JPH03257064A - Ceramics for internal chill - Google Patents

Ceramics for internal chill

Info

Publication number
JPH03257064A
JPH03257064A JP2052370A JP5237090A JPH03257064A JP H03257064 A JPH03257064 A JP H03257064A JP 2052370 A JP2052370 A JP 2052370A JP 5237090 A JP5237090 A JP 5237090A JP H03257064 A JPH03257064 A JP H03257064A
Authority
JP
Japan
Prior art keywords
ceramics
mixture
sio2
added
aluminum titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2052370A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzuki
寛 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2052370A priority Critical patent/JPH03257064A/en
Publication of JPH03257064A publication Critical patent/JPH03257064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain ceramics for internal chill with its break strain remarkably improved and useful in the production of the boat liner and cylinder liner of an engine, etc., by incorporating Al2O3, TiO2, SiO2 and Fe2O3 into the ceramics in a specified weight ratio and specifying the break strain range. CONSTITUTION:This ceramics for internal chill contains, by weight, 40-65% Al2O3, 30-60% TiO2, 2.0-5.5% SiO2 and 2.0-3.0% Fe2O3, and the break strain is controlled to 3000-10,000X10<-6>mm/mm. Alumina, refined rutile, kaolin, quartz, etc., are firstly mixed to obtain a mixture having a chemical composition fulfilling the above-mentioned weight ratio expressed in terms of the oxide, and the mixture is used to produce the ceramics. A molding assistant is added to the mixture, as required, and the mixture is molded by the ceramic molding method such as extrusion molding and press molding, and the formed body is dried. The molded body is held at 1420-1480 deg.C for >=5hr and then burned at 1500-1600 deg.C to obtain the desired ceramics.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鋳ぐるみ用セラミックスに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to ceramics for castings.

[従来の技術] チタン酸アルミニウムは低熱膨張セラミックスであって
、耐熱衝撃性が高く、しかも融点が1820℃と高いの
で、自動車排ガス触媒担体、熱交換体等として用いられ
るほか、自動車エンジンのピストン、シリンダーライナ
、ボートライナ等の餌ぐるみ材料として用いられる。
[Prior Art] Aluminum titanate is a low thermal expansion ceramic, has high thermal shock resistance, and has a high melting point of 1820°C, so it is used as an automobile exhaust gas catalyst carrier, a heat exchanger, etc., and is also used as an automobile engine piston, Used as bait material for cylinder liners, boat liners, etc.

チタン酸アルミニウムは熱膨張係数に異方性があり、a
軸、b軸およびC軸方向でそれぞれ±11゜8X10−
’、+19.4X10−、−2.6X10−6と著しく
大きいものである。このような多結晶体は、焼成後の冷
却時に、その構成結晶粒子の軸方向の収縮または膨張の
差によって、組織中に大きな熱応力が生じ、これが結晶
粒界や粒内にマイクロクラックつまり粒径程度の微細な
亀裂を生ずる。このマイクロクラックは再加熱時にその
間隙が縮まることにより、非常に低い熱膨張を示す。
Aluminum titanate has anisotropic thermal expansion coefficient, a
±11° in the axis, b-axis and c-axis directions, respectively 8X10-
', +19.4X10-, -2.6X10-6, which is extremely large. When such a polycrystalline body is cooled after firing, a large thermal stress is generated in the structure due to the difference in axial contraction or expansion of its constituent crystal grains, which causes microcracks or grain formation at grain boundaries and inside the grains. Causes microscopic cracks about the same diameter. These microcracks exhibit very low thermal expansion due to the gaps between them shrinking during reheating.

しかしながら、チタン酸アルミニウムは、1100〜1
200℃で分解するため、数%の他の成分(Si02、
F e203、BeOなと)を加えて固溶体とし、この
分解を抑えている。また、チタン酸アルミニウムだけで
は、強度が著しく低いので、SiO2などを添加して強
度を向上する必要がある。
However, aluminum titanate has a
Because it decomposes at 200°C, several percent of other components (Si02,
Fe203, BeO, etc.) are added to form a solid solution to suppress this decomposition. Furthermore, since the strength is extremely low when using aluminum titanate alone, it is necessary to add SiO2 or the like to improve the strength.

例えば、特開昭63−236759号公報においては、
5ift、M go 、 F ex O3の少なくとも
1種が合計で10%以下を含有するチタン酸アルミニウ
ムからなる鋳ぐるみ用セラミック材料が開示されている
For example, in Japanese Patent Application Laid-open No. 63-236759,
A ceramic material for castings made of aluminum titanate containing at least 10% in total of at least one of 5ift, Mgo, and FexO3 is disclosed.

