JPS62192696A - Leakage-detection identification device in nuclear reactor container - Google Patents

Leakage-detection identification device in nuclear reactor container

Info

Publication number
JPS62192696A
JPS62192696A JP61033735A JP3373586A JPS62192696A JP S62192696 A JPS62192696 A JP S62192696A JP 61033735 A JP61033735 A JP 61033735A JP 3373586 A JP3373586 A JP 3373586A JP S62192696 A JPS62192696 A JP S62192696A
Authority
JP
Japan
Prior art keywords
containment vessel
reactor containment
leakage
thermal infrared
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61033735A
Other languages
Japanese (ja)
Inventor
伊藤 壽一郎
富沢 輝昭
穣 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Engineering Corp
Priority to JP61033735A priority Critical patent/JPS62192696A/en
Publication of JPS62192696A publication Critical patent/JPS62192696A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、原子カプラントの原子炉格納容器内の弁、パ
イプ等からの水や水蒸気の漏洩を検知し、漏洩箇所を同
定する原子炉格納容器内漏洩検出同定装置に関する。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to a nuclear reactor containment vessel that detects leakage of water or steam from valves, pipes, etc. in the reactor containment vessel of a nuclear couplant and identifies the leakage location. This invention relates to an internal leakage detection and identification device.

(発明の技術的背景〕 一般に原子力発電プラント等では、原子炉格納容器内で
の漏洩を温度センサーや圧力センサーの変化によって検
知している。これらの温度センサーや圧力センサーは複
数個配置されており、原子炉格納容器内の何カ所かの値
と全体としての平均的な温度変化や圧力変化が判別でき
るようになっている。
(Technical Background of the Invention) In general, in nuclear power plants, etc., leaks within the reactor containment vessel are detected by changes in temperature sensors and pressure sensors.Multiple of these temperature sensors and pressure sensors are arranged. It is now possible to determine the values at several locations within the reactor containment vessel and the overall average temperature and pressure changes.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、漏洩聞が少ない場合には、このような温
度センサーや圧力センサーによる全体的なバランスの監
視だけではその発生、場所の同定は困難である。このた
め、漏洩の発見が遅れ周辺の機器損(セが発生したり、
発見後の保修対策も効果的に行えない可能性がある。
However, when there are few leakage sounds, it is difficult to identify their occurrence and location just by monitoring the overall balance using such temperature sensors and pressure sensors. As a result, the discovery of the leak may be delayed, resulting in damage to surrounding equipment.
Maintenance measures after discovery may not be effective.

また、漏洩は弁などのパイプの継ぎ目から起きる可能性
が高い。このため、原子炉の定期点検後起動を行う際、
原子炉圧力が30に9/ci、 、70に’J/ cm
となった時点で原子炉起動を一次停止し、原子炉格納容
器内各部での水漏れの有無をチェックする作業を行って
いる。この作業は原子炉を未臨界どすることが必要であ
り、作業開始からそれを終了し、起動運転を再開するま
でに長時間を必要とする。また原子炉格納容器内での点
検作業は放射線作業であり、トークルマンレムの低減か
らも格納容器のこのような作業の軽減が期待されている
Leakage is also likely to occur from pipe joints such as valves. For this reason, when starting up the reactor after periodic inspection,
The reactor pressure is 30 to 9/ci, 70 to 70'J/cm.
At this point, reactor startup is temporarily halted and work is being carried out to check for water leaks in various parts of the reactor containment vessel. This work requires bringing the reactor to subcriticality, and it takes a long time from the start of the work until it is finished and the start-up operation is resumed. In addition, inspection work inside the reactor containment vessel is radiation work, and it is expected that such work on the containment vessel will be reduced by reducing Tockle Man Rem.

