JPH03255989A - Monitor device for inside of nuclear reactor dry well - Google Patents

Monitor device for inside of nuclear reactor dry well

Info

Publication number
JPH03255989A
JPH03255989A JP2053776A JP5377690A JPH03255989A JP H03255989 A JPH03255989 A JP H03255989A JP 2053776 A JP2053776 A JP 2053776A JP 5377690 A JP5377690 A JP 5377690A JP H03255989 A JPH03255989 A JP H03255989A
Authority
JP
Japan
Prior art keywords
reactor
dry well
laser beam
measured
nuclear reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2053776A
Other languages
Japanese (ja)
Other versions
JP3004673B2 (en
Inventor
Akira Horie
明 堀江
Shunichi Suzuki
俊一 鈴木
Shinji Yamamoto
山本 晋児
Toshihiko Kubokawa
久保川 俊彦
Sakae Takagi
高木 栄
Makoto Yokozawa
横澤 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2053776A priority Critical patent/JP3004673B2/en
Publication of JPH03255989A publication Critical patent/JPH03255989A/en
Application granted granted Critical
Publication of JP3004673B2 publication Critical patent/JP3004673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To monitor the inside of the nuclear reactor dry well optically in a stationary state from a remote place by making a scan in the nuclear reactor dry well with a laser beam and irradiating a part to be measured, and detecting its reflected light optically by a remote monitor means. CONSTITUTION:Scanning optical systems 53 and 54 control primary mirrors 56a and 56b and secondary mirrors 57a and 57b to scan the inside of the nuclear reactor well 30 longitudinally and laterally with the laser beam outputted by a laser device 6 to irradiate the part 47 to be measured as a place to be monitored with the laser beam. Further, the laser beam reflected from the part 47 to be measured by the irradiation is inputted to the photodetection part of a photodetection detection system 49 through a scanning optical system 48. The signal inputted to the photodetection part is inputted to the remote monitor means 50 provided outside the nuclear reactor storage container 21 and this means 50 compares the input signal with measurement data in a normal state to monitor the inside of the dry well 30 remotely. Further, the means 50 can monitor abnormality such as a defect and a leak in the part 47 to be measured in the stationary state even when the nuclear reactor is in operation.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は原子炉ドライウェル内を遠隔地から光学的に
監視する原子炉ドライウェル内の監視装置に係り、特に
ドライウェル内の構造物や配管系統などの監視を定常的
に行なうことができる原子炉ドライウェル内の監視装置
に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) This invention relates to a monitoring device in a nuclear reactor dry well that optically monitors the inside of a nuclear reactor dry well from a remote location. This invention relates to a monitoring device inside a nuclear reactor drywell that can regularly monitor internal structures, piping systems, etc.

(従来の技術) 軽水炉としての沸騰水型原子炉は第6図に示すように構
成され、原子炉格納容器1内に原子炉圧力容器(以下、
RPVという。)2が格納される。このRPV2はRP
V支持ペデスタル3上に支持される。
(Prior Art) A boiling water reactor as a light water reactor is configured as shown in FIG.
It is called RPV. )2 is stored. This RPV2 is RP
It is supported on a V-support pedestal 3.

一方、原子炉格納容器1内はドライウェル4として画成
されており、このドライウェル4内に主蒸気系5や原子
炉給水系6、原子炉再循環系7の各機器配管が配設され
るとともにドライウェル4内を空調する換気空調系(図
示を省略)が設けられる。また、原子炉の周りには原子
炉補助系や原子炉の安全性を確保する原子炉非常系(共
に図示せず)がそれぞれ設けられる。
On the other hand, the inside of the reactor containment vessel 1 is defined as a dry well 4, and each equipment piping of the main steam system 5, reactor water supply system 6, and reactor recirculation system 7 is arranged within this dry well 4. At the same time, a ventilation air conditioning system (not shown) for air conditioning the inside of the dry well 4 is provided. Additionally, a reactor auxiliary system and a reactor emergency system (both not shown) are provided around the reactor to ensure the safety of the reactor.

これらの主蒸気系5や原子炉給水系6、原子炉再循環系
7や換気空調系、さらには原子炉非常系や原子炉圧力容
器2および熱遮蔽壁等の原子炉格納容器1内部構造物は
、原子炉ドライウェル4内の監視対象箇所に挙げられて
いる。これらの監視対象箇所は主として原子炉の定期検
査時に作業員がドライウェル4内に入り、目視により監
視している。
The main steam system 5, the reactor water supply system 6, the reactor recirculation system 7, the ventilation air conditioning system, and the internal structures of the reactor containment vessel 1, such as the reactor emergency system, the reactor pressure vessel 2, and the heat shield wall. are listed as monitoring target locations within the reactor dry well 4. These points to be monitored are mainly visually monitored by workers entering the dry well 4 during periodic inspections of the nuclear reactor.

原子炉は、一定期間(例えば1年)毎に所定期間(例え
ば3ケ月程度)原子炉の運転を停止させて定期検査が行
なわれる。この定期検査時には、ドライウェルカバー8
やスロットプラグ9が撤去され、さらに、原子炉格納容
器1の上蓋1aや原子炉圧力容器2の上蓋2aが天井ク
レーン10により取り外されて炉心部に装架された燃料
が交換されるとともに、制御棒駆動機構11の分解・点
検作業が行なわれる。
2. Description of the Related Art A nuclear reactor is inspected at regular intervals (for example, one year) by stopping its operation for a predetermined period (for example, about three months). During this periodic inspection, dry well cover 8
In addition, the upper cover 1a of the reactor containment vessel 1 and the upper cover 2a of the reactor pressure vessel 2 are removed by the overhead crane 10, and the fuel installed in the reactor core is replaced. The rod drive mechanism 11 is disassembled and inspected.

また、原子炉の定期検査時には、主蒸気ラインの水抜き
をして主蒸気隔離弁12の漏洩試験や分解点検作業を行
なったり、主蒸気逃がし安全弁(図示せず)の分解・点
検作業を行なっている。
In addition, during periodic inspections of nuclear reactors, water is drained from the main steam line and leak tests and overhauls are performed on the main steam isolation valve 12, and the main steam relief safety valve (not shown) is disassembled and inspected. ing.

