JPH03257138A - Flake graphite cast iron having superior strength and damping capacity and production thereof - Google Patents
Flake graphite cast iron having superior strength and damping capacity and production thereofInfo
- Publication number
- JPH03257138A JPH03257138A JP5608790A JP5608790A JPH03257138A JP H03257138 A JPH03257138 A JP H03257138A JP 5608790 A JP5608790 A JP 5608790A JP 5608790 A JP5608790 A JP 5608790A JP H03257138 A JPH03257138 A JP H03257138A
- Authority
- JP
- Japan
- Prior art keywords
- cast iron
- graphite cast
- flake graphite
- bainite
- melted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 45
- 239000010439 graphite Substances 0.000 title claims abstract description 45
- 229910001018 Cast iron Inorganic materials 0.000 title claims abstract description 42
- 238000013016 damping Methods 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 238000005279 austempering Methods 0.000 claims abstract description 14
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 14
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 11
- 230000009466 transformation Effects 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 3
- 239000010703 silicon Substances 0.000 claims description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910001563 bainite Inorganic materials 0.000 abstract description 30
- 238000010438 heat treatment Methods 0.000 abstract description 7
- 238000005266 casting Methods 0.000 abstract description 5
- 239000011159 matrix material Substances 0.000 abstract description 4
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 abstract description 4
- 150000003839 salts Chemical class 0.000 abstract description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 abstract description 4
- 235000010333 potassium nitrate Nutrition 0.000 abstract description 2
- 239000004323 potassium nitrate Substances 0.000 abstract description 2
- 235000010344 sodium nitrate Nutrition 0.000 abstract description 2
- 239000004317 sodium nitrate Substances 0.000 abstract description 2
- 239000000047 product Substances 0.000 description 29
- 239000000463 material Substances 0.000 description 27
- 229910001562 pearlite Inorganic materials 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 229910001141 Ductile iron Inorganic materials 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 238000005496 tempering Methods 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910000809 Alumel Inorganic materials 0.000 description 1
- 241001408449 Asca Species 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001060 Gray iron Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910001179 chromel Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、片状黒鉛鋳鉄材の改質に係り、特に十分な強
度とともに大きな減衰能を有する片状黒鉛鋳鉄及びその
製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the modification of flake graphite cast iron materials, and particularly relates to flake graphite cast iron having sufficient strength and large damping capacity, and a method for producing the same.
[従来の技術]
片状黒鉛鋳鉄(ねずみ鋳鉄:FC)は、FeにCやSi
が含まれた基地組織(通常はパーライト)中に湾曲した
筋状(立体的には葉片状)の黒鉛(片状黒鉛)が混在し
たものであり、片状黒鉛の存在により様々な特性を示す
。[Conventional technology] Flaky graphite cast iron (gray cast iron: FC) is made by adding C and Si to Fe.
It is a mixture of curved, streak-like (3-dimensionally, leaf-like) graphite (flake graphite) in a matrix structure (usually pearlite) containing show.
即ち、耐摩耗性(渭漬摩耗)や被切削性に優れ、振動吸
収能(減衰能)が大きい等の長所を有する。That is, it has advantages such as excellent wear resistance (abrasive wear) and machinability, and high vibration absorption ability (damping ability).
また、凝固時に片状黒鉛が析出するため全体として収縮
が少なく鋳造し易いのも大きな特徴である。Another major feature is that flaky graphite precipitates during solidification, so there is little shrinkage overall and it is easy to cast.
しかしその一方、片状黒鉛が脆くて弱いために、その部
分に力が加わるとひびが入り易い等片状黒鉛の存在によ
り鋳物の強度が低下したり靭性を弱める欠点がある。こ
れらの特徴は、片状黒鉛の割合が多い程顕著に現れる。On the other hand, however, since flaky graphite is brittle and weak, it tends to crack when force is applied to that part, and the presence of flaky graphite reduces the strength and toughness of the casting. These characteristics become more pronounced as the proportion of flaky graphite increases.
この欠点を解消したものに球状黒鉛鋳鉄(ダクタイル鋳
鉄:FCD)がある。これは、黒鉛が球状を呈するため
含有量の割には体積が小さく、強度も片状のものよりは
大きいため、上記片状黒鉛鋳鉄の利点もある行程備えつ
つ比較的大きな強度と靭性を有する。また、その特性は
基地組織に大きく依存する。ただ、球状化のために高価
なMgやCeを添加するし大きい押し湯が必要で鋳造が
比較的困難なためコスト高になる難点がある。Spheroidal graphite cast iron (ductile cast iron: FCD) eliminates this drawback. Because graphite is spherical, its volume is small relative to its content, and its strength is greater than that of flaky graphite, so it has the advantages of flaky graphite cast iron mentioned above, but has relatively high strength and toughness. . Also, its characteristics greatly depend on the base organization. However, it has the drawback of high cost because it requires the addition of expensive Mg and Ce to make it spheroidal, requires a large riser, and is relatively difficult to cast.
そこで、現在では機械部品や自動車部品等強度を要する
ものは主として球状黒鉛鋳鉄を用い、あまり強度を要求
されないものには安価なこともあり片状黒鉛鋳鉄が多く
用いられている。Therefore, currently, spheroidal graphite cast iron is mainly used for items that require strength, such as mechanical parts and automobile parts, and flake graphite cast iron is often used for items that do not require much strength, partly because it is inexpensive.