〔発明の目的〕[Purpose of the invention]

本発明はこのJ:うな事情に鑑みてなされたもので、原
子炉格納容器内の漏洩の早期発見と場所の同定を容易に
し、原子炉格納容器内の点検作業を軽減し原子カプラン
トの起動時間の短縮による稼働率の向上と漏洩による機
器損傷を低減することができる原子炉格納容器内漏洩検
出同定装置を提供することを目的とする。
The present invention was made in view of the above circumstances, and it facilitates early detection and location identification of leaks in the reactor containment vessel, reduces inspection work inside the reactor containment vessel, and reduces the start-up time of the nuclear couplant. The purpose of the present invention is to provide a leakage detection and identification device in a reactor containment vessel that can improve operating efficiency by shortening the time and reduce equipment damage caused by leakage.

〔発明の概要〕[Summary of the invention]

本発明に係る原子炉格納容器内漏洩検出同定装置は、原
子炉格納容器に設置されたバイブと、このバイブ内を移
動し、原子炉格納容器内の熱赤外画像データを得る岡像
センリ゛−と、この回像センリ“−からの画像データに
基づいて前記原子炉格納容器内の熱赤外画像を求める画
像作成装置と、その熱赤外画像とプラントの正常時にお
ける熱赤外画像とを比較し、原子炉格納容器内の漏洩を
検出するとともに漏洩箇所を同定する診断装置とを備え
たことを特徴とする。
The leak detection and identification device in the reactor containment vessel according to the present invention includes a vibrator installed in the reactor containment vessel and an Okazo sensor that moves within the vibrator and obtains thermal infrared image data inside the reactor containment vessel. -, an image creation device that obtains a thermal infrared image of the inside of the reactor containment vessel based on the image data from the rotation sensor "-, and The present invention is characterized by being equipped with a diagnostic device that detects leakage in the reactor containment vessel and identifies the location of the leakage.

〔発明の実施例] 以下、本発明の一実施例を第1図〜第8図を参照して説
明する。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIGS. 1 to 8.

第1図に承りように1、原子炉1を収納Jる原子炉格納
容器2内に撮像センザー移動用のガイドバイブ3を複数
本設置している。このWt像センナ−移動用ガイドバイ
ブ3内には、第2図に示ずJ:うに、熱赤外画像データ
を得る胤(象センサー4が信号ケーブル5と共に移動可
能に挿入される。11υ像センサー移動用ガイドバイブ
3には、一定の間隔で窓孔6をあけ、そこから原子炉格
納容i1!!?2内の配管等の撮像データを求め、漏洩
検出装置に転送するようになっている。
As shown in FIG. 1, a plurality of guide vibes 3 for moving imaging sensors are installed in a reactor containment vessel 2 that houses a nuclear reactor 1. Inside this Wt image sensor movement guide vibe 3, a sensor 4 for obtaining thermal infrared image data is movably inserted together with a signal cable 5, not shown in FIG. Window holes 6 are drilled at regular intervals in the sensor movement guide vibe 3, through which imaged data of piping, etc. inside the reactor containment volume i1!!?2 is obtained and transferred to the leakage detection device. There is.

第3図は漏洩検出装置を示している。即ち、撮像センサ
ー4からのセンザー信号101は画像作成装置7に送ら
れ、画像情報に変換される。画像情報信号102は診断
用の計算機、即ち診断装置8に送られる。一方、プラン
ト状態データを得るプロセスコンピュータ9からのプロ
セス変数信号103が状態判定装置10に送られるよう
になっており、炉内の水位、圧力、放射能等のプロセス
変数に基づき、プラント状態が判定される。状態判定装
置10は、第1の記憶装置11から送られるプラントの
現状に合致した状態画像を検索し、レフフランスとして
診断装置8にレフ7ランス画像情報信号104を転送す
る。診断装置8は、現在の画像とレフフランス画像とを
比較し、その判定結果をCRT12に表示する。判定に
おいては、第2の記憶装置13に貯えられた判定ルール
、原子炉格納容器内の構造物(バイブ、ポンプ等)のデ
ータを参考にづ゛る。判定の結果、より詳細な撮像セン
サー4からの情報が必要となった場合、制御装置14か
ら撮像センリ”−駆動装置15へ制御信号105を伝送
し、画像センサー4を所定位置に移動させ、前記同様の
作用を行なわせる。
FIG. 3 shows a leak detection device. That is, the sensor signal 101 from the image sensor 4 is sent to the image creation device 7 and converted into image information. The image information signal 102 is sent to a diagnostic computer, that is, a diagnostic device 8. On the other hand, a process variable signal 103 from a process computer 9 that obtains plant state data is sent to a state determination device 10, and the plant state is determined based on process variables such as water level, pressure, and radioactivity in the reactor. be done. The condition determination device 10 searches for a condition image matching the current state of the plant sent from the first storage device 11, and transfers the reflex image information signal 104 to the diagnostic device 8 as a reflex. The diagnostic device 8 compares the current image and the Ref-France image and displays the determination result on the CRT 12. In the determination, reference is made to the determination rules stored in the second storage device 13 and data on structures (vibrators, pumps, etc.) inside the reactor containment vessel. As a result of the determination, if more detailed information from the image sensor 4 is required, a control signal 105 is transmitted from the control device 14 to the image sensor drive device 15, the image sensor 4 is moved to a predetermined position, and the image sensor 4 is moved to a predetermined position. Make it perform the same action.

