form of a line, which poses a problem in that it is not possible to align the probe at an arbitrary observation point while observing a wide range of the sample surface.

また、試料の裏面から光学顕微鏡で観察する方法では、
裏面から光を透過させて走査面を観察できる試料にしか
適用できないという制約がある上、走査トンネル顕微鏡
と光学顕微鏡で同一方向から試料表面を観察できず、探
針を正確に位置合せすることが難しいという問題点があ
った。
In addition, in the method of observing with an optical microscope from the back side of the sample,
In addition to the limitation that it can only be applied to samples whose scanning surface can be observed by transmitting light from the back surface, it is not possible to observe the sample surface from the same direction with a scanning tunneling microscope and an optical microscope, making it difficult to accurately align the probe. The problem was that it was difficult.

この発明は、かかる点に鑑みてなされたものであり、試
料を広範囲に観察することが可能であるとともに、任意
の微小領域の構造を高い分解能で観察することのできる
観察装置を提供することを目的としたものである。
The present invention has been made in view of the above, and aims to provide an observation device that is capable of observing a sample over a wide range of areas and also capable of observing the structure of any minute region with high resolution. This is the purpose.

[課題を解決するための手段] この発明においては、対物レンズを含む光学系を有して
なる光学顕微鏡と、導電性の探針と該探針で試料を走査
する走査手段を有してなる走査トンネル顕@鏡とを備え
た観察装置において、前記走査トンネル顕微鏡の探針先
端を、前記光学顕微鏡の対物レンズから試料に至る光束
内に位置するように配置したことによって、上記の課題
を達成している。
[Means for Solving the Problems] The present invention includes an optical microscope having an optical system including an objective lens, a conductive probe, and a scanning means for scanning a sample with the probe. In an observation device equipped with a scanning tunneling microscope, the above-mentioned problem is achieved by arranging the tip of the probe of the scanning tunneling microscope so as to be located within the beam of light from the objective lens of the optical microscope to the sample. are doing.

[作用] 第1図は、本発明にかかる観察装置の基本構成を示す光
路図である。
[Operation] FIG. 1 is an optical path diagram showing the basic configuration of the observation device according to the present invention.

本発明の観察装置は、試料6を広範囲に観察するための
光学顕微t[(対物レンズ1.接眼レンズ5)と、試料
6の微小領域の構造を高い分解能で観察するための走査
トンネル顕微鏡(探針4.走査手段は省略)を備えてお
り、かつ走査トンネル顕微鏡の探針4の先端が光学顕微
鏡の対物レンズlから試料6に至る光束内に位置するよ
うに(好ましくけ光軸上に位置するように)配置されて
いる。
The observation apparatus of the present invention includes an optical microscope (objective lens 1, eyepiece 5) for observing a wide range of the sample 6, and a scanning tunneling microscope ((objective lens 1, eyepiece 5) for observing the structure of a minute region of the sample 6 with high resolution. The tip of the probe 4 of the scanning tunneling microscope is located within the light beam from the objective lens l of the optical microscope to the sample 6 (preferably on the optical axis). located).

このような観察装置では、光学顕微鏡の光束内に走査ト
ンネル顕微鏡の探針4先端が配置されているので、光学
顕微鏡の視野内に試料6表面と探針4先端が同時に観察
される。
In such an observation device, since the tip of the probe 4 of the scanning tunneling microscope is placed within the light beam of the optical microscope, the surface of the sample 6 and the tip of the probe 4 are simultaneously observed within the field of view of the optical microscope.

即ち、光学顕微鏡の焦点9を試料6表面に合わせて微小
構造を観察したい箇所(I!察点点8を視野内に移動さ
せた後、焦点9を探針4の先端に合わせて試料6の位置
を微調整(ステージ7を動かす)することにより、探針
4先端を観察点8上に正確にかつ容易に位置合せするこ
とができる。探針4の位置合わせが正確に行なわれれば
、所望の微小領域の構造を走査トンネル顕微鏡によって
観察することができる。
That is, align the focal point 9 of the optical microscope with the surface of the sample 6 to observe the microstructure (I!) After moving the observation point 8 within the field of view, align the focal point 9 with the tip of the probe 4 and adjust the position of the sample 6. By finely adjusting (moving the stage 7), the tip of the probe 4 can be accurately and easily aligned on the observation point 8.If the probe 4 is accurately aligned, the desired position can be achieved. The structure of microscopic regions can be observed using a scanning tunneling microscope.