また、原子炉再循環系7の再循環ポンプ7aの点検作業
も行なって、原子炉ドライウェル4内の監視対象箇所を
点検し、損傷状態や異常の有無を監視している。
In addition, the recirculation pump 7a of the reactor recirculation system 7 is inspected, and the monitoring target locations within the reactor dry well 4 are inspected to monitor for damage or abnormalities.

(発明が解決しようとする課題) 原子炉ドライウェル4内は主蒸気系5や原子炉給水系6
、原子炉再循環系7、原子炉非常系等の各構成機器や配
管が多数設けられる一方、放射線の影響を受ける環境下
にあり、作業環境が悪いため、ドライウェル4内に作業
員がアクセスして監視するのが容易でなく、困難であっ
た。
(Problem to be solved by the invention) Inside the reactor drywell 4 are the main steam system 5 and the reactor water supply system 6.
, the reactor recirculation system 7, the reactor emergency system, and many other components and piping, but it is in an environment that is affected by radiation and the work environment is poor, making it difficult for workers to access the inside of the dry well 4. It was not easy and difficult to monitor.

特に、原子炉運転中、ドライウェル4内は高温・高放射
線の環境下にある。このような環境下にある原子炉ドラ
イウェル4内の監視対象箇所を、原子炉運転時に定常的
に遠隔監視する方法は確立されておらず、そのための遠
隔監視装置も開発されていない。
In particular, during the operation of the nuclear reactor, the inside of the dry well 4 is under a high temperature and high radiation environment. No method has been established to constantly remotely monitor monitoring target locations within the nuclear reactor dry well 4 under such an environment during reactor operation, nor has a remote monitoring device been developed for this purpose.

ところで、原子炉運転時に原子炉ドライウェル内を監視
するためには、高温・高放射線下の環境にあることを考
慮すると、耐熱性や耐放射線性に優れ、放射線ノイズに
も耐え得る装置でなくてはならない。このノイズ対策を
考慮すると、電気的に信号処理する監視装置は、原子炉
ドライウェル4内の監視装置として不適当であり、用い
ることができない。
By the way, in order to monitor the inside of the reactor drywell during reactor operation, considering that the reactor is in an environment of high temperature and high radiation, it is necessary to use equipment that has excellent heat resistance, radiation resistance, and can withstand radiation noise. must not. Considering this noise countermeasure, a monitoring device that electrically processes signals is inappropriate as a monitoring device in the reactor dry well 4 and cannot be used.

この点から、高温・高放射線の環境下にある原子炉ドラ
イウェル内を定常的に遠隔地から監視できる装置を如何
に構成したら開発できるか問題になっていた。
From this point of view, the question has been how to develop a device that can constantly monitor the inside of a nuclear reactor dry well, which is in a high-temperature, high-radiation environment, from a remote location.

この発明は上述した事情を考慮してなされたもので、作
業環境の悪い原子炉ドライウェル内を原子炉運転時にも
遠隔地から光学的にかつ定常的に効率よく、監視するこ
とができる原子炉ドライウェル内の監視装置を提供する
ことを目的とする。
This invention has been made in consideration of the above-mentioned circumstances, and is a nuclear reactor that can optically and constantly efficiently monitor the interior of the reactor dry well, which has a poor working environment, from a remote location even during reactor operation. The purpose is to provide a monitoring device within a dry well.

この発明の他の目的は、放射線ノイズ等のノイズ対策を
不要にし、耐熱性や耐放射線性に優れた原子炉ドライウ
ェル内の監視装置を提供するにある。
Another object of the present invention is to provide a monitoring device in a nuclear reactor dry well that eliminates the need for noise countermeasures against radiation noise and has excellent heat resistance and radiation resistance.

この発明の別の目的は、原子炉ドライウェル内の障害箇
所を遠隔地からの監視で同定できる簡単な構造の原子炉
ドライウェル内の監視装置を提供するにある。
Another object of the present invention is to provide a monitoring device for a reactor dry well, which has a simple structure and can identify a faulty location within the reactor dry well by monitoring from a remote location.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この発明に係る原子炉ドライウェル内の監視装置は、上
述した課題を解決するために、レーザビームを出力する
レーザ装置と、このレーサ′装置から出力されるレーザ
ビームをドライウェル内で走査し、被測定部に照射させ
る走査光学系と、被測定部に照射されたレーザビームの
反射光を受光する受光検出系と、この受光検出系で検出
された信号から被測定部の欠損や漏洩等の異常を検知す
る遠隔監視手段とを有するものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, a monitoring device in a nuclear reactor dry well according to the present invention includes a laser device that outputs a laser beam, and a laser beam output from the laser device. A scanning optical system that scans the beam in the dry well and irradiates it onto the part to be measured, a light detection system that receives the reflected light of the laser beam irradiated to the part to be measured, and a signal detected by this light detection system. It has remote monitoring means for detecting abnormalities such as defects and leakage in the part to be measured.

また、上述した課題を解決するために、この発明の原子
炉ドライウェル内の監視装置においては、レーザ装置は
レーザビームを出力させる複数の発振部を原子炉格納容
器の頂部にそれぞれ設ける一方、走査光学系は発振部に
対応して複数系統有し、上記各系統は発振部からのレー
ザビームをスキャニングする回転自在な一次ミラーと、
この一次ミラーでスキャニングされたレーザビームを被
測定部に照射する回転かつ移動自在な二次ミラーとを組
み合せて構成したものである。
In addition, in order to solve the above-mentioned problems, in the monitoring device in the nuclear reactor dry well of the present invention, the laser device is provided with a plurality of oscillating parts that output laser beams at the top of the reactor containment vessel. The optical system has multiple systems corresponding to the oscillation section, and each of the above systems includes a rotatable primary mirror that scans the laser beam from the oscillation section;
It is constructed by combining a rotatable and movable secondary mirror that irradiates the part to be measured with a laser beam scanned by this primary mirror.

