JPS632858A - Manufacture of boron nitride-containing refractories - Google Patents

Manufacture of boron nitride-containing refractories

Info

Publication number
JPS632858A
JPS632858A JP61145548A JP14554886A JPS632858A JP S632858 A JPS632858 A JP S632858A JP 61145548 A JP61145548 A JP 61145548A JP 14554886 A JP14554886 A JP 14554886A JP S632858 A JPS632858 A JP S632858A
Authority
JP
Japan
Prior art keywords
boron nitride
resistance
weight
strength
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61145548A
Other languages
Japanese (ja)
Other versions
JPH0753607B2 (en
Inventor
加治 信彦
鹿野 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP61145548A priority Critical patent/JPH0753607B2/en
Publication of JPS632858A publication Critical patent/JPS632858A/en
Publication of JPH0753607B2 publication Critical patent/JPH0753607B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融金属及び又はスラグに接する個所に好適
に使用される耐火物とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refractory suitable for use in areas that come into contact with molten metal and/or slag, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

かかる個所に使用される耐火物として、窒化硼素を含有
せしめたものが、特開昭55−34663号公報、特開
昭56−120575号公報、特開昭56−13926
0号公報、特開昭59−169982号公報等に開示さ
れている。
Refractories containing boron nitride used in such places are disclosed in JP-A-55-34663, JP-A-56-120575, and JP-A-56-13926.
This method is disclosed in Japanese Patent Application Laid-Open No. 59-169982, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

窒化硼素を含有する耐火物はスラグに対して極めて安定
であり、かつ優れた耐スポーリング性を存するものであ
るが、圧縮強さが450kg/c+J以下で、熱間曲げ
強さも充分ではない。その結果、振動もしくは摩耗に関
する耐久性が不足するという問題がある。
Refractories containing boron nitride are extremely stable against slag and have excellent spalling resistance, but their compressive strength is less than 450 kg/c+J and their hot bending strength is not sufficient. As a result, there is a problem that durability with respect to vibration or wear is insufficient.

例えば、特開昭55−34663号公報に記載の窒化硼
素を含有する耐火物は黒鉛を含有しており、強度向上は
期待できず、黒鉛は溶鋼に溶解し易いという問題がある
For example, the boron nitride-containing refractory described in Japanese Patent Application Laid-Open No. 55-34663 contains graphite, so no improvement in strength can be expected, and graphite easily dissolves in molten steel.

また、特開昭56−120575号公挫に記載の耐火物
は窒化珪素を60〜90重量%含有しており、充分なる
強度を存しているが、溶鋼に対する耐食性に間題がある
Further, the refractory described in JP-A-56-120575 contains 60 to 90% by weight of silicon nitride and has sufficient strength, but there is a problem in corrosion resistance against molten steel.

特開昭56−139260号公報の場合には、黒鉛ある
いは炭化珪素と共に、結合強度を増大させるために金属
珪素のみが添加されている。これらの添加物から形成さ
れるβ−Si C、5i3Ns、 5iiONzのボン
ドは溶KAに対する耐食性、耐スポーリング性を劣化さ
せる。
In the case of JP-A-56-139260, only metallic silicon is added together with graphite or silicon carbide to increase bonding strength. Bonds of β-Si C, 5i3Ns, and 5iiONz formed from these additives deteriorate corrosion resistance and spalling resistance against molten KA.

このように、窒化硼素含有耐火物の耐スポーリング性、
耐食性を充分に発揮させる結合材として金属珪素のみで
は不充分であり、金属アルミニウムの使用が不可欠とな
る。
In this way, the spalling resistance of boron nitride-containing refractories,
Metallic silicon alone is insufficient as a bonding material to exhibit sufficient corrosion resistance, and the use of metallic aluminum is essential.

特開昭59−169982号公報において記載されてい
るように、金属アルミニウムはAIaCs、 AIN、
 IdJxに変化するが、AZ4Cff、 AINのみ
の存在では耐消化性の問題が生じる。
As described in JP-A-59-169982, metal aluminum is AIaCs, AIN,
However, the presence of only AZ4Cff and AIN causes problems with digestion resistance.

