JPH0325705B2 - - Google Patents

Info

Publication number
JPH0325705B2
JPH0325705B2 JP57150505A JP15050582A JPH0325705B2 JP H0325705 B2 JPH0325705 B2 JP H0325705B2 JP 57150505 A JP57150505 A JP 57150505A JP 15050582 A JP15050582 A JP 15050582A JP H0325705 B2 JPH0325705 B2 JP H0325705B2
Authority
JP
Japan
Prior art keywords
temperature
point
correction
refrigerator
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57150505A
Other languages
Japanese (ja)
Other versions
JPS5938539A (en
Inventor
Masaaki Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seisakusho KK
Original Assignee
Toyo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seisakusho KK filed Critical Toyo Seisakusho KK
Priority to JP57150505A priority Critical patent/JPS5938539A/en
Publication of JPS5938539A publication Critical patent/JPS5938539A/en
Publication of JPH0325705B2 publication Critical patent/JPH0325705B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 この発明は冷凍運転を効果的に行えて、省エネ
ルギー化を期せるようにした室内温度制御方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an indoor temperature control method that enables effective refrigeration operation and saves energy.

室内を冷却するには、冷凍機の圧縮機をオン、
オフさせて温度制御しており、このオン、オフす
るときの温度の差、すなわち温度巾を冷凍機の不
感帯域と称している。この不感帯域は電力消費や
冷凍機の寿命に大きな影響を与えるもので、不感
帯域を大きくすると、無駄な過冷却が行なわれ
て、電力を浪費することになり、逆に不感帯域を
小さくすると、シヨートサイクル運転となつて電
動機、電装品を著しく短命ならしめることにな
る。しかし従来の冷却方法では、不感帯域は一旦
設定されるとそのまま固定されており、したがつ
て負荷変動等により温度降下勾配が変化しても、
設定された下限温度のときでしか冷凍機はオフさ
れず、無駄な過冷却運転がなされていた。
To cool the room, turn on the refrigerator compressor,
The temperature is controlled by turning it off, and the difference in temperature when it is turned on and off, that is, the temperature range, is called the dead zone of the refrigerator. This dead zone has a great effect on power consumption and the life of the refrigerator.If the dead zone is made large, unnecessary supercooling will occur and power will be wasted; conversely, if the dead zone is made small, This results in short cycle operation, which significantly shortens the life of the motor and electrical components. However, in conventional cooling methods, once the dead zone is set, it remains fixed, so even if the temperature drop gradient changes due to load fluctuations, etc.
The refrigerator was only turned off when the set lower limit temperature was reached, resulting in unnecessary supercooling operation.

本発明は、冷凍機運転上の不感帯域を、室内温
度降下状態に応じて自動補正せしめることによ
り、温度飽和による連続運転のロスを低減せしめ
るようにしたことにあり、以下実施例図に基いて
本発明を説明する。
The present invention is to reduce the loss in continuous operation due to temperature saturation by automatically correcting the dead zone in refrigerator operation according to the state of indoor temperature drop. The present invention will be explained.

第1図は最大不感帯域を0℃乃至−2.0℃に設
定した場合を示すもので、希望温度は0℃であ
り、室温がこの温度に達すると冷凍機は稼動(オ
ン)する。l1,l2……l7は各温度勾配曲線で、不
感帯域が自動補正されない従来の方法では、室内
が−2.0℃の×印時点になつて始めて冷凍機が停
止(オフ)する。したがつて、温度勾配曲線l2
ときは冷却開始後約15分、l3では約35分、l4では
約60分、l6では数時間後にそれぞれ冷凍機は停止
する。
FIG. 1 shows the case where the maximum dead zone is set at 0°C to -2.0°C. The desired temperature is 0°C, and when the room temperature reaches this temperature, the refrigerator is turned on. l 1 , l 2 . . . l 7 are temperature gradient curves, and in the conventional method in which the dead zone is not automatically corrected, the refrigerator does not stop (turn off) until the temperature in the room reaches -2.0°C, marked with an x. Therefore, the refrigerator stops approximately 15 minutes after the start of cooling for temperature gradient curve l2 , approximately 35 minutes for l3 , approximately 60 minutes for l4 , and several hours for l6 .

