JPH03255668A - Artificial neural function circuit - Google Patents

Artificial neural function circuit

Info

Publication number
JPH03255668A
JPH03255668A JP2145661A JP14566190A JPH03255668A JP H03255668 A JPH03255668 A JP H03255668A JP 2145661 A JP2145661 A JP 2145661A JP 14566190 A JP14566190 A JP 14566190A JP H03255668 A JPH03255668 A JP H03255668A
Authority
JP
Japan
Prior art keywords
thin film
resistance state
voltage
organic thin
input signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2145661A
Other languages
Japanese (ja)
Inventor
Katsuhiro Nichogi
二梃木 克洋
Akira Taomoto
昭 田尾本
Shiro Asakawa
浅川 史朗
Kunio Yoshida
邦夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsushita Giken KK
Original Assignee
Matsushita Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Giken KK filed Critical Matsushita Giken KK
Priority to JP2145661A priority Critical patent/JPH03255668A/en
Priority to US07/698,148 priority patent/US5223750A/en
Priority to EP91305016A priority patent/EP0460903B1/en
Priority to DE69127585T priority patent/DE69127585T2/en
Publication of JPH03255668A publication Critical patent/JPH03255668A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an artificial neural function circuit which is simple in structure, easy to be enhanced in performance and compacted, and similar to an information processing function in a cranial nerve system by a method wherein an organic thin film element which varies in resistance in accordance with an electrical input signal is built in the circuit. CONSTITUTION:Nine organic thin film elements 1-9, three operational amplifiers 10-12, three input terminals 13-15, three output terminals 16-18, and three teacher input terminals 19-21 are provided. When electrical input signals of +10V, +5V, and 0V are given to the input terminals 13, 14, and 15 respectively and an electrical input signal of 0V is given to the teacher input terminals 19-21, a voltage of 0V is applied to the film elements 3, 6, and 9, a voltage of +5V is given to the film elements 2, 5, and 8, and a voltage of 10V is impressed on the film elements 1, 4, and 7. Therefore, the film elements 3, 6, and 9 are kept high in resistance, but the film elements 2, 5, and 8 become low in resistance, and the film elements 1, 4, and 7 become lower in resistance. As the operational amplifiers 10-12 are all equal in input signal, the outputs of the output terminals 16-18 are equal to each other.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、電子産業分野、特に情報処理産業分野に釦
いて有用な擬似神経機能回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a pseudo-neural function circuit useful in the electronic industry field, particularly in the information processing industry field.

従来の技術 近年、脳、神経にむける情報処理機能(神経機能)を模
倣した新しい情報処理装置、いわゆるニューロコンピュ
ータ、アルいハ、ニューラルネットと呼ばれるものに関
する研究が活発になり、文字認識システムを初めとする
各種システムに応用されるようになってきた。これらの
新しい情報処理機能は、既存の無機半導体デバイスやイ
ンピーダンス回路等を用い、ハードウェア上、あるいは
、ソフトウェア上に釦いて実現されている。
Conventional technology In recent years, there has been active research into new information processing devices that imitate the information processing functions (neural functions) of the brain and nerves, so-called neurocomputers, neural networks, etc., including character recognition systems. It has come to be applied to various systems. These new information processing functions are realized by using existing inorganic semiconductor devices, impedance circuits, etc., on hardware or software.

例えば、ホップフィールド(Hopf 1eld )は
、増幅器、抵抗釦よびコンデンサで構成したインピーダ
ンス回路を用い、このニューラルイ・ットのエイ、ルギ
ー関数が極小値をとるように収束することを示し、これ
により、組み合わせ問題が解けることを示した。この他
にも、連想メモリ、パターン認識等の問題に対しても有
効であることが実証されてかり、従来にない新しい情報
処理機能として注目されている。
For example, Hopfield used an impedance circuit composed of an amplifier, a resistor button, and a capacitor to show that the Ei and Lugi functions of this neural network converge to take a minimum value. , it was shown that combinatorial problems can be solved. In addition, it has been proven to be effective for problems such as associative memory and pattern recognition, and is attracting attention as a new, unprecedented information processing function.

発明が解決しようとする課題 しかしながら、この新しい情報処理機能をソフトウエア
上、あるいは、ノ)−ドウエア上で実現するにしても、
これらは全て既存の半導体デノくイス、あるいは、これ
らを組み合わせ構成したものであるから、構成が複雑で
実用性が之しい。それに、その機能、素子の微細化にも
自ずと限界がある。
Problems to be Solved by the Invention However, even if this new information processing function is realized on software or hardware,
All of these devices are composed of existing semiconductor devices or combinations of these devices, so their configurations are complex and impractical. Moreover, there are limits to its functionality and miniaturization of elements.

この発明は、このような事情に鑑み、構成が簡潔であり
、しかも、機能高度化やコンパクト化が容易な、脳の神
経系にふ・ける情報処理機能に類似の擬似神経機能回路
を提供することを課題とする。
In view of these circumstances, the present invention provides a pseudo-neural function circuit similar to the information processing function of the nervous system of the brain, which has a simple configuration and is easy to improve functionality and downsize. That is the issue.