このように、現状データとレフフランスとを比較し、両
者の大きな差異の有無を判定して、大局的に現状データ
とレフフランスのパターンが合致していればOK(漏洩
検出なし)とする。また、異常が認識された場合には、
詳細に分析して、現実に漏洩があるか否か、部位はどこ
かを同定する分析を行う。
In this way, the current data and Ref France are compared, and it is determined whether there is a large difference between the two, and if the current data and the Ref France pattern match overall, it is determined to be OK (no leakage detected). In addition, if an abnormality is recognized,
A detailed analysis will be performed to identify whether there is actually a leak and where it is located.

次に作用を具体的に説明する。Next, the action will be specifically explained.

Wi像センサー4は、原子炉格納容器2内を例えば上下
動する。漏洩が起きている場合、流体が液体であ゛れば
、3次元的には漏洩部位より下方に熱分布の大きな乱れ
が生じているはずである。従って撮像センサー4による
上下多位置での詳細分析データ収集位置を、大きな乱れ
が見え始める所から数ケ所に絞る。次にVIfLiセン
サー4の焦点を何点か変化させ、原子炉1を中心とした
半径方向の深度を変化さUた熱赤外画像を得る。これに
よって原子炉格納容器2内の上下方向、原子炉1を中心
とした半径方向のどの空間に漏洩があるかの主要候補を
1qる。なお、これらの操作は、第2の記憶装置13に
貯えた問題解決の方策、例えば画像センサー4の上下位
置、焦点の取り方についての規則に従って実施される。
The Wi image sensor 4 moves up and down within the reactor containment vessel 2, for example. When a leak occurs, if the fluid is a liquid, there should be a large disturbance in the heat distribution three-dimensionally below the leak site. Therefore, the positions at which detailed analysis data is collected at multiple vertical positions by the image sensor 4 are narrowed down to several positions from where large disturbances begin to appear. Next, the focal point of the VIfLi sensor 4 is changed at several points to obtain a thermal infrared image with the depth in the radial direction centered on the nuclear reactor 1 being changed. By doing this, the main candidates for where the leak is occurring in the vertical direction within the reactor containment vessel 2 and in the radial direction around the reactor 1 are determined. Note that these operations are performed according to problem-solving strategies stored in the second storage device 13, such as rules regarding the vertical position of the image sensor 4 and how to focus.

このようにして1ワられた問題空間に対し、次に熱源と
なるブラン]・構造を当てはめ、最終的にどのバイブま
たはバルブの漏洩かを決定する。
To the problem space created in this way, the next step is to apply the structure of the heat source, and finally determine which vibrator or valve is causing the leak.