[発明が解決しようとする課題]
最近、騒音とか振動による加工精度の低下等を解消する
ために、自動車、家電製品、工作機械等あらゆる消費材
、生産材の部材に大きな振動吸収能(減衰能)が要求さ
れつつある。[Problems to be Solved by the Invention] Recently, in order to eliminate the deterioration of processing accuracy due to noise and vibration, high vibration absorption capacity (damping capacity) has been developed in all consumer goods and production materials such as automobiles, home appliances, and machine tools. ) is becoming increasingly required.
しかし、金属素材の減衰能と引張強度とは一般に反比例
し、高減衰且つ高強度材は高価なT1Ni合金やMg−
Zn合金等を用いる材料が多い。However, the damping capacity and tensile strength of metal materials are generally inversely proportional, and high-damping and high-strength materials are made of expensive T1Ni alloys and Mg-
Many materials use Zn alloy or the like.
鉄系材にも数種類はあるがいずれもCrやAlの合金で
あり、やはり高価につく。There are several types of iron-based materials, but they are all alloys of Cr or Al, and are expensive.
ところで、鋳鉄特に片状黒鉛鋳鉄は黒鉛による発生エネ
ルギーの吸収により高い減衰能を有し、しかも極めて安
価である。例えば、特に片状黒鉛の多いFC−10クラ
ス或いは15クラスのものは優れた振動吸収能(減衰能
)を示す(本発明者等の測定で15〜19%程度)。し
かしこのクラスのものは強度(引張強さ)が極端に劣る
(10〜15 kgf/f12程度)。また、−船釣な
Fe12やFC−25クラスになると減衰能はかなり低
くなる(同じく7%程度)。Incidentally, cast iron, particularly flaky graphite cast iron, has a high damping ability due to the absorption of generated energy by graphite, and is also extremely inexpensive. For example, FC-10 class or FC-15 class materials, which contain a particularly large amount of flaky graphite, exhibit excellent vibration absorption ability (damping ability) (approximately 15 to 19% as measured by the present inventors). However, the strength (tensile strength) of this class is extremely poor (approximately 10 to 15 kgf/f12). Also, in the Fe12 and FC-25 classes, which are used for boat fishing, the damping capacity becomes quite low (about 7% as well).
一方、ギヤや自動車の足回り部品(ブレーキドラム等)
とか、NC加工機のバイトホルダーなどに用いらる球状
黒鉛鋳鉄は一般的なFCD−45クラスで減衰能は5%
程度、焼きならし処理したFCD−90クラス(引張強
さ: 90 kgf/fi2程度)になる行程%程度と
極めて低くなる。そのため、自動車のブレーキ操作時に
鳴きが生したり、旋盤では振動によりビビリが生じて加
工精度が落ちたり刃物が損傷し易い等の問題を生じてい
る。On the other hand, gears and automobile suspension parts (brake drums, etc.)
Spheroidal graphite cast iron used for tool holders of NC processing machines is a general FCD-45 class and has a damping capacity of 5%.
The degree is extremely low, at about the stroke % that corresponds to the normalized FCD-90 class (tensile strength: about 90 kgf/fi2). As a result, there are problems such as squealing when the brakes of automobiles are operated, and chatter caused by vibration in lathes, resulting in reduced machining accuracy and easy damage to the cutting tools.
このように、現在の鋳鉄では既存の高減衰・高強度材に
比べて格段に安価ではあるが、強度及びび靭性と減衰能
の両方を満足させるものは無く、その開発が強(要請さ
れていた。In this way, current cast iron is much cheaper than existing high-damping and high-strength materials, but there is no material that satisfies both strength, toughness, and damping capacity, and the development of such materials is highly recommended (unrequired). Ta.
[課題を解決するための手段]
以上のような現状に鑑み、本発明者等は銭意研究の結果
本発明を完成させたものであり、その特徴とするところ
は、キュポラ由来、即ちキュポラ溶解炉にて溶解又は1
次溶解された片状黒鉛鋳鉄であって、高炭ff1(3,
2〜4.4%)、高珪a (2゜2〜3.4%)含有の
ものを、オーステンパー処理して基地組織をベイナイト
化(ベイナイトとオーステナイトとの混合組織)したも
のである。[Means for Solving the Problems] In view of the above-mentioned current situation, the present inventors have completed the present invention as a result of research, and its characteristics are derived from cupola, that is, cupola melting. Melt in a furnace or 1
Next, melted flake graphite cast iron, high carbon ff1 (3,
2 to 4.4%) and high silica content (2.2 to 3.4%), the base structure is made into bainite by austempering treatment (mixed structure of bainite and austenite).
即ち本発明は、FC−10,15クラスの片状黒鉛鋳鉄
の基地組織をオーステンパー処理によりベイナイト化し
て強度アップを図ることに成功した結果完成したもので
ある。That is, the present invention was completed as a result of successfully increasing the strength of FC-10 and FC-15 class flake graphite cast iron by austempering the base structure into bainite.
オーステンパー処理は元来鋼の強度増加処理法であり、
ここ10年らい球状黒鉛鋳鉄にも応用されている技術で
ある。この技術を球状黒鉛鋳鉄について説明すると、ま
ず鋳放しの鋳鉄製品を共析変態温度以上(800〜10
00℃程度)に1時間程度加熱して基地組織をパーライ
トからオーステナイトに変え、次いで300〜550℃
に急冷し、このベイナイト恒温変態域で1時間程度保持
し、その後放冷するものである。肉厚物では、内部まで
急冷され難いので、MOやCu或いはNi等を添加して
パーライト域(パーライトノーズ)を右方向に後退させ
て回避することも行なわれる。Austempering is originally a treatment method for increasing the strength of steel.