C問題点を解決するための手段〕 本発明は窒化硼素含有耐火物において、耐スポーリング
性と耐食性を充分に発揮させるための結合材として添加
される金属アルミニウムによる消化性の問題を解決する
ための手段としマ、金属珪素との併用がを効であるとい
う知見に基づいて完成したものである。
Means for Solving Problem C] The present invention solves the problem of digestibility caused by metallic aluminum added as a binder in order to fully exhibit spalling resistance and corrosion resistance in boron nitride-containing refractories. This was completed based on the knowledge that the combination of metal silicon and metal silicon is effective.

金属アルミニウムと金属珪素との添加重量比Al/Si
が20/1より大きいと、金属アルミニウムによる消化
現象の防止効果がない。他方、Al / S iが1/
1より小さいと耐食性、耐久ポーリング性が低下する。
Addition weight ratio Al/Si of metal aluminum and metal silicon
When the ratio is larger than 20/1, there is no effect of preventing the digestion phenomenon caused by metallic aluminum. On the other hand, Al/S i is 1/
If it is less than 1, corrosion resistance and durable poling properties will decrease.

窒化硼素としては、耐スポーリング及びコストの面から
六方晶であることが望ましいが、立方晶。
Boron nitride is desirably hexagonal from the standpoint of spalling resistance and cost, but cubic crystal is preferable.

無定形のものも板状でないため、耐スポーリング性の点
に注意すれば使用可能である。
Since amorphous materials are not plate-like, they can be used as long as care is taken in terms of spalling resistance.

窒化硼素の添加量は、20重量%未満では窒化硼素の添
加による耐久ポーリング性と耐食性との改善効果がなく
なり、耐久ポーリング性、耐孔閉塞性、自己潤滑性が低
下するので20重量%以上の添加が必要である。
If the amount of boron nitride added is less than 20% by weight, the effect of improving the durable poling property and corrosion resistance by adding boron nitride will be lost, and the durable poling property, pore clogging resistance, and self-lubricating property will decrease. Addition is necessary.

本発明においては種Hの骨材が使用可能であるが、以上
の窒化硼素、金属アルミニウム、それに金属珪素と組み
合わせて強度向上に効果がある骨材としてAl2O,、
スピネル+AINがある。
In the present invention, type H aggregate can be used, but aggregates that are effective in improving strength when combined with the above boron nitride, metal aluminum, and metal silicon include Al2O,...
There is spinel + AIN.

これに対してMgOは熱膨張が大きく、Mから生成され
るAIzQ3と反応して二次スピネルを生じ焼成膨張が
太き(なるという問題がある。
On the other hand, MgO has a large thermal expansion, and reacts with AIzQ3 produced from M to form secondary spinel, resulting in a large firing expansion.

また、ムライト、シリカ等の5iftを多く含む骨材の
場合には、MによるSiO□の還元作用により骨材をポ
ーラス化させて強度の低下、耐食性の低下をもたらす。
In addition, in the case of aggregates containing a large amount of 5ift, such as mullite and silica, the reducing action of SiO□ by M causes the aggregates to become porous, resulting in a decrease in strength and corrosion resistance.

ジルコニア、ジルコン等のZrO,を含む骨材を使用す
る場合、MによるZrO□の還元作用により焼成トラブ
ルが発生し製造が困難である。
When using aggregates containing ZrO, such as zirconia and zircon, the reduction of ZrO□ by M causes firing troubles, making production difficult.

更に、他の骨材としてSiC,5i3L等がある。Furthermore, other aggregates include SiC, 5i3L, etc.

しかし、これらの骨材は溶鉄に溶解し、耐食性の点で好
ましくない。
However, these aggregates dissolve in molten iron, making them unfavorable in terms of corrosion resistance.

以上の耐食性、耐スポーリング性1歩留りを満足させる
骨材としてのAl、O,、スピネル、 A7Nは、その
量が全量の10重1%より少なければ強度向上効果が少
なく、60重量%以上では耐スポーリング性が低下する
。コスト面を考えると、Al2O3,スピネルの方が4
7Nよりは優位である。
Al, O, spinel, and A7N as aggregates that satisfy the above corrosion resistance and spalling resistance 1 yield have little effect on improving strength if the amount is less than 1% by weight of the total amount, and if it is more than 60% by weight. Spalling resistance decreases. Considering the cost, Al2O3 and spinel are 4
It is superior to 7N.