第4図は問題となるの空間の構造物を例示したものであ
る。第4図において、バイア16の途中にバルブ17が
介設されている。これに対応するレフ7ランスの熱赤外
画像は第5図に例示するもので、第5図中、T、T2・
・・は温度分布の境界である。第5図の画像は記憶装置
13の中に組み込まれているプラント構造に関する事実
関係(設置データ)から求められるものである。これに
対し、現実の熱赤外画像が第6図のように得られたとす
る。この場合、プラント構造から熱源と考えられるバイ
ブ16の温JAがT1であり、そこを流れる流体の漏洩
によって第6図の熱赤外画像が得られたと仮定される。
FIG. 4 illustrates the structure of the space in question. In FIG. 4, a valve 17 is interposed in the middle of the via 16. The thermal infrared image of reflex 7 corresponding to this is illustrated in FIG. 5, where T, T2,
... is the boundary of temperature distribution. The image shown in FIG. 5 is obtained from the facts (installation data) regarding the plant structure incorporated in the storage device 13. On the other hand, suppose that an actual thermal infrared image is obtained as shown in FIG. In this case, it is assumed that the temperature JA of the vibrator 16, which is considered to be a heat source from the plant structure, is T1, and that the thermal infrared image shown in FIG. 6 was obtained due to leakage of the fluid flowing there.

また、第6図の場合漏洩は、乱れの位訝から、バイブ1
6のピンホールではなく、バルブ17の部分であると推
定される。
In addition, in the case of Fig. 6, the leakage is due to the position of the disturbance,
It is estimated that it is not the pinhole 6 but the valve 17.

このIW定により、第6図に示す空間部位での漏洩とそ
の部位の仮説が得られる。しかし、第6図の変化が、原
子炉を中心とした半径方向における他の部分からの影響
ということも想定される。そこで、搬像センザー4の焦
点を変更した画像にてそれを次に検定する。
By determining the IW, leakage at the spatial location shown in FIG. 6 and a hypothesis of the location can be obtained. However, it is also assumed that the changes shown in FIG. 6 are influenced by other parts in the radial direction around the reactor. Therefore, this will be verified next using an image in which the focus of the image carrier sensor 4 has been changed.

第7図は撮像センサー4の焦点を半径方向に変更したと
きに対象とされる他の構造物、例えば他のバイブ16a
の例を示す。第7図のバイブ16aに対する熱赤外画像
が第8図のように1nられ、レフ7ランスとも合致した
とする。同様に、第7図の空間よりも深い(原子炉側の
)熱赤外画像の分析も実施する。その結果異常が見つか
らなければ、先に述べた仮説が正しいと判断される。判
断結果を中央側611室の表示装置、即ちCRT12に
示す。
FIG. 7 shows other structures targeted when the focus of the image sensor 4 is changed in the radial direction, such as another vibrator 16a.
Here is an example. Assume that the thermal infrared image of the vibrator 16a in FIG. 7 is converted to 1n as shown in FIG. 8, and matches the reflex 7 lance. Similarly, a thermal infrared image deeper than the space shown in FIG. 7 (on the reactor side) will also be analyzed. If no abnormality is found as a result, it is determined that the above-mentioned hypothesis is correct. The judgment result is shown on the display device in room 611 on the central side, that is, on the CRT 12.

このような構成によると、個々の配管等についての漏洩
検出が個別的に行なわれるので、漏洩量が少ない場合で
も発生場所の同定が極めて高精度で行なわれる。特に熱
赤外画像を用いることにより、漏洩発見が容易となり、
迅速な対処が可能となる。
According to such a configuration, since leakage detection is performed individually for each pipe, etc., even when the amount of leakage is small, the location of occurrence can be identified with extremely high accuracy. In particular, using thermal infrared images makes it easier to detect leaks.
This makes it possible to take prompt action.