[発明が解決しようとする課題] しかしながら、鋳ぐるみ用セラミックスは、溶融金属固
化のときの収縮により、大きな圧縮応力が加わるため、
高強度セラミックス材料でも鋳ぐるみ時に部分的に応力
が集中し、破壊してしまうことがあるという問題点があ
る。これは、従来の鋳ぐるみ用セラミックスは、破断歪
が低いことによるものである。
[Problems to be Solved by the Invention] However, ceramics for castings are subject to large compressive stress due to shrinkage during solidification of molten metal.
Even high-strength ceramic materials have the problem that stress can be concentrated locally during casting, leading to breakage. This is because conventional casting ceramics have low breaking strain.

例えば、チタン酸アルミニウムを主成分とし、添加剤と
して5in2、MgO1Fe203等を添加した市販の
錆ぐるみ用セラミックスの破断歪を測定した結果を第3
図に示す、第3図から知られるように、従来から市販の
鋳ぐるみ用チタン酸アルミニウムの破断歪は2000〜
4000X10”@l/鋤輪であり、鋳ぐるみ用セラミ
ックスとしては、破断歪が未だ不充分であることが分か
る。
For example, the results of measuring the fracture strain of commercially available rust-covering ceramics containing aluminum titanate as the main component and additives such as 5in2, MgO1Fe203, etc.
As shown in Fig. 3, the breaking strain of conventionally commercially available aluminum titanate for castings is 2000~
It can be seen that the fracture strain is still insufficient for ceramics for castings.

本発明は従来の鋳ぐるみ用セラミックスであるチタン酸
アルミニウムの破断歪が低いため、ボートライナなどと
して鋳ぐるんだ時に溶湯の凝固の際の圧縮応力により破
壊してしまうという問題点を解決すべくなされたもので
あって、破断歪を著しく改善した銃ぐるみ用セラミック
スを提供することを目的とする。
The present invention aims to solve the problem that aluminum titanate, which is a conventional casting ceramic, has a low breaking strain, so when it is cast as a boat liner, etc., it breaks due to compressive stress during solidification of molten metal. The object of the present invention is to provide ceramics for gun housings which have significantly improved fracture strain.

[課題を解決するための手段] 本発明の鋳ぐるみ用セラミックスは、重量比で、A L
Oy:40〜65 X、TiO2;30〜60%、S 
i O2; 2 、 O〜5 、5%、Fe2O*:2
.0〜3.0%を含有し、破断歪が3000〜100O
OXIQ−’+ue/wnであることを要旨とする。
[Means for Solving the Problems] The casting ceramics of the present invention has a weight ratio of A L
Oy: 40-65X, TiO2; 30-60%, S
i O2; 2, O~5, 5%, Fe2O*:2
.. Contains 0-3.0% and has a breaking strain of 3000-100O
The gist is that OXIQ-'+ue/wn.

本発明のチタン酸アルミニウムを製造するには、まずア
ルミナ、ローソーダアルミナ、仮焼ボーキサイト、精製
ルチル、粗製ルチル、アナターゼ型チタン、イルメナイ
ト、フェライトベンガラ、電融スビルネ、カオリン、石
英、電融シリカ等から化学組成が酸化物換算した重量比
でA I203;40〜65%、T io z;30〜
60%、S i O2; 2 、0〜5.5%、F e
 20 s : 2 、0〜3 、0%になるように原
料を選択し混合物を得る。混合物には必要に応じ成形助
剤を加え、押出成形法、プレス成形法、スリップキャス
ト成形法、射出成形法などのセラミックス成形法により
成形後乾燥する。
To produce the aluminum titanate of the present invention, first, alumina, low soda alumina, calcined bauxite, purified rutile, crude rutile, anatase type titanium, ilmenite, ferrite red iron, fused soubirne, kaolin, quartz, fused silica, etc. The chemical composition is A I203; 40-65%, Tio z; 30-65% in terms of weight ratio in terms of oxide.
60%, SiO2; 2, 0-5.5%, Fe
20s: Select the raw materials so that the ratio is 2.0 to 3.0% to obtain a mixture. A molding aid is added to the mixture if necessary, and the mixture is molded by a ceramic molding method such as an extrusion molding method, a press molding method, a slip cast molding method, or an injection molding method, and then dried.