さらに、この発明は、上述した課題を解決するために、
受光検出系はレーザ装置の発振部に設けられた受光検出
部を有し、この受光検出部に被測定部に照射されたレー
ザビームの反射光が走査光学系を経て入力されるように
形成した原子炉ドライウェル内の監視装置を提供するに
ある。
Furthermore, in order to solve the above-mentioned problems, this invention
The light receiving detection system has a light receiving detecting section provided in the oscillating section of the laser device, and is configured so that the reflected light of the laser beam irradiated on the part to be measured is input to the light receiving detecting section through the scanning optical system. The purpose of the present invention is to provide a monitoring device within a nuclear reactor drywell.

(作用) この原子炉ドライウェル内の監視装置は、レーザ装置か
ら出力されるレーザビームを走査光学系により原子炉ド
ライウェル内を走査して被測定部に照射し、その反射光
を受光検出系で検出して遠隔監視手段により被測定部の
欠損や漏洩等の異常を光学的に検出するようにしたから
、作業環境の悪い原子炉ドライウェル内の監視対象箇所
を原子炉運転時にも遠隔地から定常的に効率よく監視す
ることができる。
(Function) This monitoring device inside the reactor dry well uses a scanning optical system to scan the inside of the reactor dry well with a laser beam output from a laser device and irradiates it onto the part to be measured. Since abnormalities such as defects and leaks in the parts to be measured are detected optically using remote monitoring means, monitoring points in the reactor dry well, which has a poor working environment, can be monitored remotely even during reactor operation. It is possible to monitor regularly and efficiently.

この監視装置は原子炉ドライウェル内のレーザビームを
スキャニングする走査光学系を設ければよく、この走査
光学系は、レーザビームを光学的に走査するものである
ので、放射線ノイズ等のノイズの影響を受けず、耐熱性
や耐放射線性に優れたものとなる。
This monitoring device only needs to be equipped with a scanning optical system that scans the laser beam inside the reactor dry well. Since this scanning optical system optically scans the laser beam, it is susceptible to noise such as radiation noise. It has excellent heat resistance and radiation resistance.

また、この監視装置は、原子炉ドライウェル内でレーザ
ビームを走査する走査光学系を複数系統設けたので、原
子炉ドライウェル内で監視対象箇所である被測定部の同
定を行なうことができるとともに、走査光学系は一次ミ
ラーと二次ミラーとを組み合せたものであり、受光検出
系は、上記走査光学系を利用して反射光を検出するよう
にしたので、構造も簡単であり、原子炉ドライウェル内
の監視対象箇所を遠隔地から効率よく検出することがで
きる。
In addition, this monitoring device is equipped with multiple systems of scanning optical systems that scan laser beams within the reactor dry well, making it possible to identify the parts to be measured, which are the monitoring targets, within the reactor dry well. , the scanning optical system is a combination of a primary mirror and a secondary mirror, and the light receiving and detecting system uses the scanning optical system described above to detect reflected light, so the structure is simple and it is suitable for use in nuclear reactors. The monitoring target location within the dry well can be efficiently detected from a remote location.

(実施例) 以下、この発明の原子炉ドライウェル内の監視装置の一
実施例について添付図面を参照して説明する。
(Embodiment) Hereinafter, an embodiment of the monitoring device in a nuclear reactor dry well of the present invention will be described with reference to the accompanying drawings.

第1図はこの発明に係る原子炉ドライウェル内の監視装
置の一例を示すものであり、第2図はこの発明を軽水炉
としての沸騰水型原子炉に適用した例を示す。
FIG. 1 shows an example of a monitoring device in a nuclear reactor dry well according to the present invention, and FIG. 2 shows an example in which the present invention is applied to a boiling water reactor as a light water reactor.

沸騰水型原子炉は、第2図に示すように、原子炉建屋2
0内に原子炉格納容器21が格納されており、この原子
炉格納容器21内に原子炉圧力容器(RPV)22が収
納される。RPV22はRPV支持ペデスタル23上に
支持されており、このRPV22の下方にサプレッショ
ンチャンバ24が形成される。
As shown in Figure 2, a boiling water reactor has a reactor building 2.
A reactor containment vessel 21 is housed within the nuclear reactor containment vessel 21, and a reactor pressure vessel (RPV) 22 is housed within this reactor containment vessel 21. The RPV 22 is supported on an RPV support pedestal 23, and a suppression chamber 24 is formed below the RPV 22.

一方、原子炉圧力容器22内には核燃料を配列した炉心
25が形成され、この炉心25で発生した熱は原子炉冷
却材に伝えられる。この冷却材は炉心25を通るとき熱
を受けて沸騰した後、気水分離器26および蒸気乾燥器
27で水と蒸気とに分離される。このうち分離された蒸
気は、主蒸気系28を介して図示しないタービン系に導
かれ、蒸気タービンを駆動させる。タービン系で仕事を
した蒸気は凝縮されて復水となった後、原子炉復水・給
水系29を経てRPV22内に供給される。
On the other hand, a reactor core 25 in which nuclear fuel is arranged is formed within the reactor pressure vessel 22, and heat generated in the reactor core 25 is transferred to the reactor coolant. This coolant receives heat as it passes through the core 25 and boils, and then is separated into water and steam in a steam separator 26 and a steam dryer 27. The separated steam is guided to a turbine system (not shown) via the main steam system 28 to drive a steam turbine. After the steam that has done work in the turbine system is condensed and becomes condensate, it is supplied into the RPV 22 via the reactor condensate/water supply system 29.

また、原子炉格納容器21内の空間は原子炉ドライウェ
ル30として画成されており、このドライウェル30内
に主蒸気系28や原子炉給水系29の機器や配管が配設
されるとともに、原子炉再循環系31の配管機器や原子
炉補助系32や原子炉非常系33の機器の配管の一部が
設けられる。
Furthermore, the space within the reactor containment vessel 21 is defined as a reactor dry well 30, and within this dry well 30, the equipment and piping of the main steam system 28 and the reactor water supply system 29 are arranged. Some of the piping equipment for the reactor recirculation system 31 and the equipment for the reactor auxiliary system 32 and the reactor emergency system 33 are provided.