なお、第9図は本発明の他の実施例を示す。即ち、ガイ
ドパイプ3に多方向に向けて窓孔6を設け、撮像Cンサ
ー4を回転することにより多方向の空間を調査できるよ
うにしてもよい。このようなものであると、例えば第1
0図に示すように、原子炉格納容器2内に一対のガイド
バイブ3を設置することによって十分に漏洩箇所の同定
を行なえるようになる。なお、本発明では、ガイドバイ
ブ3の本数や配置ならびに窓孔6の向き等をプラントに
応じて秤々選定できることは勿論である。
Note that FIG. 9 shows another embodiment of the present invention. That is, the guide pipe 3 may be provided with window holes 6 facing in multiple directions, and by rotating the imaging C sensor 4, the space in multiple directions may be investigated. If this is the case, for example, the first
As shown in FIG. 0, by installing a pair of guide vibes 3 inside the reactor containment vessel 2, it becomes possible to sufficiently identify the leakage location. In the present invention, it goes without saying that the number and arrangement of the guide vibrators 3, the orientation of the window holes 6, etc. can be selected depending on the plant.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、原子カブラン1〜の
原子炉格納容器内の弁・バイブ笠の水や水蒸気の漏洩・
検知と漏°洩箇所同定をオンライン又はそれに近い早さ
で正確に行うことができ、それにより原子炉格納容器内
の点検作業を軽減し、原子カプラントの起動時間の短縮
による稼動率の向上と漏洩による機器損傷を低減し得る
という効果を奏する。
As described above, according to the present invention, leakage of water or steam from the valves and vibrator shades in the reactor containment vessel of nuclear reactors 1 to 1 can be prevented.
Detection and leak location identification can be performed accurately on-line or almost as quickly as possible, which reduces inspection work inside the reactor containment vessel, improves operating efficiency and reduces leakage by shortening the start-up time of the nuclear couplant. This has the effect of reducing equipment damage due to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すもので、ガイドバイブ
の設置例を示す説明図、第2図は第1図の要部を拡大し
て示す断面図、第3図は、信号処理部の構成を示すブロ
ック図、第4図、第5図及び第6図はそれぞれ上記実施
例における検知、仮説設定及び検証例を示す模式図、第
7図および第8図は上記実施例における伯部所の仮説設
定、検証例を示す模式図、第9図は本発明の他の実施例
を示ゴガイドパイプ構成図、第10図は他の実施例にお
【づるガイドバイブの説明図である。 1・・・原子炉、2・・・原子炉格納容器、3・・・囮
像センザー移動用のガイドバイブ、4・・・JIG像セ
ンサ−、5・・・信号ケーブル、6・・・窓孔、7・・
・画像作成装置、8・・・診断装置、16・・・パイプ
、17・・・バルブ。 出願人代理人   波 多 野   久羊1区 茶2回 第3 回 $4回 竿5回 73T2TtTt 羊7図 t;z  tt  it Adz 蔓8 図 ! 第、−第70図
Fig. 1 shows one embodiment of the present invention, and is an explanatory diagram showing an example of installing a guide vibrator, Fig. 2 is a sectional view showing an enlarged main part of Fig. 1, and Fig. 3 is a signal processing FIG. 4, FIG. 5, and FIG. 6 are schematic diagrams showing examples of detection, hypothesis setting, and verification in the above embodiment, respectively. FIGS. Fig. 9 is a schematic diagram showing an example of hypothesis setting and verification of parts, Fig. 9 is a configuration diagram of a guide pipe showing another embodiment of the present invention, and Fig. 10 is an explanatory diagram of a guide vibe according to another embodiment. be. 1... Nuclear reactor, 2... Reactor containment vessel, 3... Guide vibe for moving the decoy image sensor, 4... JIG image sensor, 5... Signal cable, 6... Window Hole, 7...
- Image creation device, 8...Diagnostic device, 16...Pipe, 17...Valve. Applicant's agent Hatano Hisashi 1st district tea 2nd 3rd $4 rod 5th 73T2TtTt sheep 7 figure t;z tt it Adz vine 8 figure! Fig.-70

Claims (1)