This technology has also been applied to spheroidal graphite cast iron for the past 10 years. To explain this technology for spheroidal graphite cast iron, first, as-cast cast iron products are processed at a temperature higher than the eutectoid transformation temperature (800 to 10
00℃) for about 1 hour to change the base structure from pearlite to austenite, and then heated to 300-550℃.
The material is rapidly cooled to 100%, held in this bainite constant temperature transformation region for about 1 hour, and then allowed to cool. Since it is difficult for thick objects to be rapidly cooled to the inside, MO, Cu, Ni, etc. are added to move the pearlite region (pearlite nose) back to the right to avoid this.
この処理により、FCD−40〜50クラスのものが同
100前後に約2倍程度強度アップする。Through this treatment, the strength of FCD-40 to 50 class materials is approximately doubled to around 100.
ところで、片状黒鉛鋳鉄については本発明者等の知るか
ぎり、この処理は従来用いられていない。By the way, as far as the present inventors know, this treatment has not been used conventionally for flake graphite cast iron.
これは、オーステンパー処理が強度増強を目的とするも
のであり、球状黒鉛鋳鉄によってその目的は達せられて
いることによる。This is because the purpose of austempering treatment is to increase strength, and this purpose is achieved by spheroidal graphite cast iron.
そこで本発明者は、見方を変え、FC−10゜15クラ
スの片状黒鉛鋳鉄の優れた振動減衰能をそのままにして
強度を機械部品等に使用できる強度域(少なくともFC
−20,25程度)までアップさせる観点から、片状黒
鉛鋳鉄についてのオーステンパー処理について種々研究
を行なった。Therefore, the inventor of the present invention changed his point of view and decided to maintain the excellent vibration damping ability of FC-10°15 class flake graphite cast iron while increasing the strength to a strength range that can be used for mechanical parts (at least FC
We conducted various studies on austempering treatment for flake graphite cast iron, with a view to increasing the austempering treatment to about -20, 25).
しかし、従来通常に用いられている組成の片状黒鉛鋳鉄
の場合、思わしい結果が得られなかった。However, in the case of flake graphite cast iron having a composition commonly used in the past, desirable results were not obtained.
ただ、Moをかなり多く(0,5〜1%)添加するとベ
イナイト化し易いが、Moが偏析して硬化相を生じて性
質を劣化させるとともに、減衰能の低下や鋳造性の悪化
を起こす。However, if a considerable amount of Mo is added (0.5 to 1%), it will easily become bainite, but Mo will segregate and produce a hardened phase, deteriorating the properties and causing a decrease in damping ability and deterioration of castability.
そこで更に研究を続け、珪素(S i)を通常より多量
に添加してみたところ、ある条件下でM。Therefore, we continued our research and tried adding a larger amount of silicon (Si) than usual, and under certain conditions M.
等の添加なくして基地のベイナイト化に成功した。We succeeded in converting the base to bainite without the addition of other substances.
一般に片状黒鉛鋳鉄の場合、珪素が少ないと白銑化し易
く、多くなるとコスト高になるし共晶セルが微細になっ
て「巣」が生じ脆くなるとか鋳造し難(なるため可能な
限り量を抑える傾向にあり、一般には1.5〜2.1%
程度が通常用いられている。In general, in the case of flake graphite cast iron, if the silicon content is low, it will easily become white, and if the silicon content is high, the cost will be high, and the eutectic cells will become fine and "porosity" will occur, making it brittle or difficult to cast. It tends to suppress the
degree is usually used.
これに対し、本発明では片状黒鉛鋳鉄でありながら珪素
を2.2〜3.4%程度と通常よりも多量に用いる。た
だ、あまりに多くするとコストや「巣」の問題が生じる
ので、より好ましくは2.3〜3゜0%程度である。ま
た炭素も3.2〜4.4%と多量に添加するが、これは
FC−10クラスのものと殆ど同じである。より好まし
い炭素添加量は3.5〜4.0%程度である。但し、こ
の範囲の組成の片状黒鉛鋳鉄は、鋳放しくAs Ca
5t)のままではIn程度の高さから落下させても割れ
るなど脆くて使いものにならい。これをオーステンパー
処理することよって十分な強度と靭性が賦与される。On the other hand, in the present invention, silicon is used in a larger amount than usual, at about 2.2 to 3.4%, even though flaky graphite cast iron is used. However, if the amount is too large, problems of cost and "nesting" will occur, so the more preferable range is about 2.3 to 3.0%. Carbon is also added in a large amount of 3.2 to 4.4%, which is almost the same as in the FC-10 class. A more preferable amount of carbon added is about 3.5 to 4.0%. However, flake graphite cast iron with a composition within this range has AsCa
5t), it is brittle and unusable, as it will crack even if dropped from a height of about In. By austempering this, sufficient strength and toughness are imparted.
尚、厚物(30+mφ、20++++Ilt以上)の場
合は、中側か急冷しにくいので、MOを少量(0,5%
程度以下、より好ましくは0.1〜0.3%程度)添加
することも考えられる。この場合、偏析防止のためにN
iやCuを少量(何れも0.8%程度以下)添加すると
よい。In addition, in the case of thick materials (30+mφ, 20+++Ilt or more), it is difficult to rapidly cool the inside part, so add a small amount of MO (0.5%).
It is also conceivable to add less than a certain amount, more preferably about 0.1 to 0.3%. In this case, to prevent segregation, N
It is preferable to add a small amount of i or Cu (both about 0.8% or less).