原子炉再循環系31は原子炉圧力容器22内の冷却材を
炉心25に再び循環させるものである。
The reactor recirculation system 31 circulates the coolant in the reactor pressure vessel 22 back to the reactor core 25.

原子炉補助系32は原子炉の周りに設置され、原子炉運
転中に使用する原子炉冷却材浄化系35、原子炉停止時
冷却系36や原子炉補機冷却系等があり、また、原子炉
非常系33は配管破断等の重大事故やその他の異常事態
に際して原子炉の安全性を確保するもので、原子炉格納
容器冷却系37、低圧注入系(原子炉残留熱除去系)3
8、高圧炉心スプレィ系39、低圧炉心スプレィ系40
、逃し安全弁41を有する自動減圧系42およびほう散
水注入系43等がある。
The reactor auxiliary system 32 is installed around the reactor, and includes a reactor coolant purification system 35 used during reactor operation, a reactor shutdown cooling system 36, a reactor auxiliary equipment cooling system, etc. The reactor emergency system 33 ensures the safety of the reactor in the event of a serious accident such as a pipe rupture or other abnormal situation, and includes a reactor containment vessel cooling system 37, a low pressure injection system (reactor residual heat removal system) 3
8. High pressure core spray system 39, low pressure core spray system 40
, an automatic pressure reduction system 42 having a safety relief valve 41, and a water injection system 43.

ところで、原子炉ドライウェル内の監視装置45は第1
図に示すように構成され、パルスレーザなどのレーザビ
ームを出力させるレーザ装置46と、このレーザ装置4
6から出力されたレーザビームを原子炉ドライウェル3
0内で走査し、監視対象箇所である被測定部47に照射
する走査光学系48と、被測定部47からの反射光を受
光する受光検出系49と、受光検出系49で検出された
信号から被測定部47の欠損や漏洩等の異常を遠隔地で
検出し、監視する遠隔監視手段50とを有する。
By the way, the monitoring device 45 in the reactor dry well is
A laser device 46 that is configured as shown in the figure and outputs a laser beam such as a pulsed laser, and this laser device 4
The laser beam output from 6 is sent to the reactor dry well 3.
a scanning optical system 48 that scans within 0 and irradiates the part to be measured 47 which is the monitoring target part; a light reception detection system 49 that receives reflected light from the part to be measured 47; and a signal detected by the light reception detection system 49. It has a remote monitoring means 50 for detecting and monitoring abnormalities such as defects and leakage in the part to be measured 47 from a remote location.

レーザ装置46は原子炉格納容器21の頂部(上蓋21
a)に設けられた複数個例えば2個の発振部46a、4
6bを有する。この発振部46a、46bはレーザ装置
そのものであってもよく、また、鎖線で示すようにレー
ザ装置46から出力され、ハーフミラ−51および角度
ミラー52を経て入力されるレーザビームの発振部であ
ってもよい。前者の場合、レーザ装置46は原子炉格納
容器21の上蓋21aに設けられ、後者の場合には、レ
ーザ装置46は原子炉格納容器21の外側に配置される
The laser device 46 is located at the top of the reactor containment vessel 21 (upper lid 21
a) A plurality of oscillators 46a, 4, for example, two oscillators 46a, 4 provided in
It has 6b. The oscillating units 46a and 46b may be the laser devices themselves, or they may be oscillating units for laser beams output from the laser device 46 and input via the half mirror 51 and the angle mirror 52, as shown by the chain line. Good too. In the former case, the laser device 46 is provided on the upper lid 21a of the reactor containment vessel 21, and in the latter case, the laser device 46 is arranged outside the reactor containment vessel 21.

走査光学系48はレーザ装置46の発振部46a、46
bに対応してそれぞれ複数系統53,54設けられ、各
走査光学系53.54は発振部の直下に設けられ、回転
可能な一次ミラー56a。
The scanning optical system 48 includes oscillation units 46a and 46 of the laser device 46.
A plurality of systems 53 and 54 are provided corresponding to the scanning optical systems 53 and 54, respectively, and each scanning optical system 53, 54 is provided directly below the oscillating section and has a rotatable primary mirror 56a.

56bと、この一次ミラー56 a、  56 bから
離間して設けられ、回転かつ移動自在に設けられた二次
ミラー57a、57bとを組み合せたものである。一次
ミラー56a、56bは公知の回転制御装置により回転
可能に制御され、その回転位置は回転制御装置の作動制
御により回転角度が調節される。また、二次ミラー57
a、57bも公知の移動機構に支持された回転制御装置
により回転かつ移動自在に支持される。走査光学系53
,54は一次ミラー56a、56bと二次ミラー57a
、57bをそれぞれ作動制御することにより、レーザ装
置46から出力されたレーザビームを原子炉ドライウェ
ル30内で縦横に走査し、監視対象箇所である被測定部
に照射することができる。
56b, and secondary mirrors 57a, 57b which are provided apart from the primary mirrors 56a, 56b and are rotatably and movably provided. The primary mirrors 56a and 56b are rotatably controlled by a known rotation control device, and their rotational positions and rotation angles are adjusted by operational control of the rotation control device. In addition, the secondary mirror 57
a and 57b are also rotatably and movably supported by a rotation control device supported by a known moving mechanism. Scanning optical system 53
, 54 are primary mirrors 56a, 56b and secondary mirror 57a.
, 57b, the laser beam outputted from the laser device 46 can be scanned vertically and horizontally within the reactor dry well 30, and can be irradiated to the part to be measured, which is the part to be monitored.