課題を解決するための手段 前記課題を解決するため、請求項1記載の擬似神経機能
回路では、電気入力信号によう抵抗状態が変化する有機
薄膜素子を組み込むようにしている。
Means for Solving the Problems In order to solve the above problems, the pseudo-neural functional circuit according to the first aspect incorporates an organic thin film element whose resistance state changes according to an electrical input signal.

この有機薄膜素子は、具体的には、請求項2の発明のよ
うに、電気入力信号の解除後には変化した抵抗状態を少
なくとも一定期間保持したり、請求項3の発明のように
、抵抗状態の変化方向(増減方向)が電気入力信号の極
性に依存したうという物性を有する薄膜素子である。
Specifically, this organic thin film element maintains the changed resistance state for at least a certain period of time after the electrical input signal is released, as in the invention of claim 2, or maintains the changed resistance state for at least a certain period of time as in the invention of claim 3. It is a thin film element that has the physical property that the direction of change (increase/decrease direction) of the electric current depends on the polarity of the electrical input signal.

このような物性をもつ薄膜としては、鉛フタロシアニン
薄膜が例示されるが、これに限らない。
An example of a thin film having such physical properties is a lead phthalocyanine thin film, but the present invention is not limited thereto.

作    用 この発明にかかる擬似神経機能回路は、有機薄膜素子を
用いているため、既存の半導体デバイスを用いる場合に
比べて構成が簡潔であり、実用性に優れる。また、有機
薄膜素子は多様な特性を容易に持たせることができるの
で、機能高度化やコンパクト化(素子微細化)を図るこ
とができる。
Function: Since the pseudo neural function circuit according to the present invention uses an organic thin film element, it has a simpler configuration and is more practical than when using existing semiconductor devices. In addition, since organic thin film elements can be easily provided with various characteristics, they can be made more sophisticated in functionality and more compact (device miniaturization).

特に、鉛フタロシアニン薄膜のように、電気入力信号の
解除後も変化した抵抗状態を少なくとも定期間保持した
り、さらには、抵抗状態の変化方向(増減方向)が電気
入力信号の極性に依存している場合には、機能高度化や
コンパクト化がより図りやすい。
In particular, lead phthalocyanine thin films retain the changed resistance state for at least a period of time even after the electrical input signal is removed, and furthermore, the direction of change (increase/decrease direction) of the resistance state depends on the polarity of the electrical input signal. In this case, it is easier to improve functionality and make it more compact.

実施例 以下に本発明の実施例について説明するが、その前に有
機薄膜素子自体の電気的特性を厚み1.2μmの鉛フタ
ロシアニン真空蒸着薄膜の裏面に下電極を表面に上電極
を設けた素子を例にとって説明する。
EXAMPLES Examples of the present invention will be described below, but before that, the electrical characteristics of the organic thin film element itself will be described as follows: An element with a lower electrode on the back surface and an upper electrode on the front surface of a lead phthalocyanine vacuum-deposited thin film with a thickness of 1.2 μm. will be explained using an example.

筐ず、上電極を接地する一方、下電極に4V/秒の正負
掃引電圧(電気入力信号)を与えた場合の薄膜の抵抗変
化の様子を第2図に基づいて説明する。
The manner in which the resistance of the thin film changes when the upper electrode is grounded and a positive/negative sweep voltage (electrical input signal) of 4 V/sec is applied to the lower electrode will be explained with reference to FIG.

この場合には、鉛フタロシアニン薄膜は初め高抵抗状態
R1であるが、掃引電圧が正電圧■1を越えると負性抵
抗領域を経て低抵抗状態R2へと変化する。その後、掃
引電圧が負電圧■2を越えると負性抵抗領域を経て最初
の高抵抗状態R1へと復帰する。すなわち、1回の正負
電圧掃引により、高抵抗状態R1と低抵抗状態R2の間
を往復するのである。
In this case, the lead phthalocyanine thin film is initially in a high resistance state R1, but when the sweep voltage exceeds the positive voltage 1, it changes to a low resistance state R2 through a negative resistance region. Thereafter, when the sweep voltage exceeds the negative voltage (2), it passes through the negative resistance region and returns to the initial high resistance state R1. In other words, one positive and negative voltage sweep causes the circuit to reciprocate between the high resistance state R1 and the low resistance state R2.

正電圧■1を越え低抵抗状態R2へと変化した後、負電
圧掃引に移らず電気入力信号を解除すると低抵抗状態R
2が保持される。保持は永久でなく、一定期間たつと自
然に高抵抗状態R1に復帰する。もちろん、一定期間た
っても自然には高抵抗状態R1に復帰せず、低抵抗状態
R2をずっと保持する薄膜であってもよい。
After the positive voltage exceeds ■1 and changes to low resistance state R2, if the electrical input signal is released without moving to negative voltage sweep, low resistance state R
2 is retained. The retention is not permanent, and the high resistance state R1 is naturally restored after a certain period of time. Of course, it is also possible to use a thin film that does not naturally return to the high resistance state R1 even after a certain period of time has passed, but maintains the low resistance state R2 all the time.