【特許請求の範囲】[Claims] 原子炉格納容器に設置されたパイプと、このパイプ内を
移動し、原子炉格納容器内の熱赤外画像データを得る撮
像センサーと、この撮像センサーからの画像データに基
づいて前記原子炉格納容器内の熱赤外画像を求める画像
作成装置と、その熱赤外画像とプラントの正常時におけ
る熱赤外画像とを比較し、原子炉格納容器内の漏洩を検
出するとともに漏洩箇所を同定する診断装置とを備えた
ことを特徴とする原子炉格納容器内漏洩検出同定装置。
A pipe installed in the reactor containment vessel, an imaging sensor that moves within the pipe to obtain thermal infrared image data inside the reactor containment vessel, and an imaging sensor that moves within the pipe to obtain thermal infrared image data inside the reactor containment vessel, Diagnosis that detects leaks inside the reactor containment vessel and identifies leak locations by comparing the thermal infrared images with thermal infrared images taken during normal plant conditions. What is claimed is: 1. A leakage detection and identification device in a reactor containment vessel, comprising:
JP61033735A 1986-02-20 1986-02-20 Leakage-detection identification device in nuclear reactor container Pending JPS62192696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61033735A JPS62192696A (en) 1986-02-20 1986-02-20 Leakage-detection identification device in nuclear reactor container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61033735A JPS62192696A (en) 1986-02-20 1986-02-20 Leakage-detection identification device in nuclear reactor container

Publications (1)

Publication Number Publication Date
JPS62192696A true JPS62192696A (en) 1987-08-24

Family

ID=12394661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61033735A Pending JPS62192696A (en) 1986-02-20 1986-02-20 Leakage-detection identification device in nuclear reactor container

Country Status (1)

Country Link
JP (1) JPS62192696A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2314623B (en) * 1995-03-28 1999-11-03 Somerset Technical Lab Ltd Method and apparatus for detecting and locating fluid leaks through the wall of a vessel
CN105551552A (en) * 2015-12-02 2016-05-04 中国核动力研究设计院 Reactor loop system fault section heat signal spectrum positioning system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2314623B (en) * 1995-03-28 1999-11-03 Somerset Technical Lab Ltd Method and apparatus for detecting and locating fluid leaks through the wall of a vessel
CN105551552A (en) * 2015-12-02 2016-05-04 中国核动力研究设计院 Reactor loop system fault section heat signal spectrum positioning system and method

Similar Documents

Publication Publication Date Title
Hashemian On-line monitoring applications in nuclear power plants
CN103376332B (en) Turbine inspection system and related operating method
JPS5919273B2 (en) Condenser performance monitoring method
US6744840B2 (en) Incore monitoring method and incore monitoring equipment
Fry Experience in reactor malfunction diagnosis using on-line noise analysis
US3936348A (en) Method and apparatus for detection of nuclear fuel rod failures
JPS62192696A (en) Leakage-detection identification device in nuclear reactor container
US20220246319A1 (en) Supports with integrated sensors for nuclear reactor steam generators, and associated systems and methods
Cilliers Correlating hardware fault detection information from distributed control systems to isolate and diagnose a fault in pressurised water reactors
Hashemian Predictive maintenance in nuclear power plants through online monitoring
JPH0526784A (en) Central control method for malfunction generation in construction machine
KR102565464B1 (en) Borescope system having a borescope guide tube for high temperature inspection
JPH02126196A (en) Device for monitoring leakage in pressure vessel of high-pressure
Vasiljević et al. Solving nonlinear kinematics of a rail-guided inspection robot used for planning visual scans of reactor vessel internals
JPS60214296A (en) Measuring device for fuel channel
JP3077749B2 (en) Leakage tube identification method for heat exchanger
JP3032106B2 (en) Plant equipment health monitoring and diagnosis method
Bastl et al. The influence of noise diagnostic techniques on the safety and availability of nuclear power plants
JP2004226182A (en) System, device and method for calibrating nuclear reactor output
Bastl et al. On-line vibration monitoring of PWR internals
JP2001004748A (en) Method and device for displaying amount of radiation
JPH05134081A (en) Diagnosing apparatus of abnormality of reactor
Hidalgo et al. Nuclear Reactor Heat Transfer Pump Rotordynamic Based Diagnostics and Field Data Model Reconciliation
Sunder Baseline interpretations for PWR vibration monitoring
JP3140246B2 (en) Device abnormality monitoring method and device