また、レーザビームを被測定部47に照射することによ
り、被測定部47から反射したレーザビームは走査光学
系48を経て発振部46a、46bに備えられた受光検
出系49の受光部に入力される。受光部に入力された信
号は光フアイバケーブル59等を経て原子炉格納容器2
1の外側に設けられた遠隔監視手段50に入力され、こ
の遠隔監視手段50によって通常時の測定データと比較
することにより、原子炉ドライウェル30内を遠隔監視
できるようになっている。この遠隔監視手段50により
、被測定部47の欠損や漏洩等の異常を原子炉運転時に
も定常的に監視することができる。
Furthermore, by irradiating the part to be measured 47 with the laser beam, the laser beam reflected from the part to be measured 47 passes through the scanning optical system 48 and is input to the light receiving part of the light receiving and detecting system 49 provided in the oscillating parts 46a and 46b. Ru. The signal input to the light receiving unit is transmitted to the reactor containment vessel 2 via an optical fiber cable 59, etc.
The inside of the reactor dry well 30 can be remotely monitored by inputting the data to a remote monitoring means 50 provided outside the nuclear reactor dry well 30 and comparing it with normal measurement data by the remote monitoring means 50. With this remote monitoring means 50, it is possible to constantly monitor abnormalities such as defects and leakage of the part to be measured 47 even during the operation of the nuclear reactor.

その際、発振部46a、46bや受光部の各配置、およ
び走査光学系53.54の一次ミラー55a、56bと
二次ミラー57a、57bの作動を適宜組み合せことに
より、2つの検出系統の死角が最小限となるように設定
される。
At this time, the blind spots of the two detection systems can be reduced by appropriately combining the arrangement of the oscillators 46a, 46b and the light receiving section, and the operations of the primary mirrors 55a, 56b and secondary mirrors 57a, 57b of the scanning optical system 53.54. It is set to the minimum.

ところで、原子炉ドライウェル30内の監視対象箇所に
は、 (1)原子炉圧力容器(RPV)22、(2)原子炉再
循環系31の機器配管、(3)原子炉主蒸気系28や原
子炉給水系29、原子炉補助系32、原子炉非常系33
等の原子炉圧力バウンダリーに属する設備 (4)逃がし安全弁等の自動減圧系42の機器、配管、 (5)RPV支持ペデスタル23、 (6)熱遮蔽壁等の原子炉格納容器内部構造物、(7)
換気空調設備、 (8)その他、 がある。
By the way, the monitoring targets in the reactor dry well 30 include (1) the reactor pressure vessel (RPV) 22, (2) the equipment piping of the reactor recirculation system 31, (3) the reactor main steam system 28, and Reactor water supply system 29, reactor auxiliary system 32, reactor emergency system 33
Equipment belonging to the reactor pressure boundary such as (4) Automatic depressurization system 42 equipment and piping such as relief safety valves, (5) RPV support pedestal 23, (6) Reactor containment vessel internal structures such as heat shield walls, ( 7)
Ventilation and air conditioning equipment, (8) and others.

これらの監視対象箇所のうち、原子炉再循環系31、原
子炉非常系33、原子炉給水系29や補給水系、換気空
調系および原子炉格納設備は、監視が以下の理由で特に
強く求められている。
Among these points to be monitored, monitoring of the reactor recirculation system 31, reactor emergency system 33, reactor water supply system 29, make-up water system, ventilation air conditioning system, and reactor containment equipment is particularly strongly required for the following reasons. ing.

原子炉再循環系31は、原子炉定期検査の合理化、作業
員の被曝低減化、機器の運転性向上を図るため、原子炉
ドライウェル30内を原子炉運転時に監視できるように
することが望ましい。
It is desirable that the reactor recirculation system 31 be able to monitor the inside of the reactor dry well 30 during reactor operation in order to streamline periodic reactor inspections, reduce radiation exposure to workers, and improve equipment operability. .

また、原子炉非常系33の炉心スプレィ系39゜40や
高圧注水系は原子炉運転や保守点検作業の簡略化、水張
ベント作業の簡略化を図るために、監視が必要であり、
この監視により定期検査の合理化を進め、機器の生産コ
ストの低減、廃棄物発生量の低減を図ることができる。
In addition, the core spray system 39-40 of the reactor emergency system 33 and the high-pressure water injection system must be monitored in order to simplify reactor operation, maintenance and inspection work, and water venting work.
Through this monitoring, it is possible to streamline periodic inspections, reduce equipment production costs, and reduce the amount of waste generated.

さらに、換気空調系は原子炉ドライウェル30内に配置
される機器の信頼性を向上させるために監視が必要であ
る。原子炉格納施設は作業環境を改善するために監視が
必要であり、また監視を強化することにより、機器の信
頼性を向上させ長寿命化を図ることができる。
Additionally, the ventilation air conditioning system requires monitoring to improve the reliability of equipment located within the reactor drywell 30. Reactor containment facilities require monitoring to improve the working environment, and enhanced monitoring can improve equipment reliability and extend its lifespan.

次に、原子炉ドライウェル30内の監視装置45Aの他
の実施例を第3図を参照して説明する。
Next, another embodiment of the monitoring device 45A in the reactor dry well 30 will be described with reference to FIG.

この監視装置45Aは原子炉格納容器21の外側にレー
ザ装置46および遠隔監視手段50を設けたものである
。レーザ装置46から出力されたレーザビームは光フア
イバケーブル60により原子炉格納容器21のケーブル
ペネトレション部62を経て発振部としてのファイバプ
ローブ63a。
This monitoring device 45A is provided with a laser device 46 and remote monitoring means 50 outside the reactor containment vessel 21. The laser beam output from the laser device 46 passes through a cable penetration section 62 of the reactor containment vessel 21 via an optical fiber cable 60 to a fiber probe 63a as an oscillating section.

63b、63cに案内され、これらのファイバプローブ
63.63b、63cから原子炉ドライウェル30内に
設けられた配管64等の被測定部65に照射される。
63b, 63c, and irradiates a portion to be measured 65 such as a pipe 64 provided in the reactor dry well 30 from these fiber probes 63.63b, 63c.