次に、上記した「ある条件」と言うのが本発明のもう1
つの要件である。この条件とは、驚くべきことに、片状
黒鉛鋳鉄がキュポラ由来、即ちキュポラ溶解炉にて熔解
又は1次溶解されたものに限ると言うことである(表−
1)。そして、電気炉溶解されたものは本発明者の実験
では全くと言ってよい程基地がベイナイト化せず、従っ
て強度も思わしい色間上しなかったく表−2)。Next, the above-mentioned "certain condition" is another aspect of the present invention.
There are two requirements. Surprisingly, this condition means that flaky graphite cast iron is limited to cupola-derived iron, that is, to melted or primary melted iron in a cupola melting furnace (Table 1).
1). In the experiments conducted by the present inventors, the base melted in an electric furnace did not turn into bainite at all, and therefore the strength did not increase as expected (Table 2).
かかる事態が生じる理由は不明である。ただ、キュポラ
由来のものは、コークスによるS成分が多い。またMn
、Pの各成分もキュポラ溶解のものの方が多い。そこで
、これらの成分がキュポラ由来のものと同じ程度になる
ように別途添加して電気炉で溶解してみたが、やはりベ
イナイト化は殆ど行なわれていなかった(表−2中、D
−13〜D−18)。The reason why this situation occurs is unknown. However, those derived from cupola have a high S content due to coke. Also Mn
, P components are also more likely to be dissolved in cupola. Therefore, we added these components separately to the same level as those derived from cupola and melted them in an electric furnace, but as expected, almost no bainite formation occurred (in Table 2, D
-13 to D-18).
もう1つ考えられる理由は、両者の共析変態温度の違い
である。共析変態温度は、一般に730℃とか723℃
と言われている。しかし、本発明者等が測定(熱電対:
クロメルアルメルを使用)したところ、キュポラ溶解の
ものは708℃であるのに対し、電気炉溶解のものは7
67℃であり、両者にかなりの差がみられた。このこと
自体も理由不明であるが、このことがベイナイト化の可
否に関連していることも考えられる。尚、キュポラ溶解
のものでも、Siの含有量が低いとベイナイト化は起こ
らない。Another possible reason is the difference in eutectoid transformation temperature between the two. The eutectoid transformation temperature is generally 730℃ or 723℃
It is said that However, the inventors measured (thermocouple:
When using chromel alumel), the cupola melting temperature was 708℃, while the electric furnace melting temperature was 708℃.
The temperature was 67°C, and there was a considerable difference between the two. Although the reason for this itself is unknown, it is thought that this is related to whether or not bainite formation is possible. Incidentally, even in cupola-melted materials, bainite formation does not occur if the Si content is low.
次に、本発明のオーステンパー処理の条件について説明
する。まず、キュポラ由来の鋳造品を850〜950℃
に加熱する。加熱時間は製品の厚み等により0.5〜2
時間時間色する。加熱温度が低過ぎるとオーステナイト
化が不十分となり、逆に高過ぎるとカーボンがとんだり
ベイナイト領域に急冷することが困難になり好ましくな
い。より好ましい加熱温度は880℃〜900”c程度
である。また加熱時間は、短か過ぎるとオーステナイト
化が不十分になるし、長過ぎると片状黒鉛が消失する等
の変化が生じるので、鋳鉄製品の厚みや成分組成等に応
じて上記範囲内で適宜な時間を選ぶ。Next, conditions for the austempering treatment of the present invention will be explained. First, the cupola-derived cast product was heated to 850 to 950℃.
Heat to. Heating time is 0.5-2 depending on the thickness of the product etc.
Time time color. If the heating temperature is too low, austenitization will be insufficient, and if the heating temperature is too high, the carbon will break off and it will be difficult to rapidly cool the material into a bainite region, which is not preferable. A more preferable heating temperature is about 880°C to 900"c. Also, if the heating time is too short, the austenitization will be insufficient, and if it is too long, changes such as the disappearance of flaky graphite will occur, so cast iron An appropriate time is selected within the above range depending on the thickness of the product, component composition, etc.
次いで急激に(30〜50秒程度以内)に、ベイナイト
恒温変態温度(テンパリング温度)とされる240℃〜
400℃に冷却し、一定時間(0゜5〜2時間程度)保
持する。テンバ・リング温度が低過ぎると基地組織がマ
ルテンサイト化するおそれがあるし、高過ぎるとパーラ
イト域を横切るおそれがある。より好ましいテンバリン
グ温度の範囲は250℃〜380℃程度である。また、
時間が短過ぎるとベイナイト化が不十分になり、長過ぎ
るとベイナイト組織が荒くなるので鋳鉄製品の厚みや成
分組成等に応じて上記範囲内で適宜な時間を選ぶ。Then, rapidly (within about 30 to 50 seconds), the temperature rises to 240°C, which is the bainite isothermal transformation temperature (tempering temperature).
Cool to 400°C and hold for a certain period of time (about 0° for 5 to 2 hours). If the tenba ring temperature is too low, there is a risk that the matrix structure will become martensite, and if it is too high, there is a risk that it will cross the pearlite region. A more preferable range of tempering temperature is about 250°C to 380°C. Also,
If the time is too short, the bainite formation will be insufficient, and if the time is too long, the bainite structure will become rough. Therefore, an appropriate time is selected within the above range depending on the thickness, component composition, etc. of the cast iron product.