なお、探針4の先端は、光束内の合焦可能な位置であれ
ば必ずしも第1図のように光軸上に配置されている必要
はないが、探針4先端に確実に合焦させて正確に位置合
わせを行なうためには探針4を光軸上に配置することが
好ましい6[実施例] 第2図は、本発明の第1実施例にかかる観察装置の構成
を示す光路図である。
Note that the tip of the probe 4 does not necessarily have to be placed on the optical axis as shown in Figure 1 as long as it can be focused within the light beam, but it is important to ensure that the tip of the probe 4 is in focus. In order to perform accurate positioning, it is preferable to arrange the probe 4 on the optical axis6 [Embodiment] FIG. 2 is an optical path diagram showing the configuration of an observation device according to a first embodiment of the present invention. It is.

かかる装置は、対物レンズ21.接眼レンズ5を含む光
学系を有してなる光学顕微鏡と、白金又はタングステン
等からなる探針4と探針走査・微動機構部22(走査手
段、後述)を有してなる走査トンネル顕微鏡を備えてお
り、走査トンネル顕微鏡の探針4は光学顕微鏡の光軸上
に配置されている。また、導電性の試料6は光学顕微鏡
の光軸と直交するステージ7に載置されており、このス
テージ7は図示しない駆動手段によって、二次元方向に
移動可能となっている。
Such a device includes an objective lens 21. It is equipped with an optical microscope having an optical system including an eyepiece 5, and a scanning tunneling microscope having a probe 4 made of platinum, tungsten, etc., and a probe scanning/fine movement mechanism section 22 (scanning means, described later). The probe 4 of the scanning tunneling microscope is placed on the optical axis of the optical microscope. Further, the conductive sample 6 is placed on a stage 7 perpendicular to the optical axis of the optical microscope, and the stage 7 is movable in two dimensions by a drive means (not shown).

本実施例においては、探針4で試料6表面を二次元に走
査するとともに、探針4を光軸方向に微動させる探針走
査・微動機構部22が対物レンズ21の中央部に配置さ
れている。この探針走査・微動機構部22は、圧電素子
を用いて構成されており、光学顕微鏡自体のハウジング
(図示せず)に固定されているのではなく、振動を避け
る目的で対物レンズ21の上方に別に設けられたフレー
ム(図示せず)に支持されている。フレームと探針走査
・微動機構部22は、光束をなるべく遮らないように4
本捏度の細い継手で接続されている。
In this embodiment, a probe scanning/fine movement mechanism section 22 that scans the surface of the sample 6 two-dimensionally with the probe 4 and slightly moves the probe 4 in the optical axis direction is arranged in the center of the objective lens 21. There is. This probe scanning/fine movement mechanism section 22 is constructed using a piezoelectric element, and is not fixed to the housing (not shown) of the optical microscope itself, but is placed above the objective lens 21 for the purpose of avoiding vibration. It is supported by a separate frame (not shown). The frame and the probe scanning/fine movement mechanism section 22 are arranged 4
It is connected with a thin joint of this degree.

本実施例の観察装置を構成するトンネル顕微鏡において
は、探針4を試料6表面に間5i1nm程度にまで接近
させて数十μm×数十μm程度の領域(観察点8)を二
次元に走査しながら、探針4先端から試料6に流れるト
ンネル電流を検出する。
In the tunneling microscope that constitutes the observation device of this embodiment, the probe 4 is brought close to the surface of the sample 6 to a distance of about 5i1 nm, and an area (observation point 8) of about several tens of μm x several tens of μm is two-dimensionally scanned. At the same time, a tunnel current flowing from the tip of the probe 4 to the sample 6 is detected.

このトンネル電流の大きさは試料6と探針4の距離、即
ち試料表面の凹凸によって変わるので、トンネル電流が
一定となるように探針4を光軸方向に微動させ、探針4
の光軸方向の移動量に対応する値を電気信号として取り
出すことにより、オシロスコープ上に観察点8の拡大像
が得られる。
The magnitude of this tunneling current varies depending on the distance between the sample 6 and the probe 4, that is, the unevenness of the sample surface, so the probe 4 is slightly moved in the optical axis direction so that the tunneling current remains constant.
By extracting a value corresponding to the amount of movement in the optical axis direction as an electrical signal, an enlarged image of the observation point 8 can be obtained on the oscilloscope.

