JPH0340310B2 - - Google Patents

Info

Publication number
JPH0340310B2
JPH0340310B2 JP58066062A JP6606283A JPH0340310B2 JP H0340310 B2 JPH0340310 B2 JP H0340310B2 JP 58066062 A JP58066062 A JP 58066062A JP 6606283 A JP6606283 A JP 6606283A JP H0340310 B2 JPH0340310 B2 JP H0340310B2
Authority
JP
Japan
Prior art keywords
defrosting
compressor
liquid
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58066062A
Other languages
Japanese (ja)
Other versions
JPS59191850A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6606283A priority Critical patent/JPS59191850A/en
Publication of JPS59191850A publication Critical patent/JPS59191850A/en
Publication of JPH0340310B2 publication Critical patent/JPH0340310B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Defrosting Systems (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気熱源式空気調和機における暖房
運転時の除霜運転制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a defrosting operation control method during heating operation in an air heat source type air conditioner.

従来例の構成とその問題点 一般にいわゆるヒートポンプ式空気調和機の暖
房運転を行なう場合、熱源とする空気の温度が低
下すれば吸熱側熱交換器の表面に霜が成長し、所
定の暖房能力が得られなくなるため、成長した霜
を取る除霜運転を行なつている。
Conventional configurations and their problems Generally speaking, when heating a so-called heat pump type air conditioner, if the temperature of the air used as a heat source decreases, frost will grow on the surface of the heat exchanger on the heat absorption side, and the specified heating capacity will be reduced. Since this is no longer possible, a defrost operation is carried out to remove the frost that has grown.

第1図は従来の空気調和機の構成を示すもの
で、1は圧縮機、2は四方切換弁、3は室内側熱
交換器、4は減圧装置、5は室外側熱交換器、6
は液だめ(アキユムレータ)で、これらが順次連
結されて冷凍サイクルが構成されている。F3
室内側熱交換器3に送風する送風機、F5は室外
側熱交換器5に送風する送風機である。
Figure 1 shows the configuration of a conventional air conditioner, where 1 is a compressor, 2 is a four-way switching valve, 3 is an indoor heat exchanger, 4 is a pressure reducing device, 5 is an outdoor heat exchanger, and 6
is a liquid reservoir (accumulator), which are connected in sequence to form a refrigeration cycle. F3 is a blower that blows air to the indoor heat exchanger 3, and F5 is a blower that blows air to the outdoor heat exchanger 5.

この冷凍サイクルにおいて暖房運転時は、圧縮
機1で圧縮された冷媒ガスが、四方切換弁2を通
り室内側熱交換器3へ流れて放熱し、暖房空気調
和を行ない冷媒液となり、その後減圧装置4によ
り減圧された室外側熱交換器5で吸熱蒸発し再び
冷媒ガスとなり四方切換弁2を通つて液だめ6を
通り、圧縮機6に戻る。そして冷媒ガスは再び圧
縮され上記のサイクルを繰り返す。
In this refrigeration cycle, during heating operation, the refrigerant gas compressed by the compressor 1 flows through the four-way switching valve 2 to the indoor heat exchanger 3, radiates heat, performs heating air conditioning, and becomes a refrigerant liquid, and then the pressure reducing device The refrigerant gas absorbs heat and evaporates in the outdoor heat exchanger 5 whose pressure is reduced by 4, and becomes refrigerant gas again through the four-way switching valve 2, passes through the liquid reservoir 6, and returns to the compressor 6. The refrigerant gas is then compressed again and the above cycle is repeated.