冷却方法は塩浴、加熱油浴、金属浴、強制熱風等が考え
られるが、最も簡単で確実なのは、硝酸ナトリウムや硝
酸カリウム等を用いる塩浴である。Possible cooling methods include a salt bath, heated oil bath, metal bath, and forced hot air, but the simplest and most reliable method is a salt bath using sodium nitrate, potassium nitrate, or the like.
変態終了後は、浴から取り出して放冷(空冷或いは水冷
)する。After the transformation is completed, it is taken out of the bath and allowed to cool (air or water cooling).
尚、テンパリング温度(恒温変態温度)が300℃以上
だと基地組織が上部ベイナイト(羽毛状:柔らかく帖い
)、それ以下だと下部ベイナイト(針状二硬く脆い)に
なり易い。If the tempering temperature (constant temperature transformation temperature) is 300° C. or higher, the base structure tends to be upper bainite (feather-like, soft and flaky), and if it is lower than that, the base structure tends to be lower bainite (acicular, hard and brittle).
表−1は、キュポラで溶解或いは一次溶解したちのくC
系)から得られた30++nφの棒状鋳造品をオーステ
ンパー処理し、これからテストピース(C系:C−1〜
C−23)を作り、組成及び機械的性質を測定した結果
を示すものである。尚、テストピースは、減衰能測定用
の厚さ51Il#×幅10+sX長さ200wnaの短
冊型試験片と、引張強度測定用のJISB号C試験片を
夫々作製した。Table 1 shows Chinoku C melted or primary melted in a cupola.
A rod-shaped cast product of 30++nφ obtained from the series) was austempered, and test pieces (C series: C-1 to
C-23) was prepared and the composition and mechanical properties were measured. The test pieces were a rectangular test piece with a thickness of 51 Il# x width of 10 + s x length of 200 wna for measuring damping capacity, and a JISB No. C test piece for measuring tensile strength.
オーステンパー処理の条件は、880〜900℃加熱が
1時間、次いで硝酸塩(NaNo3 t<N03)の
塩浴中でテンバリング温度(T、8250℃、350℃
及び375℃)に急冷(30〜40秒以内)して1時間
保持し、次いで空冷した。The conditions for the austempering treatment were: heating at 880-900°C for 1 hour, then tempering temperature (T, 8250°C, 350°C) in a salt bath of nitrate (NaNo3 t<N03).
and 375° C.), held for 1 hour, and then air cooled.
表−2は、電気炉で溶解した鋳造品を用いた以外は表−
1のものと同じ条件でテストピース(D系HD−1−D
−32)を作り、同一項目を測定した結果を示す。Table 2 shows the results except for those using cast products melted in an electric furnace.
Test piece (D series HD-1-D
-32) and show the results of measuring the same items.
尚、表−1、表−2とも、「ベイナイト化」の欄の記号
は、基地組織の状態を示す。In addition, in both Tables 1 and 2, the symbol in the column of "Bainitization" indicates the state of the base structure.
×・・・・・・パーライト析出、ベイナイト化無し。×...No pearlite precipitation or bainite formation.
Δ・・・・・・パーライトとベイナイトの混合組織、ベ
イナイト化不良。Δ...Mixed structure of pearlite and bainite, poor bainite formation.
○・・・・・・パーライト析出なし、ベイナイト組織良
好。○...No pearlite precipitation, good bainite structure.
■・・・・・・緻密なベイナイト組織で良好。■・・・Good quality with a dense bainite structure.
また表中、T、Sは引張強度(k g f /5ea2
)、HBは硬度(ブリネル硬度)を示し、処理前の欄は
鋳放し、処理後の欄はオーステンパー処理後のテストピ
ースのものである。減衰能は後に詳述する自由減衰振動
による減衰能計測法により測定した。In addition, in the table, T and S are tensile strength (kg f /5ea2
), HB indicates hardness (Brinell hardness), the column before treatment is that of the as-cast test piece, and the column after treatment is that of the test piece after austempering treatment. The damping capacity was measured by a damping capacity measurement method using free damping vibration, which will be described in detail later.
表−1から、以下のことが判る。まず、ベイナイト化が
良好なのは、Stが2.2〜3゜4の範囲である。)1
張強度は、350℃、375℃処理のものでFC−20
クラス、250℃処理のものでFC−25クラス、Mo
添加のものではFC−30クラスの値を示す。しかも、
減衰率はFC−10クラスの19%に優るとも劣らない
。これに対しFC−25では7%であるに過ぎない。From Table 1, the following can be seen. First, good bainitic formation occurs when St is in the range of 2.2 to 3°4. )1
Tensile strength is FC-20 treated at 350℃ and 375℃.
Class, FC-25 class with 250℃ treatment, Mo
The additive shows a value of FC-30 class. Moreover,
The attenuation rate is comparable to 19% of the FC-10 class. In contrast, in FC-25, it is only 7%.
表−2に示す電気炉溶解のものは、珪素が上記範囲のも
のでもベイナイト化せずパーライト主体となるため引張
強度が低く、350〜375℃処理ではFC−10クラ
ス程度、250 ”C処理でもFC−15クラス程度で
ある。ただ、Mo添加のものは無添加のものと異なり部
分的にベイナイト化が見られ強度もF(、−15〜20
クラスのものも散見するし、S等を添加したもの(D−
13〜18)では幾分ベイナイト化が見られ強度もFC
20クラスの値を示すが、キュポラ溶解のものに比べて
ベイナイト化が不安定である。The electric furnace melted products shown in Table 2 have low tensile strength because they do not turn into bainite and are mainly pearlite even if the silicon content is within the above range. It is about FC-15 class. However, unlike the Mo additive-free one, bainite formation is seen partially and the strength is F(, -15 to 20
There are also some products with added S, etc. (D-
13-18), some bainite formation was observed and the strength was FC.