しかし、希望温度0℃に制御するためには、−
2.0℃に達するまで冷凍機を運転させる必要はな
いもので、前記各温度勾配のばあいには、それぞ
れ白丸印で示されるオフ点温度に達したら冷凍機
を停止させればよいことが実験上からも計算上か
らも得られた。すなわち、前記白丸のオフ点は各
温度勾配時における冷凍機の停止時期の補正点で
あり、それは各温度勾配曲線におけるオフ時用の
温度として捉えている。しかし、前記補正点は、
冷凍機が冷却を開始してからの運転時間と相関関
係があるものとしても捉えることができ、これを
プログラム化して冷凍機を運転させることによ
り、過冷却運転を防止して電力の消費を節約でき
る。
However, in order to control the desired temperature to 0℃, -
It is not necessary to operate the refrigerator until the temperature reaches 2.0℃, and experiments have shown that in the case of each of the temperature gradients mentioned above, it is sufficient to stop the refrigerator when the off-point temperature indicated by the white circle is reached. It was obtained from both calculations. That is, the off-point of the white circle is a correction point for the stop timing of the refrigerator at each temperature gradient, and is regarded as the off-time temperature in each temperature gradient curve. However, the correction point is
It can also be seen as having a correlation with the operating time of the chiller after it starts cooling, and by programming the chiller to operate based on this, overcooling operation can be prevented and power consumption can be saved. can.

例えば、温度勾配曲線がl3のばあいでは、冷凍
機は、従来では約36分後に停止したのが、補正す
ることにより24分後に停止させられ、同様にl4
は60分後なのが約30分後に、l5では100分後なの
が約50分後に停止させられることになつて、冷凍
機の運転時間を大巾に短縮できる。
For example, when the temperature gradient curve is l 3 , the refrigerator would normally stop after about 36 minutes, but with the correction, it will stop after 24 minutes, and similarly, when the temperature gradient curve is l 4 , it will stop after about 60 minutes. After 30 minutes, it will be stopped after about 50 minutes instead of 100 minutes in case of l5 , and the operating time of the refrigerator can be significantly shortened.

ただこの実施例の方法では、前記白丸補正オフ
点の軌跡が2点鎖線で示されるごとく曲線とな
り、オフ点のプログラム作成用演算が複雑とな
る。
However, in the method of this embodiment, the locus of the white circle correction off point becomes a curve as shown by the two-dot chain line, and the calculation for creating the off point program becomes complicated.

しかし実際には、各温度勾配曲線における補正
オフ点を黒丸点で示すように与えて、各補正点を
結ぶ線が直線となるようにしても、前記白丸オフ
点による補正のばあいと効果上の実質的な差異は
殆どない。したがつて、各補正オフ点を黒丸補正
点のように直線となるようにすることにより、補
正オフ点は運転時間の1次関数として捉えること
ができ、これにより運転制御のプログラミングを
容易に行える。
However, in reality, even if the correction off points for each temperature gradient curve are given as indicated by black dots, and the line connecting each correction point becomes a straight line, the effect is different from that of the correction using the white dot off points. There is almost no real difference between the two. Therefore, by making each correction off point a straight line like the black circle correction point, the correction off point can be understood as a linear function of the operating time, which facilitates programming of operation control. .

この際、前記補正オフ点による運転制御は、運
転開始後における最大不感帯域での冷却運転時
間、すなわち無補正時間Tn(通常は約15分以上)
経過してから行う。
At this time, the operation control using the correction off point is the cooling operation time in the maximum dead zone after the start of operation, that is, the non-correction time Tn (usually about 15 minutes or more)
Do it after the time has passed.

第2図も冷凍機のオフ点補正を冷凍機の運転時
間の1次関数として捉えたばあいを示すものであ
るが、一定時間毎のパルス信号によつてオフ点が
ワンステツプずつ補正されるようにしてあり、た
とえば同図においては、無補正時間を15分とし、
以後3分毎に0.1℃補正点が高くなるようにして
ある。したがつて同図では、温度降下線がl2のば
あいには、無補正では30分後に冷凍機が停止した
のに対し、補正後では黒丸点の24分後に冷凍機が
停止し、以下温度降下線がl3では45分後だつたの
に対し黒丸点の31〜2分後、l6では90分後だつた
のに対し黒丸点の45分後にそれぞれ冷凍機は停止
させられることになる。
Figure 2 also shows the case in which the off-point correction of the refrigerator is considered as a linear function of the operating time of the refrigerator. For example, in the same figure, the uncorrected time is 15 minutes,
Thereafter, the correction point is increased by 0.1°C every 3 minutes. Therefore, in the same figure, when the temperature drop line is l 2 , the refrigerator stopped after 30 minutes without correction, but after correction, the refrigerator stopped 24 minutes after the black circle point, and as shown below. The temperature drop line for l 3 was 45 minutes later, whereas the temperature drop line was 31 to 2 minutes after the black circle point, and for l 6 , it was 90 minutes later, but the refrigerator was stopped 45 minutes after the black circle point.