さらに上記の冷凍サイクルの運転中、外気温度
が低下して吸熱側熱交換器すなわち室外側熱交換
器5に霜が付着しこれが成長すると除霜運転が行
なわれる。除霜運転は、四方切換弁2を切り換え
ると共に、室内側熱交換器3および室外側熱交換
器5の送風機F3,F5を止め、圧縮機1により圧
縮された冷媒ガスを室外側熱交換器5に送り、冷
媒ガスの持つ熱量を室外側熱交換器5で放熱し
て、霜を溶解するものである。
Further, during operation of the above-mentioned refrigeration cycle, when the outside air temperature decreases and frost adheres to the endothermic heat exchanger, that is, the outdoor heat exchanger 5, and this grows, a defrosting operation is performed. In defrosting operation, the four-way switching valve 2 is switched, the blowers F 3 and F 5 of the indoor heat exchanger 3 and the outdoor heat exchanger 5 are stopped, and the refrigerant gas compressed by the compressor 1 is transferred to the outdoor heat exchanger. The heat of the refrigerant gas is radiated by the outdoor heat exchanger 5 to melt the frost.

第2図は冷凍サイクルに存在する液冷媒の量G
を、第1図に示す冷媒回路の各構成要素に対応さ
せて示した図であり、横軸の1〜6の数字は、第
1図に示す各構成要素に付した数字を示す。そし
て第2図イは暖房運転中の状態を示し、第2図ロ
は暖房運転から除霜運転に切換わつたときの除霜
運転開始直後の状態を示すものである。
Figure 2 shows the amount G of liquid refrigerant present in the refrigeration cycle.
FIG. 2 is a diagram showing the refrigerant circuit corresponding to each component of the refrigerant circuit shown in FIG. 1, and the numbers 1 to 6 on the horizontal axis indicate the numbers assigned to each component shown in FIG. FIG. 2A shows the state during the heating operation, and FIG. 2B shows the state immediately after the defrosting operation starts when the heating operation is switched to the defrosting operation.

第2図で明らかなように、暖房運転から除霜運
転に切換る際、四方切換弁2が切り換ることによ
り、冷媒液が溜つている室内側熱交換器3と液溜
め6とが接続され、冷媒が液のまま液溜め6に流
れ込んでしまう。この時、多量の冷媒液が流れ込
むため相当大きな液溜めを設ける必要がある。ま
た液溜め6の構造上完全に液を溜めることは不可
能であり、流れ込む冷媒液が多いほど、液の状態
で圧縮機1に入る量が増す。そして圧縮機1は液
圧縮を起し、圧縮機1を構成するシリンダ、ベー
ン、ピストン等の部品に多大な衝撃を与える。
As is clear from FIG. 2, when switching from heating operation to defrosting operation, the four-way switching valve 2 switches to connect the indoor heat exchanger 3 where refrigerant liquid is stored and the liquid reservoir 6. As a result, the refrigerant flows into the liquid reservoir 6 as a liquid. At this time, a large amount of refrigerant liquid flows in, so it is necessary to provide a fairly large liquid reservoir. Further, due to the structure of the liquid reservoir 6, it is impossible to completely store the liquid, and the more refrigerant liquid that flows in, the more the amount that enters the compressor 1 in a liquid state increases. Then, the compressor 1 causes liquid compression, giving a large impact to components such as the cylinder, vane, and piston that constitute the compressor 1.

また第3図に示す如く圧縮機1の下部には、冷
凍機油20が溜められ、圧縮機1のクランク軸1
0に設けられたオイルポンプ13により冷凍機油
20がくみ上げられ、給油穴14,15,16等
により上軸受8、シリンダ6、ピストン7、下軸
受9等の各摺動部に給油する。ところが前記液圧
縮により液冷媒が吐出されると冷凍機油20の上
面に液冷媒が溜り、ここで蒸発するため、冷凍機
油20も同時に発泡し、圧縮機1より飛び出して
しまい、冷凍機油20の油面を下げてオイルポン
プ13より冷凍機油20の油面が下つてしまう。
その結果、各部への給油が行なわれなくなり、圧
縮機の摩耗が激しくなる。
Further, as shown in FIG. 3, refrigerating machine oil 20 is stored in the lower part of the compressor 1, and the crankshaft of the compressor 1
Refrigerating machine oil 20 is pumped up by an oil pump 13 provided at 0, and is supplied to each sliding part such as the upper bearing 8, cylinder 6, piston 7, and lower bearing 9 through oil supply holes 14, 15, 16, etc. However, when the liquid refrigerant is discharged by the liquid compression, the liquid refrigerant accumulates on the upper surface of the refrigerating machine oil 20 and evaporates there, so the refrigerating machine oil 20 also foams at the same time and flows out of the compressor 1, causing the oil in the refrigerating machine oil 20 to bubble. The oil level of the refrigerating machine oil 20 is lowered than the oil pump 13 by lowering the surface.
As a result, oil is not supplied to each part, and the compressor becomes more worn.