なお、本発明のセラミックスの成分組成の限定理由は次
の通りである。
The reasons for limiting the component composition of the ceramic of the present invention are as follows.

A I203;40〜50 %、T i O2; 30
〜60%A I203およびT i O2からは固体反
応により、チタン酸アルミニウムが合成される。Al2
O*またはTiO2の添加量がこの組成範囲未満である
と、チタン酸アルミニウムの結晶量が充分に確保できず
、熱膨張係数が20 X 10−’/”C以下とならな
い、また、ALOiまたはT i O2の添加量がこの
組成範囲を越えると、Al2O3またはT i O2が
過剰になって、熱膨張係数が急激に増加する。
A I203; 40-50%, T i O2; 30
~60% Aluminum titanate is synthesized from A I203 and T i O2 by a solid-state reaction. Al2
If the amount of O* or TiO2 added is less than this composition range, a sufficient amount of aluminum titanate crystals cannot be secured, and the coefficient of thermal expansion will not be less than 20 x 10-'/''C. When the amount of i O2 added exceeds this composition range, Al2O3 or T i O2 becomes excessive and the coefficient of thermal expansion sharply increases.

F ezo 3;2.0〜3.0% Fe2O3はチタン酸アルミニウムに固溶することによ
り、合成されたチタン酸アルミニウムの1100〜12
00℃における分解を抑制するために添加される。また
、チタン酸アルミニウムの破断歪を向上させる効果があ
る。Fe2u3が2.0%未満であると、前記効果が不
充分であり、熱膨張係数の変化を防止することができな
い、Fe2rsの添加量が3.0%を越えると、融点が
低下し熱膨張係数が増加して、耐熱衝撃性が低下すとと
もに、破断歪が逆に低下する。
Fezo 3; 2.0 to 3.0% Fe2O3 is dissolved in aluminum titanate as a solid solution to give 1100 to 12% of the synthesized aluminum titanate.
Added to suppress decomposition at 00°C. It also has the effect of improving the breaking strain of aluminum titanate. If Fe2u3 is less than 2.0%, the above effect is insufficient and changes in the coefficient of thermal expansion cannot be prevented. If the amount of Fe2rs added exceeds 3.0%, the melting point decreases and thermal expansion decreases. As the coefficient increases, the thermal shock resistance decreases, and the breaking strain conversely decreases.

S io2;2.0〜5.5% SiO2はチタン酸アルミニウムの強度および破断歪を
向上させるために添加する。添加量が20%未満である
と、強度および破断歪を向上させる効果が不充分である
。また、S i O2の添加量が5.5%を越えると、
強度の向上の効果が飽和するとともに、破断歪が低下す
るので上限を5.5%とした。
S io2; 2.0 to 5.5% SiO2 is added to improve the strength and breaking strain of aluminum titanate. If the amount added is less than 20%, the effect of improving strength and breaking strain will be insufficient. Moreover, when the amount of S i O2 added exceeds 5.5%,
The upper limit was set at 5.5% since the effect of improving strength is saturated and the breaking strain is reduced.

得られた成形体は1420〜1480℃で5時間以上保
持して合成される。成形体の保持温度を1420〜14
80℃にしたのは、保持温度が1420℃未渭であると
、添加剤の活量が低く、チタン酸アルミニウムとの固溶
体が生成しないからであり、1480℃を越えると、液
相が増加してFe20aから分解した02ガスが系から
逸散しないからである。また、保持時間を5時間以上と
したのは、5時間未満であると、液相から02ガスが充
分に発散しないからである。
The obtained molded body is synthesized by maintaining it at 1420 to 1480°C for 5 hours or more. The holding temperature of the molded body is 1420-14
The reason why the holding temperature was set at 80°C is because if the holding temperature is not left at 1420°C, the activity of the additive will be low and a solid solution with aluminum titanate will not be formed.If it exceeds 1480°C, the liquid phase will increase. This is because the 02 gas decomposed from Fe20a does not escape from the system. Further, the reason why the holding time is set to 5 hours or more is because if the holding time is less than 5 hours, the 02 gas will not be sufficiently released from the liquid phase.