以上の補正は、室内温度が不感帯域に突入して
から行なわれるもので、第3図に示すように、室
内がa点から設定温度のb点になるまで冷却され
る間は行なわれず、b点以降にオフ点補正がなさ
れる。
The above correction is performed after the indoor temperature enters the dead zone, and is not performed while the room is being cooled from point a to point b, which is the set temperature, as shown in Figure 3. Off point correction is performed after this point.

本発明では庫内温度範囲の不感帯幅の温度差を
細かく分け、この値を運転時間の関数として運転
を制御するので、第5図のように、庫内温度1の
温度降下曲線では下限値を時間によつて自動補正
することによりT1時間だけ運転時間は短縮でき
れ、庫内温度傾向が庫内温度1より緩慢な庫内温
度2の冷凍庫の場合は、従来の手段に比し圧縮運
転時間はT2時間と大幅に短縮される。
In the present invention, the temperature difference in the width of the dead zone within the temperature range of the refrigerator is divided finely, and the operation is controlled using this value as a function of the operating time. Therefore, as shown in Fig. 5, the lower limit value is Automatic correction based on time can shorten the operating time by T1 hour, and in the case of a freezer with an internal temperature of 2, where the internal temperature trend is slower than that of internal temperature 1, compression operation is better than with conventional means. The time is significantly reduced to T 2 hours.

以上は圧縮機のオン、オフのばあいの例である
が、本発明方法は圧縮機のアンローデイング運転
にも利用でき、それを第4図に示す。
Although the above is an example of the case where the compressor is turned on and off, the method of the present invention can also be used for unloading operation of the compressor, which is shown in FIG.

同図において、室内温度が不感帯域の上限温
度、すなわちb点の設定温度に達すると、圧縮機
のアンロード制御が行なわれる。この際1号圧縮
機(又は第1シリンダ)は温度指令1によつて制
御されるが、2号圧縮機(又は第2シリンダ)
は、出力禁止フラグ中作動せず、同フラグが解除
されているときにだけ作動させられ、これによ
り、無駄な過冷却やシヨートサイクル運転が防止
される。
In the figure, when the indoor temperature reaches the upper limit temperature of the dead zone, that is, the set temperature at point b, unloading control of the compressor is performed. At this time, the No. 1 compressor (or the first cylinder) is controlled by the temperature command 1, but the No. 2 compressor (or the second cylinder)
is not activated during the output prohibition flag, and is activated only when the output prohibition flag is cleared, thereby preventing unnecessary overcooling and short cycle operation.

以上本発明方法によれば、不感帯域を自動補正
することにより、すなわち冷却能力が大なるとき
には不感帯域を大ならしめてシヨートサイクル運
転を防止し、また冷却能力が平衡しているときは
不感帯域を小ならしめて、温度飽和による無駄な
過冷却を防止し、もつて圧縮機の無駄な運転時間
を短縮せしめ得て、電力の節約、省エネルギー化
を期せる冷却運転を行なえるのである。
As described above, according to the method of the present invention, by automatically correcting the dead zone, in other words, when the cooling capacity is large, the dead zone is increased to prevent short cycle operation, and when the cooling capacity is balanced, the dead zone is This makes it possible to prevent wasteful overcooling due to temperature saturation and thereby shorten the compressor's wasteful operating time, allowing for cooling operation that saves power and energy.

また、下限温度点の位置はほぼ無段階で変更で
きるため、外気温度や室内の温度負荷に従つて温
度勾配が様々に変化しても、常に最適の下限温度
点を自動的に設定でき、商品の出し入れの多い市
場の冷凍機やビルの空気調和装置等のあらゆる設
備に使用できる利点がある。
In addition, the position of the lower limit temperature point can be changed almost steplessly, so even if the temperature gradient varies depending on the outside air temperature or indoor temperature load, the optimal lower limit temperature point can always be automatically set, and the product It has the advantage that it can be used in all kinds of equipment, such as refrigerators in markets where there is a lot of loading and unloading, and air conditioners in buildings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法における温度降下曲線と圧
縮機の補正オフ点との関係を示す図、第2図は同
関係についての他の実施例を示す図、第3図は本
発明方法によるばあいの温度制御の図、第4図は
アンローデイング制御のばあいを示す図である。
また第5図は運転時間の短縮を示す図である。 図中、l1,l2…l7……温度降下線、白丸点及び
黒丸点……圧縮機の補正オフ点。
FIG. 1 is a diagram showing the relationship between the temperature drop curve and the corrected off point of the compressor in the method of the present invention, FIG. 2 is a diagram showing another example regarding the same relationship, and FIG. FIG. 4 is a diagram showing the case of unloading control.
Further, FIG. 5 is a diagram showing a reduction in operating time. In the figure, l 1 , l 2 ... l 7 ... temperature drop line, white circle dots and black dots ... compressor correction off point.