このように液冷媒が圧縮機へ流れ込むと、圧縮
機に大きな損害を与え、寿命を著しく短かくする
といつた問題があつた。
When liquid refrigerant flows into the compressor in this way, there is a problem in that it causes great damage to the compressor and significantly shortens its life.

なお、第3図において、11,12は、それぞ
れ圧縮機1の電動機部を構成する回転子と固定子
であり、6は液溜めである。
In FIG. 3, 11 and 12 are a rotor and a stator, respectively, which constitute the electric motor section of the compressor 1, and 6 is a liquid reservoir.

発明の目的 本発明は、上記従来例にかかる問題を解消し、
圧縮機の寿命を延ばすことを目的とするものであ
る。
Purpose of the invention The present invention solves the problems of the above conventional example,
The purpose is to extend the life of the compressor.

発明の構成 この目的を達成するために本発明は、暖房時に
おける除霜運転開始前に除霜開始準備運転を行う
ようにし、この除霜開始準備運転を、所定時間継
続される除霜開始準備運転期間を設け、この除霜
開始準備運転期間は、室内側送風機を運転し、か
つ圧縮機の運転を停止又は圧縮機の能力を低減さ
せるようにしたものである。
Structure of the Invention In order to achieve this object, the present invention performs a defrost start preparation operation before starting a defrost operation during heating, and performs a defrost start preparation operation that is continued for a predetermined period of time. An operation period is provided, and during this preparatory operation period for the start of defrosting, the indoor blower is operated and the operation of the compressor is stopped or the capacity of the compressor is reduced.

この除霜開始準備運転を設けることにより、液
冷媒の圧縮機への流入がなくなるものである。
By providing this defrosting start preparation operation, liquid refrigerant does not flow into the compressor.

実施例の説明 以下、本発明の実施例について第4図イ,ロお
よび第5図、第6図を参考に説明する。ここで冷
凍サイクル構造や、圧縮機構造については従来よ
り周知の構成であり、第1図、第3図に示すもの
と変りはない。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to FIGS. 4A and 4B, and FIGS. 5 and 6. Here, the refrigeration cycle structure and compressor structure are conventionally well-known structures, and are the same as those shown in FIGS. 1 and 3.

第5図および第6図は、それぞれ本発明の除霜
運転制御方法による圧縮機1、四方切換弁2、送
風機F3,F5の運転タイムチヤートを示すもので、
第5図は圧縮機1が単一能力のものの場合を示
し、第6図は圧縮機1が能力可能のものの場合を
示すものである。
5 and 6 respectively show operation time charts of the compressor 1, four-way switching valve 2, and blowers F 3 and F 5 according to the defrosting operation control method of the present invention.
FIG. 5 shows a case where the compressor 1 has a single capacity, and FIG. 6 shows a case where the compressor 1 has a single capacity.