製造に際しての配合物の混線についていえば、配合物が
微粉のみからなるものであるため、造粒工程を必要とす
るスパルタンミキサー、ヘンシェルミキサー等の造粒ミ
キサーを使用することができる。
Regarding mixing of the blend during production, since the blend consists only of fine powder, a granulation mixer such as a Spartan mixer or a Henschel mixer that requires a granulation step can be used.

成形は、ラバー・プレスを品質の均一性の点より主に使
用するが、形状等によりダイナミックプレス、オイルプ
レス等も採用可能である。
For molding, a rubber press is mainly used to ensure uniform quality, but depending on the shape etc., dynamic presses, oil presses, etc. can also be used.

また、焼成に際しては、配合物が窒化硼素、金属アルミ
ニウム、金属珪素等を使用しており、当然のことながら
、酸化雲囲気下の焼成は不可である。窒化雰囲気の焼成
も可能であるが、焼成物は強度が20%程度低下し、雰
囲気の保持のため多量の窒素が必要である。従って、コ
スト面からいってもサヤ内での焼成が望ましい。
Further, during firing, the compound uses boron nitride, metal aluminum, metal silicon, etc., and as a matter of course, firing under an oxide cloud atmosphere is not possible. Firing in a nitriding atmosphere is also possible, but the strength of the fired product decreases by about 20% and a large amount of nitrogen is required to maintain the atmosphere. Therefore, from a cost standpoint, firing in the pod is desirable.

焼成時のサヤ内の充填材としては、非酸化性雰囲気下に
保つものであればよく、コークス粉、鱗状黒鉛、黒鉛電
極切削屑等使用可能であり、カーボン粉末の種類を限定
するものではない。
The filling material in the pod during firing may be any material that can be maintained in a non-oxidizing atmosphere, such as coke powder, graphite scales, graphite electrode cuttings, etc., and the type of carbon powder is not limited. .

〔実施例〕〔Example〕

第1表に示す配合物を造粒、ラバープレス成形後、14
50℃のコークス中で焼成した。
After granulation and rubber press molding of the formulation shown in Table 1, 14
Calcined in coke at 50°C.

アルミナ添加量が10重量%より少ないと、比較例1.
2の場合を実施例1と比較して明らかなように強度向上
の効果はない。またアルミナ添加量が60重量%を超す
と実施例3と比較例3との比較から明らかなようにより
耐スポーリング性が低下する。
When the amount of alumina added was less than 10% by weight, Comparative Example 1.
As is clear from comparing case 2 with Example 1, there is no effect of improving strength. Furthermore, if the amount of alumina added exceeds 60% by weight, the spalling resistance is further reduced as is clear from the comparison between Example 3 and Comparative Example 3.

窒化硼素の添加量については、実施例4と比較例6との
比較から、20重皿%より少ないと耐スポーリング性が
低下することが判る。アルミナの代わりにスピネルを使
用することは問題ない。
Regarding the amount of boron nitride added, a comparison between Example 4 and Comparative Example 6 shows that spalling resistance decreases when the amount is less than 20%. There is no problem using spinel instead of alumina.

M及びSiの添加量が10重量%より少ないと、比較例
4を実施例7と比較して明らかな通り、より強度が低下
する。また耐摩耗性も低下する。50重量%より多いと
実施例8と比較例5とを比較して耐スポーリング性が低
下していることが判る。
When the amount of M and Si added is less than 10% by weight, as is clear from comparing Comparative Example 4 with Example 7, the strength is further reduced. In addition, wear resistance also decreases. Comparing Example 8 and Comparative Example 5, it can be seen that when the amount exceeds 50% by weight, the spalling resistance decreases.

更に、第2表に示すような配合を第1表に示す場合と同
一方法で製造した。
Furthermore, the formulations shown in Table 2 were manufactured in the same manner as shown in Table 1.

Al/ S i比が20/1より裔いと消化しやすくな
り、1/1より低いとSiの性質が強くなるため、耐食
性、耐スポーリング性が共に低下していることが判る。
It can be seen that when the Al/Si ratio is 20/1, it becomes easier to digest, and when it is lower than 1/1, the properties of Si become stronger, so that both corrosion resistance and spalling resistance are decreased.