この成形体は焼結温度を1500〜1600℃として焼
結される。1500℃未満では焼結が充分に進行せず、
かつ結晶粒子が充分に成長せず熱膨張係数が高くなるか
らであり、1600℃を越えると圧縮強度が低下し耐熱
衝撃性が低下するからである。また、焼結時間は、1時
間未満では、焼結が完了せず、10時間でほぼ焼結が完
了する。
This molded body is sintered at a sintering temperature of 1500 to 1600°C. Sintering does not proceed sufficiently below 1500°C,
This is also because the crystal grains do not grow sufficiently and the thermal expansion coefficient becomes high, and when the temperature exceeds 1600°C, the compressive strength decreases and the thermal shock resistance decreases. Further, if the sintering time is less than 1 hour, the sintering will not be completed, and the sintering will be almost completed in 10 hours.

かくして得られた焼結体は、チタン酸アルミニウムの結
晶相を65%以上含有し、破断歪が3000〜100O
OXIO−・■/−鋤となる。また、得られた焼結体に
は、チタン酸アルミニウム以外の第2の結晶相として、
ルチル、コランダム、ムライト等の少なくとも1種を含
有しても差し支えない。
The sintered body thus obtained contains 65% or more of aluminum titanate crystal phase and has a breaking strain of 3000 to 100O.
OXIO-・■/-becomes a plow. The obtained sintered body also contained a second crystalline phase other than aluminum titanate.
It may contain at least one of rutile, corundum, mullite, and the like.

[実施例コ 本発明の実施例を比較例とともに説明し、本発明の効果
を明らかにする。
[Example] Examples of the present invention will be explained together with comparative examples to clarify the effects of the present invention.

A l 203 トT ! 02が等モル比(重量比で
56.143.9)となるように原料を秤量した混合粉
末に、添加剤として第1表に示す重量%のSiO2粉末
およびFe2O3を加え、さらにこの調合物に適量の結
合剤加え、十分に混合した後、1000 kg/ cm
2の圧力で10+m+sX I C)+nX 80++
nの成形体を調製した。
A l 203 ToT! SiO2 powder and Fe2O3 in the weight percent shown in Table 1 were added as additives to a mixed powder prepared by weighing the raw materials so that the molar ratio of 02 to After adding appropriate amount of binder and mixing thoroughly, 1000 kg/cm
10+m+sX I C)+nX 80++ at a pressure of 2
A molded body of n was prepared.

なお、第1表において番号1〜6は、Fe2O。In addition, numbers 1 to 6 in Table 1 are Fe2O.

の添加量を265%に固定し、S i O2添加量を1
゜0%から6,0%まで変化させたものであり、番号7
〜12は、SiO□添加量を2.5%に固定し、Fe2
e3添加量を1.0%から4.0%まで変化させたもの
であり、番号13はFe2esおよび5iO1をそれぞ
れ1.5%つづ添加したものである。
The amount of S i O2 added was fixed at 265%, and the amount of S i O2 added was set to 1.
゜It is changed from 0% to 6,0%, and number 7
~12, the amount of SiO□ added was fixed at 2.5%, and Fe2
The amount of e3 added was varied from 1.0% to 4.0%, and number 13 was one in which 1.5% each of Fe2es and 5iO1 was added.

得られた成形体を1450℃で5時間加熱保持してチタ
ン酸アルミニウムを合成した後、1550℃で10時間
加熱焼結して、焼結体を得た。得られた焼結体について
、破断歪、強度および熱膨張係数を測定した。
The obtained molded body was heated and held at 1450° C. for 5 hours to synthesize aluminum titanate, and then heated and sintered at 1550° C. for 10 hours to obtain a sintered body. The fracture strain, strength, and thermal expansion coefficient of the obtained sintered body were measured.

破断歪については、焼結体から幅4−膳、厚さ31、長
さ45+emの試験片を切り出し、内側スパン10m蒙
、外側スパン30III11、荷重速度0.5+*m/
分の条件で4点曲げ試験を行い、負荷点の移動量を試験
片のたわみ量として、計算して求めた。
Regarding the breaking strain, a test piece with a width of 4 mm, a thickness of 31 mm, and a length of 45 + em was cut from the sintered body, and the inner span was 10 mm, the outer span was 30 mm, and the loading rate was 0.5 + * m/.
A 4-point bending test was conducted under the conditions of 100 to 200 mL, and the amount of movement of the load point was calculated as the amount of deflection of the test piece.