すなわち、能力可変ではない単一能力の圧縮機
1を用いる場合、第5図に示す運転タイムチヤー
トでは、時刻Oから時刻T2までは暖房運転であ
り、時刻T2において四方切換弁2が切換つて除
霜運転になることを示しているが、この時刻T2
に先立つ時刻T1において、送風機F3を連続運転
させると共に送風機F5を停止させる。さらに、
時刻T1から時刻T2まで圧縮機1を一旦停止させ、
この時刻T1から時刻T2までの間を除霜開始準備
運転期間としたものである。そして時刻T1にお
いて圧縮機1を一旦停止させると、室内側熱交換
器3側の圧力が低下すると共に、室内側熱交換器
3内の冷媒液が減圧装置4を通じて室外側熱交換
器5に流れ、室内側熱交換器3に溜る冷媒液を減
少させる。この室内側熱交換器3に溜まる冷媒液
を減少させることは、室内側送風機F3の運転に
より、室内側熱交換器3の冷却が行われることか
ら短時間に実現できる。除霜開始準備運転期間に
おける冷媒回路の各構成要素における液冷媒の量
Gは第4図イに実線で示す通りで、同図の破線で
示す暖房運転中の状態に比し、室内側熱交換器3
における液冷媒の量Gが大きく低減している。そ
の後時刻T2において、四方切換弁2を切換えて
同時に圧縮機1を再び運転すると除霜運転となる
が、その除霜運転直後における冷媒回路の各構成
要素における液冷媒の量Gは第4図ロに実線で示
す通りで、同図の破線で示す従来のもの、すなわ
ち除霜開始準備運転期間を有しない場合に比し、
室内側熱交換器3から液溜め6へ戻る液冷媒が少
なくなり、冷媒が液状態で圧縮機1へ入ることが
防止される。
That is, when using a single-capacity compressor 1 whose capacity is not variable, in the operation time chart shown in FIG . However, at this time T 2
At time T 1 prior to , the blower F 3 is operated continuously and the blower F 5 is stopped. moreover,
The compressor 1 is temporarily stopped from time T 1 to time T 2 ,
The period from time T 1 to time T 2 is defined as a preparatory operation period for starting defrosting. When the compressor 1 is temporarily stopped at time T 1 , the pressure on the indoor heat exchanger 3 side decreases, and the refrigerant liquid in the indoor heat exchanger 3 is transferred to the outdoor heat exchanger 5 through the pressure reducing device 4 . This reduces the amount of refrigerant liquid that accumulates in the indoor heat exchanger 3. Reducing the refrigerant liquid accumulated in the indoor heat exchanger 3 can be achieved in a short time because the indoor heat exchanger 3 is cooled by operating the indoor blower F3 . The amount G of liquid refrigerant in each component of the refrigerant circuit during the preparatory operation period for the start of defrosting is as shown by the solid line in Figure 4A, and compared to the state during heating operation shown by the broken line in the same figure, the indoor heat exchange is Vessel 3
The amount G of liquid refrigerant in is significantly reduced. Thereafter, at time T 2 , when the four-way switching valve 2 is switched and the compressor 1 is operated again at the same time, defrosting operation is started, but the amount G of liquid refrigerant in each component of the refrigerant circuit immediately after the defrosting operation is as shown in As shown by the solid line in Figure B, compared to the conventional case shown by the broken line in the same figure, that is, the case where there is no preparatory operation period for the start of defrosting,
Less liquid refrigerant returns from the indoor heat exchanger 3 to the liquid reservoir 6, and the refrigerant is prevented from entering the compressor 1 in a liquid state.

次に能力可変の圧縮機1を用いる場合の運転タ
イムチヤートは第6図に示す通りで、時刻T1
ら時刻T3の間が除霜開始準備運転期間に相当し、
時刻T1から時刻T2の間において室内側送風機F3
を運転状態、室外側送風機F5を停止状態にして
圧縮機1の能力を徐々に低下させる。そして、前
記送風機F3,F5の状態を継続させたまま時刻T2
から時刻T3の間圧縮機1を一定の低能力で運転
し、さらに時刻T3において四方切換弁2を暖房
運転状態から除霜運転状態に切換えると共に、室
内側送風機F3を停止させ、また圧縮機1の能力
を高めて除霜運転に入るものである。
Next, the operation time chart when using the variable capacity compressor 1 is as shown in FIG. 6, and the period from time T 1 to time T 3 corresponds to the preparatory operation period for starting defrosting.
Between time T 1 and time T 2 , indoor fan F 3
The capacity of the compressor 1 is gradually reduced with the outdoor blower F5 in the operating state and the outdoor fan F5 in the stopped state. Then, the time T 2 is reached while the state of the blowers F 3 and F 5 is continued.
The compressor 1 is operated at a constant low capacity from time T3 to time T3, and at time T3 , the four-way switching valve 2 is switched from the heating operation state to the defrosting operation state, and the indoor blower F3 is stopped. The capacity of the compressor 1 is increased and defrosting operation is started.