各ファイバプローブ63 a、  63 b、  63
 cはプローブ支持盤66に設けられる。このプローブ
支持盤66は遠隔制御される図示しない駆動手段により
タイミングをおいて角度変化動作を行ない、走査光学系
として機能する。プローブ支持盤66に角度変化動作を
与えることにより、各ファイバプローブ63s、63b
、63cから発振されるレーザビームはスキャニングさ
れ、被測定部65に照射される。
Each fiber probe 63a, 63b, 63
c is provided on the probe support board 66. The probe support plate 66 performs an angle changing operation at certain timings by a remotely controlled driving means (not shown), and functions as a scanning optical system. By giving the probe support plate 66 an angle changing operation, each fiber probe 63s, 63b
, 63c are scanned and irradiated onto the part to be measured 65.

被測定部65を照射することにより反射したレザビーム
は、ファイバプローブ63a、63b。
The laser beam reflected by irradiating the part to be measured 65 is transmitted to fiber probes 63a and 63b.

63cの受光部にそれぞれ入力され、光フアイバケーブ
ル60を経て遠隔監視手段50の光検出器67a、67
b、67cに入力される。コノ場合、ファイバプローブ
63 a、 63 b、 63 cはレザ装置46の発
振部と受光検出系49の受光部の両機能を備えている。
63c, and are input to the photodetectors 67a, 67 of the remote monitoring means 50 via the optical fiber cable 60.
b, 67c. In this case, the fiber probes 63 a, 63 b, and 63 c have the functions of both the oscillating part of the laser device 46 and the light receiving part of the light receiving detection system 49.

遠隔監視手段50Aの光検出器67a、67b。Photodetectors 67a, 67b of remote monitoring means 50A.

67cに入力された光信号は電気信号に変換され、増幅
器68a、68b、68cおよび周波数追跡器69 a
、  69 b、  69 cをそれぞれ経てCPUや
マイクロコンピュータ等の制御部70に入力される。制
御部70では、物体の三次元振動速度や最大振動方向速
度等の種々の演算処理が行なわれ、これらの演算処理結
果と原子炉ドライウェル30内の構造から、被測定部6
5を同定し、この部分の三次元振動情報を計測し、この
計測結果から被測定部65の欠損や漏洩等の異常を検出
することができる。
The optical signal inputted to 67c is converted into an electrical signal, and is sent to amplifiers 68a, 68b, 68c and frequency tracker 69a.
, 69 b, and 69 c, and are input to the control unit 70 such as a CPU or a microcomputer. The control unit 70 performs various calculations such as the three-dimensional vibration velocity and maximum vibration direction velocity of the object, and based on the results of these calculations and the structure inside the reactor dry well 30, the measured part 6
5 is identified, three-dimensional vibration information of this portion is measured, and abnormalities such as defects and leakage in the portion to be measured 65 can be detected from the measurement results.

この振動計測は、被測定部位を直接計測し、監視するこ
とは不可能であるが、被測定部65の異常振動発生方向
と振動速度をレーサ計測で検知し、この計測結果と原子
炉ドライウェル30内の構造(構成)から異常振動発生
箇所を特定することができる。
In this vibration measurement, it is impossible to directly measure and monitor the part to be measured, but the direction and vibration speed of abnormal vibration in the part to be measured 65 is detected by laser measurement, and this measurement result is combined with the reactor dry well. The location where the abnormal vibration occurs can be identified from the structure (configuration) within the device 30.

第4図および第5図は、原子炉ドライウェル内監視装置
の他の変形例を示すものである。
FIGS. 4 and 5 show other modifications of the nuclear reactor dry well internal monitoring device.

これらの変形例に示された監視装置70A、70Bは、
原子炉ドライウェル内の雰囲気成分を分光分析により遠
隔地から計測し、監視できるようにしたものである。
The monitoring devices 70A and 70B shown in these modified examples are
This system enables atmospheric components within the reactor dry well to be remotely measured and monitored using spectroscopic analysis.

このうち、第4図に示される監視装置70Aはレーザ装
置46を複数台用意し、各レーザ装置46から出力され
るレーザビームを光フアイバケーブル71a、71b、
71cを介して原子炉ドライウェル30内に案内し、こ
の原子炉ドライウエル30内で複数本のレーザビームパ
スを形成したものである。各光フアイバケーブル71a
、71b、71cから案内されるレーザビームは同様な
光フアイバケーブル72a、72b、72cを経て受光
検出系としての光吸収計測用ディテクタ73a、73b
、73cで検出するとともに、レーザ装置I46に備え
られるラマン計測用ディテクタでも検出される。これら
の検出により、原子炉ドライウェル30内を走査される
レーザビームの光路長中における平均濃度、平均温度を
計測し、拡散方程式により雰囲気成分の濃度分布を求め
る。
Of these, the monitoring device 70A shown in FIG.
The laser beam is guided into the reactor dry well 30 via the reactor dry well 30, and a plurality of laser beam paths are formed within the reactor dry well 30. Each optical fiber cable 71a
, 71b, 71c pass through similar optical fiber cables 72a, 72b, 72c to detectors 73a, 73b for light absorption measurement as a light reception detection system.
, 73c, and is also detected by a Raman measurement detector provided in the laser device I46. Through these detections, the average concentration and average temperature during the optical path length of the laser beam scanned inside the reactor dry well 30 are measured, and the concentration distribution of the atmospheric components is determined using the diffusion equation.

しかし、原子炉ドライウェル30内には複雑に配置され
た配管や構造物からのノイズ光(反射光)のためにレー
ザビームを第4図に示すように走査して計測することは
、一般的には困難性を伴うので、実用化のためには、第
5図に示すように測定することが効率的である。
However, because of the noise light (reflected light) from piping and structures arranged in a complicated manner inside the reactor dry well 30, it is not common practice to scan the laser beam for measurement as shown in Figure 4. Since this is accompanied by difficulties, for practical use it is efficient to measure as shown in FIG.