上述したような観察装置を用いて試料6表面を′観察す
るには、まず、光学顕微鏡の焦点9を試料6表面に合わ
せて、適宜ステージ7を動かして試料6を広範囲に観察
する。そして、試料6の微小構造を観察したい箇所(観
察点8)が視野内に入るようにステージ7を移動させる
To observe the surface of the sample 6 using the above-described observation device, first, the focus 9 of the optical microscope is set on the surface of the sample 6, and the stage 7 is appropriately moved to observe the sample 6 over a wide range. Then, the stage 7 is moved so that the part (observation point 8) where the microstructure of the sample 6 is to be observed is within the field of view.

その後、光学顕微鏡の焦点9を探針4の先端に合せてス
テージ7の位置を微調整して探針4の先端が観察点8と
対向するように位置合わせを行なう。この際、必要に応
じて、探針4先端と試料6表面に交互に合焦させること
により正確に位置合せを行なうことができる。
Thereafter, the focal point 9 of the optical microscope is aligned with the tip of the probe 4 and the position of the stage 7 is finely adjusted so that the tip of the probe 4 faces the observation point 8 . At this time, accurate alignment can be achieved by alternately focusing on the tip of the probe 4 and the surface of the sample 6, if necessary.

しかる後、探針4で試料6表面を走査すれば目的とする
観察点8の微細構造を原子像レベルの分解能(例えば光
軸方向0.1人9面方向1人)で観察することができる
After that, by scanning the surface of the sample 6 with the probe 4, the fine structure at the target observation point 8 can be observed with a resolution of atomic image level (for example, 0.1 in the optical axis direction and 1 in the 9-plane direction). .

即ち、上記のような本発明の観察装置を用いれば、試料
6を広範囲に観察して全体を把握した上で、その中の特
定の観察点8の非常に微細な構造を観察することが可能
となる。また、第2図に示された本実施例の観察装置に
おいては、光学顕微鏡の対物レンズ21内に走査トンネ
ル顕微鏡の探針走査・微動機構部22を組み込んである
ので、装置全体をコンパクトにまとめることができ、か
つ観察に支障となるように突出部もないので、操作性に
も優れている。
That is, by using the observation device of the present invention as described above, it is possible to observe the sample 6 over a wide range to understand the whole, and then observe the extremely fine structure at a specific observation point 8 within the sample 6. becomes. Furthermore, in the observation apparatus of this embodiment shown in FIG. 2, the probe scanning/fine movement mechanism section 22 of the scanning tunneling microscope is incorporated into the objective lens 21 of the optical microscope, so the entire apparatus can be made compact. It also has excellent operability because there are no protruding parts that would obstruct observation.

次に、第3図は本発明の第2実施例にかかる観察装置の
構成を示す光路図である。
Next, FIG. 3 is an optical path diagram showing the configuration of an observation device according to a second embodiment of the present invention.

この実施例の観察装置は、第1の実施例と同様に走査ト
ンネル顕微鏡の探針4は光学顕微鏡の光軸3上に配置さ
れているが、探針走査・微動機構部32の配置位置が第
1実施例とは異なっている。
In the observation device of this embodiment, the probe 4 of the scanning tunneling microscope is arranged on the optical axis 3 of the optical microscope as in the first embodiment, but the arrangement position of the probe scanning/fine movement mechanism section 32 is This is different from the first embodiment.

即ち、この実施例では光学顕微鏡の対物レンズ31は通
常のものであり、探針走査・微動機構部32は光学顕微
鏡の視野外に配置されている。そして、探針走査・微動
機構部32から光学顕微鏡の光軸位置までステー10が
延設され、その先端に探針4が取り付けられている。
That is, in this embodiment, the objective lens 31 of the optical microscope is a normal one, and the probe scanning/fine movement mechanism section 32 is arranged outside the field of view of the optical microscope. A stay 10 is extended from the probe scanning/fine movement mechanism section 32 to the optical axis position of the optical microscope, and the probe 4 is attached to the tip of the stay 10.