Although it shows a value of 20 class, the bainitization is unstable compared to that of cupola melting.
次に、減衰能について、従来の片状黒鉛鋳鉄及び球状黒
鉛鋳鉄と比較実験した結果を第1図〜第3図及び表−3
に示す。Next, the results of a comparative experiment with conventional flake graphite cast iron and spheroidal graphite cast iron regarding damping capacity are shown in Figures 1 to 3 and Table 3.
Shown below.
減衰能は、前記した試験片(厚さ5a+mX幅1011
+1X長さ200@sの短冊状のもの)を片持ち状に支
持し、自由端に初期変位(本例では2 mm)を与えて
解放した時の自由減衰振動を記録(デジタルオシロスコ
ープ)し、演算により求めた。第1図は、表−3に示す
本発明品の自由減衰振動の記録チャートであり、これは
振動を与えてから約4.5秒間に0.5ミリ秒単位で記
録したものである。そして、各線分の長さは自由振動の
相つぐ谷から山、山から谷までの寸法を表わす。これら
を大きい方から順次X l 、X 2、x3、x4・・
・とし、xiとxi+lの点をX−Y座標にプロットし
て得られる直線の勾配をθとすると、減衰比ζは、ζz
l / πX l n L a nθ、対数減衰率δ
(%)は、
δ=ζ×4×πX100 (%)で夫々求まる。The damping capacity was measured using the above-mentioned test piece (thickness 5a + m x width 1011
+1X length 200@s) was supported in a cantilevered manner, an initial displacement (2 mm in this example) was applied to the free end, and the freely damped vibration was recorded (digital oscilloscope) when released. Obtained by calculation. FIG. 1 is a recording chart of free damping vibration of the product of the present invention shown in Table 3, which was recorded in units of 0.5 milliseconds for about 4.5 seconds after the vibration was applied. The length of each line segment represents the dimension from successive valleys to peaks and peaks to valleys of free vibration. These are X l, X 2, x3, x4, etc. in order from the largest one.
・If the slope of the straight line obtained by plotting the points xi and xi+l on the X-Y coordinates is θ, then the damping ratio ζ is ζz
l / πX l n L a n θ, logarithmic decay rate δ
(%) can be found as follows: δ=ζ×4×πX100 (%).
表−3(表−1の場合も同じ)に示す減衰能の値は、こ
のδの値である。同様に、第2図は表−3のFC−25
の振動記録、第3図は表−3のFC−30の振動記録で
ある。図から明らかなように、本発明品(第1図)はF
C−25(第2図)及びFC−30(第3図)のものに
比較して振動が速やかに減衰することが判る。The value of the attenuation capacity shown in Table 3 (the same applies to Table 1) is the value of this δ. Similarly, Figure 2 shows FC-25 in Table-3.
Figure 3 shows the vibration record of FC-30 in Table 3. As is clear from the figure, the product of the present invention (Figure 1) has F
It can be seen that the vibrations are quickly attenuated compared to those of C-25 (Fig. 2) and FC-30 (Fig. 3).
この表から判るように、本発明品はFC−25クラスの
強度とFC−10に近い減衰能を有しており、同様の強
度を示すF(、−25が7%の減衰能にあるのに比べ減
衰能において格段に優れていることが判る。As can be seen from this table, the product of the present invention has a strength of the FC-25 class and a damping capacity close to that of FC-10. It can be seen that the damping capacity is significantly superior to that of the previous model.
[応用例] 次に、本発明の応用例を示す。[Application example] Next, an application example of the present invention will be shown.
応用例 1「ドラムブレーキ」
表−4(a)に、本発明品(350℃処理)と従来材(
FC−25)のドラムブレーキの組成と機械的性質(物
性値)を示す。この結果、同程度の強度を有しながら、
靭性に富み、且つブレーキの「鳴き」に影響を与える減
衰能は2倍以上もあり、ドラムブレーキにとって理想的
な素材と言える。Application example 1 “Drum brake” Table 4 (a) shows the inventive product (treated at 350°C) and the conventional material (
FC-25) drum brake composition and mechanical properties (physical property values) are shown. As a result, while having the same strength,
It is extremely tough and has more than twice the damping ability that affects brake squeal, making it an ideal material for drum brakes.
また、表−4(b)に示す成分組成でドラムブレーキを
鋳造し、本発明品(ベイナイト化温度250℃、350
℃)及び未処理品(FC−20相当)について各種物性
を測定した。また本発明品(350℃処理)の切削試験
を行なったところ、チップ(セラミック製2京セラ■、
材質5N60)の摩耗が未処理品の場合に比べて70%
程度となり、優れた被切削性を示した。本発明品の場合
基地組織はベイナイト(一部オーステナイト)であり、
基地組織がパーライトである未処理品よりも硬く被切削
性は悪いはずである。もっとも、本発明は片状黒鉛が多
くその影響も考えられるが、減衰能が大きいため切削時
のビビリが少ないことも影響していると思われる。In addition, a drum brake was cast with the component composition shown in Table 4(b), and the product of the present invention (bainitic temperature 250°C, 350°C
℃) and an untreated product (equivalent to FC-20), various physical properties were measured. In addition, when we conducted a cutting test on the product of the present invention (processed at 350°C), we found that the chips (ceramic 2Kyocera ■,
Wear of material 5N60) is 70% compared to untreated products.