Claims (1)

【特許請求の範囲】[Claims] 1 冷却される室内の温度を設定温度とそれより
下限の下限温度間である不感帯域内に保持するよ
う、冷凍機器の運転を前記設定温度において作動
させ、前記下限温度において停止させる温度制御
方法において、前記冷凍機器の作動開始より無補
正時間の後に作動開始よりの時間経過に正比例し
て前記下限温度点を上昇させることを特徴とする
室内温度制御方法。
1. A temperature control method in which refrigeration equipment is operated at the set temperature and stopped at the lower limit temperature so as to maintain the temperature in the room to be cooled within a dead zone between the set temperature and a lower limit temperature lower than the set temperature, An indoor temperature control method, characterized in that the lower limit temperature point is raised in direct proportion to the elapse of time since the start of operation of the refrigeration equipment after an uncorrected time has elapsed since the start of operation of the refrigeration equipment.
JP57150505A 1982-08-30 1982-08-30 Room temperature control method Granted JPS5938539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57150505A JPS5938539A (en) 1982-08-30 1982-08-30 Room temperature control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57150505A JPS5938539A (en) 1982-08-30 1982-08-30 Room temperature control method

Publications (2)

Publication Number Publication Date
JPS5938539A JPS5938539A (en) 1984-03-02
JPH0325705B2 true JPH0325705B2 (en) 1991-04-08

Family

ID=15498326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57150505A Granted JPS5938539A (en) 1982-08-30 1982-08-30 Room temperature control method

Country Status (1)

Country Link
JP (1) JPS5938539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032062A (en) * 2010-07-29 2012-02-16 Hoshizaki Electric Co Ltd Ice maker machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442585A (en) * 1977-09-09 1979-04-04 Mitsubishi Electric Corp Temperature controller
JPS54125851A (en) * 1978-03-22 1979-09-29 Mitsubishi Electric Corp Energy conservation type temperature regulator for refrigerator- air-conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442585A (en) * 1977-09-09 1979-04-04 Mitsubishi Electric Corp Temperature controller
JPS54125851A (en) * 1978-03-22 1979-09-29 Mitsubishi Electric Corp Energy conservation type temperature regulator for refrigerator- air-conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032062A (en) * 2010-07-29 2012-02-16 Hoshizaki Electric Co Ltd Ice maker machine

Also Published As

Publication number Publication date
JPS5938539A (en) 1984-03-02

Similar Documents

Publication Publication Date Title
US4750672A (en) Minimizing off cycle losses of a refrigeration system in a heating mode
CN111503988B (en) Control method and control device for refrigerator, refrigerator and storage medium
JPH0325705B2 (en)
JPS6334375B2 (en)
US6401469B1 (en) Control unit and method for two-stage reciprocating compressor
JP3906051B2 (en) Refrigeration / refrigerator cabinet temperature control method
KR0131282B1 (en) Control device for compressor cooling fan motor of refrigerator
JPS60114669A (en) Air conditioner
JP2907898B2 (en) Air conditioner
JP2765934B2 (en) Operation control method of refrigeration system
JPS5974478A (en) Method of cooling inside of chamber
JPH058423Y2 (en)
JPS6320931Y2 (en)
JPS60188982U (en) Freezer refrigerator
KR100379173B1 (en) Controling method for operating of refrigerator
JPH0425456B2 (en)
JPH0718631B2 (en) Operation control device for refrigerator
JPH0340310B2 (en)
JPS60207858A (en) Method of controlling capacity of turbo-refrigerator
JPS5975670U (en) refrigerator
JPS61211658A (en) Defrosting controller of heat pump type air conditioner
JPH08303923A (en) Refrigerator
JPS6179971A (en) Refrigerator
CA1235303A (en) Air conditioning system and method of operation
JPS6093870U (en) Control equipment for automotive cooling and refrigeration equipment