走査トンネル顕微鏡の動作自体は、第1の実施例の場合
と同様であり、前述した手順に従って試料の広範囲の観
察と、特定の観察点8の微小構造の観察を行なうことが
できる。
The operation of the scanning tunneling microscope itself is similar to that of the first embodiment, and it is possible to observe a wide range of the sample and observe the microstructure at a specific observation point 8 according to the procedure described above.

本実施例の観察装置は、トンネル顕微鏡の走査・微動機
構部32が光学顕微鏡とは別に配置されているので構成
が簡単であり、従来の走査トンネル顕微鏡と光学顕微鏡
を用いて、容易に作製することができるという利点があ
る。
The observation device of this embodiment has a simple configuration because the scanning/fine movement mechanism section 32 of the tunneling microscope is arranged separately from the optical microscope, and can be easily manufactured using a conventional scanning tunneling microscope and an optical microscope. It has the advantage of being able to

なお、上記に説明した第1及び第2実施例では、探針4
全体が光軸3に配置されているが、探針4は必ずしも光
軸に平行(試料6と直交)である必要はなく、探針4を
斜めにして先端だけが光軸上に位置するようにしても良
い。
In addition, in the first and second embodiments described above, the probe 4
Although the entire probe 4 is placed on the optical axis 3, the probe 4 does not necessarily have to be parallel to the optical axis (orthogonal to the sample 6), but the probe 4 can be tilted so that only the tip is located on the optical axis. You can also do it.

また、上記においては、導電性の試料について観察を行
なう場合について説明したが、有機物質の分子構造(例
えばDNAの構造)等を観察する場合は、試料を薄膜化
して導電性の基板上に貼りつけて試料の薄膜を介して探
針から基板にトンネル電流が漬れるようにすることによ
って対応できる。
In addition, although the above description describes the case of observing a conductive sample, when observing the molecular structure of an organic substance (for example, the structure of DNA), the sample is made into a thin film and pasted on a conductive substrate. This can be countered by attaching a tunnel current from the probe to the substrate through the thin film of the sample.

[発明の効果] 以上のように、本発明の観察装置においては、光学顕微
鏡の対物レンズから試料に至る光束内に走査トンネル顕
微鏡の探針の先端が配置されているで、試料表面の任意
の観察点に探針先端を正確にかつ容易に位置合わせする
ことができる。
[Effects of the Invention] As described above, in the observation device of the present invention, the tip of the probe of the scanning tunneling microscope is placed within the light beam from the objective lens of the optical microscope to the sample, and it can be used to detect arbitrary points on the surface of the sample. The probe tip can be accurately and easily positioned at the observation point.

即ち、本発明の観察装置を用いれば、試料表面を広範囲
に観察した上で、任意の観察点の微細構造を非常に高い
分解能で観察することが可能である。
That is, by using the observation apparatus of the present invention, it is possible to observe the surface of a sample over a wide range and then observe the fine structure at any observation point with very high resolution.

かかる観察装置は、半導体チップの不良解析や結晶側開
面の原子構造、有機物質の分子構造の解明等を初めとし
て各種の研究・開発を進める上で極めて有益である。
Such an observation device is extremely useful in various research and development activities, including failure analysis of semiconductor chips, elucidation of the atomic structure of crystal side open planes, and the molecular structure of organic substances.

4、図面の簡jJL ft説明 第1図は本発明の基本構成を示す光路図、第2図は本発
明の第1実施例による観察装置の構成を示す光路図、第
3図は本発明の第2実施例による観察装置の構成を示す
光路図である。
4. Simple description of the drawings Fig. 1 is an optical path diagram showing the basic configuration of the present invention, Fig. 2 is an optical path diagram showing the configuration of the observation device according to the first embodiment of the invention, and Fig. 3 is an optical path diagram showing the configuration of the observation device according to the first embodiment of the invention. FIG. 7 is an optical path diagram showing the configuration of an observation device according to a second embodiment.