次に、第3表に示すような焼結体を用いてタンデイツシ
ュノズル(口径:20m、肉厚:15m1+、長さ: 
100 r@m)と保護管(内径:20fl、外径:4
Qmm。
Next, a tundish nozzle (diameter: 20 m, wall thickness: 15 m1+, length:
100 r@m) and protection tube (inner diameter: 20 fl, outer diameter: 4
Qmm.

長さ;1I11)を作製した。A length of 1I11) was produced.

比較例1の場合には、クンデイツシュノズルでは耐摩耗
性不足により口径拡大、保護管では強度不足による折損
の発生があった。
In the case of Comparative Example 1, the Kundeitz nozzle had an enlarged diameter due to insufficient wear resistance, and the protective tube had breakage due to insufficient strength.

比較例6は窒化硼素量の不足により、Mの添加による孔
閉塞の発生を見た。
In Comparative Example 6, pore clogging occurred due to the addition of M due to an insufficient amount of boron nitride.

比較例3の場合には、耐久ポーリング性の不足により亀
裂の発生、折損を見た。
In the case of Comparative Example 3, cracking and breakage were observed due to insufficient poling durability.

比較例5も耐スポーリング性の不足により折損した。Comparative Example 5 also broke due to lack of spalling resistance.

〔発明の効果〕〔Effect of the invention〕

本発明の製造方法によれば、窒化硼素と金属アルミニウ
ムと金属珪素とを組み合わせて添加する還元焼成品の欠
点である強度、耐摩耗性の不足の問題が解消し、かつ耐
食性、耐スポーリング性。
According to the manufacturing method of the present invention, the problem of lack of strength and wear resistance, which is a drawback of reduction fired products made by adding a combination of boron nitride, metal aluminum, and metal silicon, can be solved, and the problems of lack of corrosion resistance and spalling resistance can be solved. .

耐孔閉塞性も問題ないものとなった。The pore clogging resistance was also satisfactory.

Claims (1)

【特許請求の範囲】 1、窒化硼素粉末20重量%以上と、Al_2O_3も
しくはAl_2O_3−MgOのスピネルもしくはAl
Nの一種もしくは二種以上を10〜60重量%と、Al
/Si比を20/1〜1/1の範囲内で混合又は合金化
したAl及びSiの粉末を10〜50重量%で配合し、
成形後非酸化性雰囲気中で焼成することを特徴とする窒
化硼素含有耐火物の製造方法。 2、窒化硼素が六方晶系であることを特徴とする特許請
求の範囲第1項に記載の窒化硼素含有耐火物の製造方法
。 3、非酸化性雰囲気としてカーボン粉を用いることを特
徴とする特許請求の範囲第1項に記載の窒化硼素含有耐
火物の製造方法。
[Claims] 1. 20% by weight or more of boron nitride powder and spinel of Al_2O_3 or Al_2O_3-MgO or Al
10 to 60% by weight of one or more types of N and Al
10 to 50% by weight of Al and Si powder mixed or alloyed with a /Si ratio of 20/1 to 1/1 is blended,
A method for producing a boron nitride-containing refractory, which comprises firing in a non-oxidizing atmosphere after forming. 2. The method for producing a boron nitride-containing refractory according to claim 1, wherein the boron nitride has a hexagonal system. 3. The method for producing a boron nitride-containing refractory according to claim 1, characterized in that carbon powder is used as the non-oxidizing atmosphere.
JP61145548A 1986-06-21 1986-06-21 Method for manufacturing refractory material containing boron nitride Expired - Lifetime JPH0753607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61145548A JPH0753607B2 (en) 1986-06-21 1986-06-21 Method for manufacturing refractory material containing boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61145548A JPH0753607B2 (en) 1986-06-21 1986-06-21 Method for manufacturing refractory material containing boron nitride

Publications (2)

Publication Number Publication Date
JPS632858A true JPS632858A (en) 1988-01-07
JPH0753607B2 JPH0753607B2 (en) 1995-06-07