強度については、焼結体から幅4鵠納、厚さ3MIm、
長さ45m−の試験片を切り出し、内側スパン10−1
外側スパン30IIII、荷重速度0.5+*m/分の
条件で4点曲げ強度の測定を行い、計算式によって求め
た。
Regarding strength, the width of the sintered body is 4 mm, the thickness is 3 MIm,
A test piece with a length of 45 m was cut out, and the inner span was 10-1.
Four-point bending strength was measured under the conditions of an outer span of 30III and a loading rate of 0.5+*m/min, and was determined using a calculation formula.

熱膨張係数については、押棒式の熱膨張計を用い、10
00℃までの熱膨張を測定して求めた。
For the coefficient of thermal expansion, a push rod type thermal dilatometer was used, and 10
It was determined by measuring thermal expansion up to 00°C.

なお、第2相については、X線回折法により測定し、ピ
ークの値から同定して求めた。
The second phase was measured by X-ray diffraction and identified from the peak value.

得られた結果は第1表に併せて示した。また、S i 
O2またはFezO*の添加量と破断歪の関係を示す線
区を第1図および第2図に示した。
The obtained results are also shown in Table 1. Also, S i
Lines showing the relationship between the amount of O2 or FezO* added and the breaking strain are shown in FIGS. 1 and 2.

(以下余白) 第1表および第1図に示したように、5102が2.0
%未満である場合およびSiO2が5.5%を越える場
合は、破断歪が2000X10−’s+*/■以下であ
るが、S i O2が本発明の組成範囲である2、0〜
5.5%において、破断歪が7000X 10−’11
11/ @−以上となり、破断歪が著しく改善されるこ
とが確認された。また、本発明の組成範囲において、強
度は8〜15MPaであって、十分な強度を有し、かつ
熱膨張係数が−0,5〜2゜0XIO−’/”Cであっ
て、十分な耐熱衝撃性を有することが明らかとなった。
(Left below) As shown in Table 1 and Figure 1, 5102 is 2.0
% and when SiO2 exceeds 5.5%, the breaking strain is 2000X10-'s+*/■ or less, but when SiO2 is within the composition range of the present invention,
At 5.5%, the breaking strain is 7000X 10-'11
11/@- or more, and it was confirmed that the breaking strain was significantly improved. Further, in the composition range of the present invention, the strength is 8 to 15 MPa, which is sufficient strength, and the coefficient of thermal expansion is -0.5 to 2°0XIO-'/''C, which has sufficient heat resistance. It was revealed that it has impact resistance.

また、第1表と第2図から知られるように、Fe2O,
が2.0%未満である場合およびFearsが3.0%
を越える場合は、破断歪が2000X10−’+ue/
−輪以下であるが、Fe2O3が本発明の組成範囲であ
る2、0〜3.0%において、破断歪が7000X10
−’輸−/輸−以上となり、破断歪が著しく改善される
ことが確認された。また、本発明の組成範囲において、
強度は7〜10MPaであって、十分な強度を有し、か
つ熱膨張係数が0〜2.OXl 0−’/”Cであって
、十分な耐熱衝撃性を有することが明らかとなった。
Also, as is known from Table 1 and Figure 2, Fe2O,
is less than 2.0% and Fears is 3.0%
If the breaking strain exceeds 2000X10-'+ue/
- However, when Fe2O3 is in the composition range of the present invention of 2.0 to 3.0%, the breaking strain is 7000X10.
It was confirmed that the fracture strain was significantly improved. Moreover, in the composition range of the present invention,
The strength is 7 to 10 MPa, which is sufficient strength, and the coefficient of thermal expansion is 0 to 2. OXl 0-'/''C, and was found to have sufficient thermal shock resistance.

なお、SiO2およびF e203をそれぞれ1.5%
しか含有しない番号13は、熱膨張係数は低いものの、
強度および破断歪が著しく低かった。
In addition, SiO2 and Fe203 were each 1.5%
Number 13, which contains only
The strength and strain at break were significantly lower.