第5図に示された監視装置70Bは、レーザ装置46.
46から出力されたレーザビームを光フアイバケーブル
74a、74bを介して原子炉ドライウェル30内に案
内し、この光フアイバケーブル74a、74bからのレ
ーザビームを拡散、照射させて、ノイズ光による影響を
少なくし、反射光ノイズ対策を施す。このレーザビーム
を原子炉ドライウェル30内でスキャンさせてドライウ
ェル空間を網羅した測定を行なう、レーザビームをスキ
ャンし、ある光路で異常検出されたとき、別のレーザビ
ームがその光路に沿って移動し、異常発生部位を特定す
る。
The monitoring device 70B shown in FIG. 5 includes the laser device 46.
46 is guided into the reactor dry well 30 via optical fiber cables 74a, 74b, and the laser beams from the optical fiber cables 74a, 74b are diffused and irradiated to eliminate the influence of noise light. Take measures against reflected light noise. This laser beam is scanned inside the reactor dry well 30 to perform measurements covering the dry well space.When an abnormality is detected in a certain optical path when the laser beam is scanned, another laser beam moves along that optical path. and identify the location of the abnormality.

このように、原子炉ドライウェル30内の作業環境や遠
隔測定の要求や放射線ノイズ等のノイズ対策を考慮する
と、レーザビームを監視に利用する光学的な監視手法は
適したものとなる。
As described above, an optical monitoring method that uses a laser beam for monitoring is suitable in consideration of the working environment in the reactor dry well 30, the requirements for remote measurement, and countermeasures against noise such as radiation noise.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、この発明に係る原子炉ドライウェ
ル内の監視装置においては、レーザ装置より出力された
レーザビームを原子炉ドライウェル内で走査光系により
走査して被測定部に照射し、その反射光を受光検出系で
検出して遠隔監視手段により光学的に検知し、監視する
ようにしたから、作業環境の悪い原子炉ドライウェル内
の監視対象箇所を原子炉運転時にも遠隔地から定常的か
つ自動的に効率よく監視することができる。
As described above, in the reactor dry well monitoring device according to the present invention, the laser beam output from the laser device is scanned by the scanning optical system within the reactor dry well to irradiate the part to be measured. The reflected light is detected by the light receiving detection system and then optically detected by the remote monitoring means for monitoring, so that the monitoring target area in the reactor dry well, which has a poor working environment, can be monitored from a remote location even during reactor operation. can be regularly and automatically monitored efficiently.

また、この監視装置は、原子炉ドライウェル内にレーザ
ビームをスキャニングする走査光学系を設ければよく、
この走査光学系により光学的に処理されるので、放射線
ノイズ等のノイズの悪影響を受けることがなく、原子炉
ドライウェル内を効率よく、正確に監視することができ
、しかも、耐熱性や耐放射線性に優れたものとなる。
In addition, this monitoring device only needs to be provided with a scanning optical system that scans a laser beam in the reactor dry well.
Since this scanning optical system performs optical processing, the interior of the reactor dry well can be monitored efficiently and accurately without being affected by noise such as radiation noise. Becomes excellent in sex.

さらに、原子炉ドライウェル内に走査光学系を複数系統
設けたので、複数の走査光学系統により監視対象箇所の
固定が容易であり、また走査光学系は一次ミラーと二次
ミラーとを組み合せたもので、受光検出系は走査光学系
を利用して反射光を受光させたから、構造が簡単であり
、原子炉ドライウェル内の監視対象箇所を遠隔地から効
率よく監視することができる。
Furthermore, since multiple scanning optical systems are installed inside the reactor drywell, it is easy to fix the location to be monitored using multiple scanning optical systems, and the scanning optical system is a combination of a primary mirror and a secondary mirror. Since the light reception and detection system uses a scanning optical system to receive the reflected light, it has a simple structure and can efficiently monitor the monitoring target location in the reactor dry well from a remote location.

さらにまた、この発明の原子炉ドライウェル内の監視装
置でドライウェル内を光学的に遠隔から監視することが
できるので、原子炉プラントの信頼性を維持することが
でき、さらに、原子炉点検時の巡視項目を減らして合理
化を図ることができる。
Furthermore, since the inside of the dry well can be optically and remotely monitored by the monitoring device in the reactor dry well of the present invention, the reliability of the nuclear reactor plant can be maintained, and furthermore, during reactor inspection. The number of patrol items can be reduced and streamlined.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る原子炉ドライウェル内の監視装
置の一実施例を示す破断断面図、第2図はこの発明を適
用した沸騰水型原子炉を示す図、第3図はこの発明に係
る原子炉ドライウェル内の監視装置の他の実施例を示す
図、第4図および第5図は原子炉ドライウェル内の監視
装置の各変形例を原理的にそれぞれ示す図、第6図は沸
騰水型原子炉の一般的な断面構造を示す図である。 20・・・原子炉建屋、21・・・原子炉格納容器、2
2・・・原子炉圧力容器、23・・・RPV支持ペデス
タル、25・・・炉心、28・・・主蒸気系、29・・
・原子炉(復水)給水系、30・・・原子炉ドライウェ
ル、31・・・原子炉再循環系、32・・・原子炉補助
系、33・・・原子炉非常系、39.40・・・炉心ス
プレィ系、42・・・自動減圧系、45.45A、70
A、70B・・・監視装置、46・・・レーザ装置、4
6a、46b・・・発振部、47.65・・・被測定部
、48. 53゜54・・・走査光学系、49・・・受
光検出系、50,50A・・・遠隔監視手段、56a、
56b・・・一次ミラ、57a、57b・・・二次ミラ
ー、60・・・光フアイバケーブル、63a〜63c・
・・ファイバプローブ(発振部、受光部)、66・・・
プローブ支持盤(走査光学系)。
FIG. 1 is a cutaway sectional view showing an embodiment of a monitoring device in a nuclear reactor dry well according to the present invention, FIG. 2 is a diagram showing a boiling water reactor to which this invention is applied, and FIG. 3 is a diagram showing the present invention. FIGS. 4 and 5 are diagrams illustrating other embodiments of the monitoring device in the reactor dry well according to the above, and FIGS. 1 is a diagram showing a general cross-sectional structure of a boiling water reactor. 20... Reactor building, 21... Reactor containment vessel, 2
2...Reactor pressure vessel, 23...RPV support pedestal, 25...Reactor core, 28...Main steam system, 29...
・Reactor (condensate) water supply system, 30...Reactor dry well, 31...Reactor recirculation system, 32...Reactor auxiliary system, 33...Reactor emergency system, 39.40 ...Core spray system, 42...Automatic depressurization system, 45.45A, 70
A, 70B...Monitoring device, 46...Laser device, 4
6a, 46b... Oscillator section, 47.65... Measured section, 48. 53° 54... Scanning optical system, 49... Light reception detection system, 50, 50A... Remote monitoring means, 56a,
56b...Primary mirror, 57a, 57b...Secondary mirror, 60...Optical fiber cable, 63a-63c.
...Fiber probe (oscillation section, light receiving section), 66...
Probe support plate (scanning optical system).