発明の効果 上記実施例から明らかなように、本発明の空気
調和機の除霜運転制御方法は、除霜運転開始前に
除霜開始準備運転期間を設け、この除霜開始準備
運転期間において、圧縮機の能力を低減あるいは
一旦停止させ、この除霜開始準備運転期間後に、
除霜運転に入るもので、この除霜開始準備運転期
間において、室内側熱交換器に溜つた液冷媒が減
少するため、、除霜運転に切換つた直後において、
多量の液冷媒が液溜めや、さらに圧縮機へ流れ込
むことがなく、したがつて液溜めを小形化でき、
また液圧縮による圧縮機の破損を防止することが
でき、さらに除霜開始時における冷媒回路の高圧
圧力が低下するため、除霜運転への四方切換弁の
切換音も小さくなるものである。また、除霜開始
準備運転期間中は、室内側送風機を運転するた
め、除霜開始準備運転期間を短時間とすることが
でき、除霜運転開始までが比較的速やかに行える
と共に、室内側熱交換器が有する熱を除霜運転が
行われるまで室内の暖房に寄与できるため、室温
の変動を抑えることができる。
Effects of the Invention As is clear from the above embodiments, the defrosting operation control method for an air conditioner according to the present invention provides a preparatory operation period for starting defrosting before starting the defrosting operation, and during this preparatory operation period for starting defrosting, Reduce or temporarily stop the compressor capacity, and after this period of preparatory operation to start defrosting,
Immediately after switching to defrosting operation, as the liquid refrigerant accumulated in the indoor heat exchanger decreases during this preparatory operation period for starting defrosting, immediately after switching to defrosting operation,
A large amount of liquid refrigerant does not flow into the liquid reservoir or further into the compressor, so the liquid reservoir can be made smaller.
Furthermore, damage to the compressor due to liquid compression can be prevented, and since the high pressure in the refrigerant circuit at the start of defrosting is reduced, the switching noise of the four-way switching valve for defrosting operation is also reduced. In addition, since the indoor fan is operated during the preparatory operation period to start defrosting, the preparatory operation period for defrosting start can be shortened, and the defrosting operation can be started relatively quickly. Since the heat possessed by the exchanger can be used to heat the room until defrosting operation is performed, fluctuations in room temperature can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は空気調和機の冷媒回路図、第2図イ,
ロは従来の空気調和機の除霜運転制御方法におけ
る冷媒回路各構成要素における液冷媒量分布図、
第3図は同冷媒回路中の圧縮機部の断面図、第4
図イ,ロは本発明による空気調和機の除霜運転制
御方法における冷媒回路各構成要素における液冷
媒量分布図、第5図、第6図はそれぞれ本発明の
実施例による除霜運転制御方法のタイムチヤート
である。 1……圧縮機、2……四方切換弁、3……室内
側熱交換器、4……減圧装置、5……室外側熱交
換器、6……液溜め、F3,F5……送風機。
Figure 1 is a refrigerant circuit diagram of an air conditioner, Figure 2 A,
B is a liquid refrigerant amount distribution diagram in each component of the refrigerant circuit in the conventional air conditioner defrosting operation control method;
Figure 3 is a cross-sectional view of the compressor section in the refrigerant circuit;
Figures A and B are liquid refrigerant amount distribution diagrams in each component of the refrigerant circuit in the defrosting operation control method of an air conditioner according to the present invention, and Figures 5 and 6 are respectively the defrosting operation control method according to the embodiment of the present invention. This is a time chart. 1... Compressor, 2... Four-way switching valve, 3... Indoor heat exchanger, 4... Pressure reducing device, 5... Outdoor heat exchanger, 6... Liquid reservoir, F 3 , F 5 ... Blower.