Family

ID=15387727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61145548A Expired - Lifetime JPH0753607B2 (en) 1986-06-21 1986-06-21 Method for manufacturing refractory material containing boron nitride

Country Status (1)

Country Link
JP (1) JPH0753607B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244067A (en) * 1988-08-04 1990-02-14 Koransha Co Ltd Bn no-pressure sintered ceramic having excellent melting flacture resistance
JPH02111665A (en) * 1988-10-19 1990-04-24 Koransha Co Ltd Production of dissolution loss-resistant bn ceramics
WO1990005122A1 (en) * 1988-11-10 1990-05-17 Kabushiki Kaisha Kouransha Boron nitride ceramic having excellent resistance against fusing damage
US5389587A (en) * 1988-11-10 1995-02-14 Kabushiki Kaisha Kouransha BN-group ceramics having excellent resistance to loss by dissolving
WO2011059020A1 (en) * 2009-11-11 2011-05-19 株式会社タンガロイ Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, method for producing cubic boron nitride sintered compact, and method for producing coated cubic boron nitride sintered compact

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861256A (en) * 1981-10-07 1983-04-12 Mitsubishi Metal Corp High-toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear resistant tool

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861256A (en) * 1981-10-07 1983-04-12 Mitsubishi Metal Corp High-toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear resistant tool

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244067A (en) * 1988-08-04 1990-02-14 Koransha Co Ltd Bn no-pressure sintered ceramic having excellent melting flacture resistance
JPH02111665A (en) * 1988-10-19 1990-04-24 Koransha Co Ltd Production of dissolution loss-resistant bn ceramics
WO1990005122A1 (en) * 1988-11-10 1990-05-17 Kabushiki Kaisha Kouransha Boron nitride ceramic having excellent resistance against fusing damage
EP0396779A1 (en) * 1988-11-10 1990-11-14 Kabushiki Kaisha Kouransha Boron nitride ceramic having excellent resistance against fusing damage
US5389587A (en) * 1988-11-10 1995-02-14 Kabushiki Kaisha Kouransha BN-group ceramics having excellent resistance to loss by dissolving
EP0396779B1 (en) * 1988-11-10 1995-06-28 Kabushiki Kaisha Kouransha Boron nitride ceramic having excellent resistance against fusing damage
WO2011059020A1 (en) * 2009-11-11 2011-05-19 株式会社タンガロイ Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, method for producing cubic boron nitride sintered compact, and method for producing coated cubic boron nitride sintered compact
US8814965B2 (en) 2009-11-11 2014-08-26 Tungaloy Corporation Cubic boron nitride sintered body and coated cubic boron nitride sintered body and preparation processes thereof

Also Published As

Publication number Publication date
JPH0753607B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
JPS59111985A (en) Composite body of ceramic material and metal
JPH0657619B2 (en) Carbon-containing refractory
JPS632858A (en) Manufacture of boron nitride-containing refractories
JPH0196070A (en) Unfixed shape refractory to be used for spout for molten metal
JP2874831B2 (en) Refractory for pouring
JP3661958B2 (en) Refractory for casting
EP0309128B1 (en) Carbon-containing refractory and a manufacturing method therefore
JP2831311B2 (en) Blast furnace taphole plugging material
JPS6374965A (en) Manufacture of boron nitrid-containing highly resistant refractories
JP2673893B2 (en) Carbon-containing amorphous refractory
JPH09301780A (en) Lightweight monolithic refractory
JPH09278540A (en) Corrosion-and oxidation-resistant amorphous refractory material
JPS6374964A (en) Manufacture of boron nitride-containing highly resistant refractories
JPS6081068A (en) Antispalling non-bake refractories
JP2633018B2 (en) Carbon containing refractories
JPH039066B2 (en)
JPS6120511B2 (en)
JPS63100071A (en) Manufacture of zrb2-containing refractories
JPH03170367A (en) Refractory for continuous casting and its production
JPS58104065A (en) Immersion nozzle for continuous casting
JPS63248767A (en) Nozzle for continuous casting
JPH03150272A (en) Production of refractory for casting execution of basic material
JPH10158067A (en) Sialon-containing alumina-chrome composite refractory and its production
JPH0354162A (en) Refractory
JPS63129072A (en) Manufacture of silicon carbide base refractories