Claims (1)

【特許請求の範囲】 1、レーザビームを出力するレーザ装置と、このレーザ
装置から出力されるレーザビームをドライウェル内で走
査し、被測定部に照射させる走査光学系と、被測定部に
照射されたレーザビームの反射光を受光する受光検出系
と、この受光検出系で検出された信号から被測定部の欠
損や漏洩等の異常を検知する遠隔監視手段とを有するこ
とを特徴とする原子炉ドライウェル内の監視装置。 2、レーザ装置はレーザビームを出力させる複数の発振
部を原子炉格納容器の頂部にそれぞれ設ける一方、走査
光学系は発振部に対応して複数系統有し、上記各系統は
発振部からのレーザビームをスキャニングする回転自在
な一次ミラーと、この一次ミラーでスキャニングされた
レーザビームを被測定部に照射する回転かつ移動自在な
二次ミラーとを組み合せて構成した請求項1記載の原子
炉ドライウェル内の監視装置。 3、受光検出系はレーザ装置の発振部に設けられた受光
検出部を有し、この受光検出部に被測定部に照射された
レーザビームの反射光が走査光学系を経て入力されるよ
うに形成した請求項1記載の原子炉ドライウェル内の監
視装置。
[Scope of Claims] 1. A laser device that outputs a laser beam, a scanning optical system that scans the laser beam output from the laser device in a dry well and irradiates the part to be measured, and a scanning optical system that irradiates the part to be measured with the laser beam output from the laser device. an atom characterized by having a light reception detection system that receives the reflected light of the laser beam, and a remote monitoring means that detects abnormalities such as defects and leakage in the part to be measured from the signals detected by the light reception and detection system. Monitoring device inside the furnace drywell. 2. The laser device is provided with a plurality of oscillating sections that output laser beams at the top of the reactor containment vessel, while the scanning optical system has multiple systems corresponding to the oscillating sections, and each of the above systems emit laser beams from the oscillating section. 2. The nuclear reactor dry well according to claim 1, comprising a combination of a rotatable primary mirror that scans the beam and a rotatable and movable secondary mirror that irradiates the measurement target with the laser beam scanned by the primary mirror. monitoring equipment within. 3. The light reception detection system has a light reception detection section provided in the oscillation section of the laser device, and the reflected light of the laser beam irradiated onto the measurement target is inputted to this light reception detection section through the scanning optical system. A monitoring device in a nuclear reactor dry well according to claim 1, wherein the monitoring device is formed in a nuclear reactor dry well.
JP2053776A 1990-03-07 1990-03-07 Monitoring equipment in the reactor drywell Expired - Lifetime JP3004673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2053776A JP3004673B2 (en) 1990-03-07 1990-03-07 Monitoring equipment in the reactor drywell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2053776A JP3004673B2 (en) 1990-03-07 1990-03-07 Monitoring equipment in the reactor drywell

Publications (2)

Publication Number Publication Date
JPH03255989A true JPH03255989A (en) 1991-11-14
JP3004673B2 JP3004673B2 (en) 2000-01-31

Family

ID=12952219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2053776A Expired - Lifetime JP3004673B2 (en) 1990-03-07 1990-03-07 Monitoring equipment in the reactor drywell

Country Status (1)

Country Link
JP (1) JP3004673B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032217A (en) * 2010-07-29 2012-02-16 Hitachi-Ge Nuclear Energy Ltd Visual inspection device and creation method of video for visual inspection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032217A (en) * 2010-07-29 2012-02-16 Hitachi-Ge Nuclear Energy Ltd Visual inspection device and creation method of video for visual inspection

Also Published As

Publication number Publication date
JP3004673B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
KR101150923B1 (en) Surface inspecting method and surface inspecting device
US11217352B2 (en) Method for housing nuclear reactor modules
JPH03255989A (en) Monitor device for inside of nuclear reactor dry well
US4336104A (en) Inspection and testing device
US6259759B1 (en) Incore piping section maintenance system of reactor
US4728482A (en) Method for internal inspection of a pressurized water nuclear reactor pressure vessel
JP2004257978A (en) Abnormal condition monitoring method and system of spent nuclear fuel storage vessel
JP2001133584A (en) Concrete storage container and storage system having it
JP2002048899A (en) Method for monitoring concrete storage container and canister stowed in it and monitoring system
JPH01121732A (en) Monitoring device for liquid leakage
KR102592631B1 (en) Inspection tools and methods for nuclear reactor fuel channel assemblies
KR102209702B1 (en) Leakage detection apparatus for nuclear facilities and connecting pipe assembly including the same
JPH02126196A (en) Device for monitoring leakage in pressure vessel of high-pressure
Wessels Inservice inspection of the reactor block of sodium-cooled fast breeder reactors
JPH079404B2 (en) Device and method for detecting inner wall of plumbing fixture
Bastl et al. On-line vibration monitoring of PWR internals
Corder et al. High power laser beam delivery monitoring for laser safety
JP2023156722A (en) Neutron measurement method of fast reactor, and fast reactor
Giraud et al. Advanced and innovative approaches to inspect the Phenix Fast Breeder Reactor
Guidez et al. Advanced In-Service Inspection Approaches Applied to the Phe´ nix Fast Breeder Reactor
JPS61258134A (en) Piping leakage detecting device
JPS62192696A (en) Leakage-detection identification device in nuclear reactor container
BARRAU et al. M. ASTY
JPH02143193A (en) Inspection device for internal structure of nuclear reactor
JPH05134081A (en) Diagnosing apparatus of abnormality of reactor