Claims (1)

【特許請求の範囲】[Claims] 1 空気熱源式空気調和機の暖房運転時に四方切
換弁を切換えて逆サイクルとすることにより行な
う除霜運転の開始前に、所定時間継続される除霜
開始準備運転期間を設け、この除霜開始準備運転
期間後に除霜運転を行う除霜運転制御において、
前記除霜開始準備運転期間は、室内側送風機を運
転し、かつ圧縮機の運転停止および能力低減のい
ずれかをさせるようにした空気調和機の除霜運転
制御方法。
1. Before the start of defrosting operation, which is performed by switching the four-way switching valve to reverse cycle during heating operation of an air heat source type air conditioner, a defrosting start preparation period that continues for a predetermined period of time is established, and this defrosting start operation period is established. In defrosting operation control that performs defrosting operation after the preparatory operation period,
A defrosting operation control method for an air conditioner, wherein during the defrosting start preparation operation period, an indoor blower is operated, and a compressor is either stopped or its capacity is reduced.
JP6606283A 1983-04-14 1983-04-14 Method of controlling defrostation operation of air conditioner Granted JPS59191850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6606283A JPS59191850A (en) 1983-04-14 1983-04-14 Method of controlling defrostation operation of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6606283A JPS59191850A (en) 1983-04-14 1983-04-14 Method of controlling defrostation operation of air conditioner

Publications (2)

Publication Number Publication Date
JPS59191850A JPS59191850A (en) 1984-10-31
JPH0340310B2 true JPH0340310B2 (en) 1991-06-18

Family

ID=13304992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6606283A Granted JPS59191850A (en) 1983-04-14 1983-04-14 Method of controlling defrostation operation of air conditioner

Country Status (1)

Country Link
JP (1) JPS59191850A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148959A (en) * 1974-05-20 1975-11-28
JPS5526383A (en) * 1978-08-15 1980-02-25 Matsushita Electric Works Ltd Reinforced flume and making method thereof
JPS5828936A (en) * 1981-08-13 1983-02-21 Toshiba Corp Operation controlling method of compressor with inverter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148959A (en) * 1974-05-20 1975-11-28
JPS5526383A (en) * 1978-08-15 1980-02-25 Matsushita Electric Works Ltd Reinforced flume and making method thereof
JPS5828936A (en) * 1981-08-13 1983-02-21 Toshiba Corp Operation controlling method of compressor with inverter

Also Published As

Publication number Publication date
JPS59191850A (en) 1984-10-31

Similar Documents

Publication Publication Date Title
KR100474892B1 (en) Methode for controlling a heating of air-conditioner
JP4421776B2 (en) Multiple compressor heat pump or air conditioner
KR960034932A (en) Refrigerating apparatus, air conditioner using the refrigerating apparatus, and method of operating the air conditioner
JP2000046423A (en) Natural circulation cooling apparatus
JPH0534582B2 (en)
KR100499485B1 (en) accumulator of heat pump system with at least two compressors
CN111609520A (en) Control method of variable frequency air conditioner
JPH0340310B2 (en)
JPS59191851A (en) Method of controlling defrostation operation of air conditioner
JPS58152187A (en) Air conditioning apparatus
JP3948879B2 (en) Refrigeration equipment
KR100367583B1 (en) Operation frequency control method for inverter air conditioner
JPH0623879Y2 (en) Air conditioner
JP2907898B2 (en) Air conditioner
JPS63273764A (en) Method of controlling operation of air conditioner
JPH03122440A (en) Method for controlling operation of air conditioner
EP1703235A1 (en) Method for controlling air conditioner having several compressors
KR100429985B1 (en) Operation method of refrigerating cycle for heat pump air conditioner, for improving reliability of compressor by operating the same when oil is sufficiently supplied
JPS6192375A (en) Control device of electrically driven expansion valve in air conditioning machine
JP2000046418A (en) Inverter type air conditioner
JPH0960991A (en) Air-conditioner and operation method thereof
JPH1194371A (en) Air-conditioner
JPH02225955A (en) Mutli-chamber type air conditioner
JPH08121370A (en) Refrigerating cycle
JPS6320931Y2 (en)