It showed excellent machinability. In the case of the product of the present invention, the base structure is bainite (partially austenite),
It should be harder and have worse machinability than untreated products whose base structure is pearlite. However, in the present invention, there is a large amount of flaky graphite, which may have an effect, but it is also thought that the fact that there is less chatter during cutting due to the large damping capacity is also considered to be an effect.
更に、本発明品(350℃処理)の耐摩耗試験(スガ式
摩耗試験機による)を行なったところ、第4図に示すよ
うに耐摩鋳鉄材に耐摩耗処理したもの(F C−28+
p、cr+タフト処理、及びFCD−45+タフト処理
)と、焼入れ材(SPC浸炭焼入れ・焼戻処理材、その
他の材)との中間の値を示し、大変良好である。従って
、摺動摩耗部に好適に使用することができる。Furthermore, when we conducted a wear resistance test (using a Suga wear tester) on the product of the present invention (treated at 350°C), we found that the wear-resistant cast iron material treated with wear-resistant cast iron (FC-28+
p, cr + tuft treatment, and FCD-45 + tuft treatment) and quenched materials (SPC carburized and quenched and tempered materials, and other materials), which is very good. Therefore, it can be suitably used for sliding wear parts.
応用例 2「バイトホルダー」
本発明品(テンバリング温度350℃)及び従本発明品
(テンバリング温度350℃)及び従来品のバイトホル
ダー(寸法はいずれも150saX 200mmX 1
50+m)の強度、硬度及び減衰能を測定した。表−5
に成分組成及び各種物性を示す。Application example 2 “Bite holder” Invention product (tempering temperature 350°C), conventional invention product (tempering temperature 350°C), and conventional product bite holder (all dimensions are 150sa x 200mm x 1
50+m) strength, hardness and damping capacity were measured. Table-5
shows the component composition and various physical properties.
本発明品は基地組織の大部分がベイナイト(残りはオー
ステナイト)で、減衰能が大きいし応用例1にも示すよ
うに耐摩耗性も優れる。これに対し従来品は、球状黒鉛
鋳鉄で基地がパーライトであり、その結果強度は相当大
きい(略FCD−50〜60に相当)。In the product of the present invention, most of the matrix structure is bainite (the rest is austenite), so it has a large damping capacity and, as shown in Application Example 1, also has excellent wear resistance. On the other hand, the conventional product is made of spheroidal graphite cast iron and has a pearlite base, and as a result, its strength is considerably high (approximately equivalent to FCD-50 to 60).
しかし、バイトホルダーに要求される性能は、高減衰能
、高剛性(硬度)、耐摩性であり、強度はFC−20〜
25程度で十分である。特に、減衰能はバイトのビビリ
を抑えて加工精度を向上させる点からも極めて重要な要
素である。尚、ビビリの程度を表わすコンプライアンス
(振動変位/加振カニ単位μ/にg)が本発明品は従来
品の約20%減となる。従って、これらを兼ね備えた本
発明品は、バイトホルダーとして理想的な素材と言うこ
とかできる。However, the performance required of a tool holder is high damping capacity, high rigidity (hardness), and wear resistance, and the strength is FC-20 ~
About 25 is sufficient. In particular, damping capacity is an extremely important element from the standpoint of suppressing chatter of the cutting tool and improving machining accuracy. Note that the compliance (vibration displacement/excitation crab unit μ/g) representing the degree of chatter is approximately 20% lower in the product of the present invention than in the conventional product. Therefore, the product of the present invention that has both of these features can be said to be an ideal material for a tool holder.
[発明の効果]
以上詳述したように、本発明の片状黒鉛鋳鉄は、キュポ
ラ溶解炉にて溶解又は1次溶解された高炭素高珪素の片
状黒鉛鋳鉄をオーステンパー処理して得られるものであ
る。従って、片状黒鉛の性質を十分生かした優れた振動
減衰能とともに、基地組織がベイナイトとオーステナイ
トの混合組織となっているので大きな引張り強度や靭性
を持ち、しかも優れた被切削性や耐摩耗性を備えている
等、振動発生箇所に用いる機械部品として極めて理想的
な素材と言うことができる。また、少量のモリブデンや
銅等を添加することにより強度は更に増加し厚物のベイ
ナイト化にも十分対処しうろこととなる。[Effects of the Invention] As detailed above, the flaky graphite cast iron of the present invention is obtained by austempering high-carbon, high-silicon flake graphite cast iron that has been melted or primary melted in a cupola melting furnace. It is something. Therefore, it has excellent vibration damping ability that takes full advantage of the properties of flaky graphite, and since the base structure is a mixed structure of bainite and austenite, it has high tensile strength and toughness, and has excellent machinability and wear resistance. It can be said to be an extremely ideal material for mechanical parts used in areas where vibrations occur. Further, by adding a small amount of molybdenum, copper, etc., the strength is further increased, and it becomes possible to sufficiently cope with the formation of thick materials into bainite.
また本発明方法は、この減衰能、引張強度を兼ね備えた
片状黒鉛鋳鉄を製造するもので、基本が片状黒鉛鋳鉄故
に造り易く、後はオーステンパー処理のみであるため格
別の技術や装置も必要と廿ず、容易に且つ確実に片状黒
鉛鋳鉄の改質を行なうことができる。In addition, the method of the present invention produces flake graphite cast iron that has both damping ability and tensile strength, and since it is basically flake graphite cast iron, it is easy to manufacture, and since only austempering is required, special technology and equipment are not required. It is possible to easily and reliably modify flake graphite cast iron without need.