[発明の効果コ 本発明の鋳ぐるみ用ラセミックスは、以上説明したよう
に、重量比で、Al2O3;40〜65%、T 1ol
a;30〜60%、S i O2; 2 、 O〜5 
、5%、Fe20s;2.0〜3.0%を含有するもの
であって、合成されたチタン酸アルミニウムに破断歪が
著しく改善される組成範囲のS r 02およびF e
20 aを含有せしめたので、破断歪が3000〜10
000 X 10−’sis/ w+*に改善され、エ
ンジンのポートライナやシリンダライナ等の鋳ぐるみ用
セラミックスとして極めて有用である。
[Effects of the Invention] As explained above, the racemic for castings of the present invention contains Al2O3; 40 to 65%, T 1ol, in terms of weight ratio.
a; 30-60%, SiO2; 2, O-5
, 5%, Fe20s; 2.0 to 3.0%, S r 02 and Fe 20s in a composition range that significantly improves the breaking strain of the synthesized aluminum titanate.
Since it contains 20 a, the breaking strain is 3000~10
000 x 10-'sis/w+*, and is extremely useful as a ceramic for castings such as engine port liners and cylinder liners.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は5in2の添加量と破断歪の間係を示す線図、
第2図はF e20 vの添加量と破断歪の関係を示す
線図、第3図は従来から市販されているチタン酸アルミ
ニウ五の破断歪を示す棒グラフである。
Figure 1 is a diagram showing the relationship between the addition amount of 5in2 and the breaking strain,
FIG. 2 is a diagram showing the relationship between the amount of F e20 v added and the breaking strain, and FIG. 3 is a bar graph showing the breaking strain of conventionally commercially available aluminum titanate.

Claims (1)

【特許請求の範囲】[Claims] (1)重量比で、Al_2O_3;40〜65%、Ti
O_2;30〜60%、SiO_2;2.0〜5.5%
、Fe_2O_3;2.0〜3.0%を含有し、破断歪
が3000〜10000×10^−^6mm/mmであ
ることを特徴とする鋳ぐるみ用セラミックス。
(1) Weight ratio: Al_2O_3; 40-65%, Ti
O_2; 30-60%, SiO_2; 2.0-5.5%
, Fe_2O_3; 2.0 to 3.0%, and a breaking strain of 3000 to 10000×10^-^6 mm/mm.
JP2052370A 1990-03-02 1990-03-02 Ceramics for internal chill Pending JPH03257064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2052370A JPH03257064A (en) 1990-03-02 1990-03-02 Ceramics for internal chill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2052370A JPH03257064A (en) 1990-03-02 1990-03-02 Ceramics for internal chill

Publications (1)

Publication Number Publication Date
JPH03257064A true JPH03257064A (en) 1991-11-15

Family

ID=12912923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2052370A Pending JPH03257064A (en) 1990-03-02 1990-03-02 Ceramics for internal chill

Country Status (1)

Country Link
JP (1) JPH03257064A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105153724A (en) * 2015-08-31 2015-12-16 苏州莱特复合材料有限公司 Iron-based composite material for cylinder liners and method for manufacturing iron-based composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105153724A (en) * 2015-08-31 2015-12-16 苏州莱特复合材料有限公司 Iron-based composite material for cylinder liners and method for manufacturing iron-based composite material

Similar Documents

Publication Publication Date Title
US5346870A (en) Aluminum titanate ceramic and process for producing the same
JPH04228471A (en) Sintered ceramic material based on aluminum titanate, preparation thereof and use thereof
JP3192700B2 (en) Aluminum titanate ceramics and method for producing the same
US5288672A (en) Ceramics based on aluminum titanate, process for their production and their use
EP0372868B1 (en) Ceramic materials for use in insert-casting and processes for producing the same
JP2599195B2 (en) Aluminum titanate-based ceramics, method for producing the same and use thereof
JPH03257064A (en) Ceramics for internal chill
JPH06305828A (en) Aluminum titanate composite material and its production
US3862845A (en) Alumina refractories having a permanent expansion upon heating
JP3071060B2 (en) Ceramic-metal insert and method of manufacturing the same
EP0360564B1 (en) Method of producing a ceramic material for insert casting
JPH01308868A (en) Ceramic of aluminum titanate and production thereof
JPS63236759A (en) Ceramic material for casting
US2220412A (en) Refractory and method of making same
JPH03242371A (en) Production of ceramics material for insert
Zhien et al. The effects of additives on the properties and structure of hot-pressed aluminium titanate ceramics
EP3967671B1 (en) Calcium aluminate cement (cac), its use and preparation
JPS632858A (en) Manufacture of boron nitride-containing refractories
JPH02217356A (en) Ceramic material for internal chill and production thereof
JPS60186462A (en) Thermal impact-resistant refractories
JP3510642B2 (en) Magnesia clinker and manufacturing method thereof
JPH04238855A (en) Magnesia alumina-based spinel refractory and production thereof
JPH05148042A (en) Monolithic refractory for casting
JPH03257063A (en) Production of aluminum titanate
JPH01183464A (en) Production of multiple sintered product of aluminum titanate/mullite