[主要部分の符号の説明] 1.21.:]1・・・対物レンズ 22)2・・・・・・探針走査・微動機構部(走査手段
)4・・・・・・・・・・・・探針 5・・・・・・・・・・・・接眼レンズ6・・・・・・
・・・・・・試料 7・・・・・・・・・・・・ステージ 8・・・・・・・・・・・・観察点
[Explanation of symbols of main parts] 1.21. : ] 1... Objective lens 22) 2... Probe scanning/fine movement mechanism section (scanning means) 4... Probe 5... ...Eyepiece 6...
...Sample 7...Stage 8...Observation point

Claims (2)

【特許請求の範囲】[Claims] (1)対物レンズを含む光学系を有してなる光学顕微鏡
と、導電性の探針と該探針で試料を走査する走査手段を
有してなる走査トンネル顕微鏡とを備えた観察装置にお
いて、 前記走査トンネル顕微鏡の探針先端が、前記光学顕微鏡
の対物レンズから試料に至る光束内に位置するように配
置されたことを特徴とする観察装置。
(1) In an observation device equipped with an optical microscope having an optical system including an objective lens, and a scanning tunneling microscope having a conductive probe and a scanning means for scanning a sample with the probe, An observation device characterized in that the tip of the probe of the scanning tunneling microscope is located within a beam of light extending from the objective lens of the optical microscope to the sample.
(2)前記走査トンネル顕微鏡の探針が、前記光学顕微
鏡の光軸上に配置されたことを特徴とする請求項1記載
の観察装置。
(2) The observation device according to claim 1, wherein the probe of the scanning tunneling microscope is arranged on the optical axis of the optical microscope.
JP1246477A 1989-09-25 1989-09-25 Observation device Pending JPH03110403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1246477A JPH03110403A (en) 1989-09-25 1989-09-25 Observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1246477A JPH03110403A (en) 1989-09-25 1989-09-25 Observation device

Publications (1)

Publication Number Publication Date
JPH03110403A true JPH03110403A (en) 1991-05-10

Family

ID=17148983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1246477A Pending JPH03110403A (en) 1989-09-25 1989-09-25 Observation device

Country Status (1)

Country Link
JP (1) JPH03110403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083502A (en) * 2005-09-21 2007-04-05 Mitsubishi Heavy Industries Plastic Technology Co Ltd Molding machine system
JP2008033567A (en) * 2006-07-27 2008-02-14 Osaka Univ Piezoelectric element control method, piezoelectric element control device, actuator, and microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083502A (en) * 2005-09-21 2007-04-05 Mitsubishi Heavy Industries Plastic Technology Co Ltd Molding machine system
JP2008033567A (en) * 2006-07-27 2008-02-14 Osaka Univ Piezoelectric element control method, piezoelectric element control device, actuator, and microscope

Similar Documents

Publication Publication Date Title
EP0406413B1 (en) Scanning type tunnel microscope
TW486566B (en) Laser microdissection unit
EP0284136B1 (en) Confocal laser scanning microscope
EP0564088B1 (en) Scanning force microscope with integrated optics and cantilever mount and method for operating the same
US6396054B1 (en) Scanning probe microscope assembly and method for making confocal, spectrophotometric, near-field, and scanning probe measurements and associated images
JPH032503A (en) Probe stylus unit
US8161568B2 (en) Self displacement sensing cantilever and scanning probe microscope
JPH0798329A (en) E-o probe
US11782088B2 (en) Devices, methods and sample holder for testing photonic integrated circuits and photonic integrated circuits
WO2006090593A1 (en) Displacement detection mechanism for scanning probe microscope and scanning probe microscope
JPH03110403A (en) Observation device
JP3023686B2 (en) Tip microscope
JPS60181718A (en) Synchronous scanning microscope
JPH05141961A (en) Interatomic force microscope
JPH05164968A (en) Near field microscope device
JP2003315238A (en) Alignment method for measurement, cantilever and scanning probe microscope
JPH04106853A (en) Scanning electron microscope
JPH0371001A (en) Fine surface shape measuring instrument
JP3250788B2 (en) Scanning probe microscope
JP3333111B2 (en) Scanning probe microscope and unit used for scanning probe microscope
JPH0513033A (en) Electron microscope and microscopic observation using this
JPH05340713A (en) Surface measuring instrument
JPH05118843A (en) Scanning type probe microscope
JPH10221606A (en) Scan type microscope device
JP2568385B2 (en) Scanning probe microscope