第1図乃至第3図は自由減衰振動の記録チャートで、第
1図は本発明品、第2図はFC−25材、第3図はFC
−30材のものを夫々示す。また第4図は、往復運動摩
耗試験結果を示すグラフである。Figures 1 to 3 are recording charts of free damped vibration, where Figure 1 is the product of the present invention, Figure 2 is the FC-25 material, and Figure 3 is the FC-25 material.
-30 material is shown respectively. FIG. 4 is a graph showing the results of a reciprocating motion wear test.
Claims (1)
.2〜4.4%、珪素2.2〜3.4%を含む高炭素高
珪素の片状黒鉛鋳鉄をオーステンパー処理してなること
を特徴とする強度と減衰能に優れた片状黒鉛鋳鉄。 2、モリブデンを0.01〜0.5%含有してなる請求
項1記載の強度と減衰能に優れた片状黒鉛鋳鉄。 3、キュポラ溶解炉にて溶解又は1次溶解された炭素3
.2〜4.4%、珪素2.2〜3.4%を含む高炭素高
珪素片状黒鉛鋳鉄を、850℃〜950℃の温度下で0
.5〜2時間加熱してオーステナイト化し、次いで24
0℃〜400℃に急冷しこの温度状態で0.5〜2時間
保持して恒温変態させることを特徴とする強度と減衰能
に優れた片状黒鉛鋳鉄の製造方法。[Claims] 1. Carbon melted or primary melted in a cupola melting furnace 3
.. Flaky graphite cast iron with excellent strength and damping ability, characterized by being made by austempering high-carbon, high-silicon flake graphite cast iron containing 2 to 4.4% silicon and 2.2 to 3.4% silicon. . 2. The flake graphite cast iron having excellent strength and damping ability according to claim 1, containing 0.01 to 0.5% molybdenum. 3. Carbon melted or primary melted in a cupola melting furnace 3
.. High carbon high silicon flake graphite cast iron containing 2 to 4.4% silicon and 2.2 to 3.4% silicon was heated to zero at a temperature of 850℃ to 950℃.
.. Heat for 5-2 hours to austenitize, then 24 hours
A method for producing flaky graphite cast iron having excellent strength and damping ability, characterized by rapidly cooling it to 0°C to 400°C and maintaining it at this temperature for 0.5 to 2 hours to effect isothermal transformation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5608790A JPH03257138A (en) | 1990-03-07 | 1990-03-07 | Flake graphite cast iron having superior strength and damping capacity and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5608790A JPH03257138A (en) | 1990-03-07 | 1990-03-07 | Flake graphite cast iron having superior strength and damping capacity and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03257138A true JPH03257138A (en) | 1991-11-15 |
Family
ID=13017314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5608790A Pending JPH03257138A (en) | 1990-03-07 | 1990-03-07 | Flake graphite cast iron having superior strength and damping capacity and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03257138A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5603784A (en) * | 1995-03-20 | 1997-02-18 | Dayton Walther Corporation | Method for producing a rotatable gray iron brake component |
CN104131217A (en) * | 2014-07-24 | 2014-11-05 | 宁国市开源电力耐磨材料有限公司 | High-chromium alloy cast ball |
CN105695853A (en) * | 2016-03-29 | 2016-06-22 | 宁国市开源电力耐磨材料有限公司 | Casting technology for high-chromium alloy wear-resisting balls |
-
1990
- 1990-03-07 JP JP5608790A patent/JPH03257138A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5603784A (en) * | 1995-03-20 | 1997-02-18 | Dayton Walther Corporation | Method for producing a rotatable gray iron brake component |
CN104131217A (en) * | 2014-07-24 | 2014-11-05 | 宁国市开源电力耐磨材料有限公司 | High-chromium alloy cast ball |
CN105695853A (en) * | 2016-03-29 | 2016-06-22 | 宁国市开源电力耐磨材料有限公司 | Casting technology for high-chromium alloy wear-resisting balls |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8858736B2 (en) | Austempered ductile iron, method for producing this and component comprising this iron | |
EP0174087B1 (en) | A method of making compacted graphite iron | |
Bosnjak et al. | Influence of microalloying and heat treatment on the kinetics of bainitic reaction in austempered ductile iron | |
Stefanescu | Classification and basic types of cast iron | |
JPH0461047B2 (en) | ||
US5094923A (en) | Air hardening steel | |
Jenkins et al. | Ductile Iron | |
EP1123421A1 (en) | Compacted graphite cast iron alloy | |
JPH03257138A (en) | Flake graphite cast iron having superior strength and damping capacity and production thereof | |
Ahmadabadi et al. | Wear behaviour of austempered ductile iron | |
JPS60197841A (en) | Spheroidal graphite cast iron | |
Goodrich | Introduction to cast irons | |
JPS6145686B2 (en) | ||
JPH0128826B2 (en) | ||
US2585372A (en) | Method of making low-alloy steel | |
JPS6156293B2 (en) | ||
Dossett et al. | Heat treating of gray irons | |
JP3114641B2 (en) | Brake disc material for high-speed railway vehicles | |
JPH01108313A (en) | Production of cast iron casting | |
KR100543274B1 (en) | A low noise gear and manufacturing thereof | |
US3095300A (en) | Air hardening cast iron | |
JPH09194983A (en) | Brake disk material excellent in heat check resistance | |
AU2004240953B2 (en) | Wear resistant cast iron | |
SU855050A1 (en) | Steel | |
JPH04308059A (en) | Tool steel for hot working |