低抵抗状態R2へと変化した後、負電圧掃引に移らず、
再び、正電圧掃引を行うと、第3図のグラフに示す電圧
−電流特性に従って変化し、やはり、低抵抗状態R2の
保持に変化は起こらない。
After changing to low resistance state R2, it does not shift to negative voltage sweep,
When the positive voltage sweep is performed again, the voltage changes according to the voltage-current characteristics shown in the graph of FIG. 3, and no change occurs in maintaining the low resistance state R2.

逆に、初期状態である高抵抗状態R1にふ・いて、負電
圧掃引をいくら行っても、第4図のグラフに示す電圧−
電流特性に従って変化するだけで、高抵抗状態R1が保
持され、低抵抗状態R2への変化は起こらない。これら
のことから、鉛フタロシアニン薄膜にふ・ける抵抗状態
の変化(増減)方向は印加電圧(電気入力信号)の極性
に依存していることが分かる。
Conversely, no matter how many negative voltage sweeps are performed in the initial state of high resistance state R1, the voltage shown in the graph of FIG.
The high resistance state R1 is maintained only by changing according to the current characteristics, and no change to the low resistance state R2 occurs. These results show that the direction of change (increase or decrease) in the resistance state of the lead phthalocyanine thin film depends on the polarity of the applied voltage (electrical input signal).

続いて、鉛フタロシアニン薄膜に一定電圧を印加した場
合の電圧値と時間的応答性の関係について述べる。
Next, we will discuss the relationship between voltage value and temporal response when a constant voltage is applied to the lead phthalocyanine thin film.

第5図にみるように、抵抗値の変化、すなわち高抵抗状
態から低抵抗状態への変化の速さは印加電圧に依存して
hp、電圧が高いほど高抵抗状態から低抵抗状態へと変
化する時間は速くなる。また、到達した低抵抗状態での
抵抗値は、印加電圧に応じたことなる値となる。印加時
間が同じであれば印加電圧が高くなるに従い到達抵抗値
が低くなる。もちろん、到達した各低抵抗状態は、電圧
印加解除された後も少なくとも一定期間は維持される。
As shown in Figure 5, the change in resistance value, that is, the speed of change from a high resistance state to a low resistance state, depends on the applied voltage (hp), and the higher the voltage, the faster the change from a high resistance state to a low resistance state. The time to do it becomes faster. Furthermore, the resistance value in the low resistance state reached is a value that depends on the applied voltage. If the application time is the same, the higher the applied voltage, the lower the attained resistance value. Of course, each low resistance state reached is maintained for at least a certain period of time even after the voltage application is removed.

このことから分かるように、鉛フタロシアニン薄膜は、
高抵抗状態R1と低抵抗状態R2の中間抵抗状態をメモ
リすることもでき、多値メモリ素子にもなるのである。
As can be seen from this, the lead phthalocyanine thin film is
It is also possible to store an intermediate resistance state between the high resistance state R1 and the low resistance state R2, and it also becomes a multi-value memory element.

第6図は鉛フタロシアニン薄膜の第2図とは少し異なる
電圧−電流特性を示している。第6図では正電圧領域で
鋭く立上り、0点からみて非対称となっている。そのた
め、正電掃引時に釦いて電圧印加後直ちに低抵抗状態に
移るが、負電圧掃引に入っても高抵抗状態への復帰は時
間がかかる。
FIG. 6 shows voltage-current characteristics of the lead phthalocyanine thin film that are slightly different from those in FIG. 2. In FIG. 6, the voltage rises sharply in the positive voltage region and is asymmetrical when viewed from the zero point. Therefore, during a positive voltage sweep, the button changes to a low resistance state immediately after voltage is applied, but even after entering a negative voltage sweep, it takes time to return to a high resistance state.

すなわち、第6図の場合には、鉛フタロシアニン薄膜の
抵抗変化の速さは、高抵抗状態から低抵抗状態へは速く
、逆に低抵抗状態から高抵抗状態へは遅いのである。
That is, in the case of FIG. 6, the resistance change speed of the lead phthalocyanine thin film is fast from a high resistance state to a low resistance state, and conversely, it is slow from a low resistance state to a high resistance state.

このように、鉛フタロシアニン薄膜を用いた有機薄膜素
子は、多様な抵抗変化の現出があるため高度な機能を容
易に発揮されられるのである。例えば、神経細胞に卦け
る重要な機能の一つとしてシナプス結合の可塑性がある
。これは、シナプスの結合強度が刺激入力の強度や回数
に依存して変化することであり、これにより生体に置け
る情報処理を可能ならしめているのであるが、多様な抵
抗変化が現出する有機薄膜を用いれば、十分に類似の動
作をする回路が容易に実現できるのである。
In this way, organic thin film devices using lead phthalocyanine thin films exhibit various resistance changes and can easily exhibit advanced functions. For example, one of the important functions of neurons is the plasticity of synaptic connections. This is because the strength of synaptic connections changes depending on the strength and number of stimulation inputs, and this makes information processing possible in living organisms. By using , it is possible to easily realize a circuit that operates in a sufficiently similar manner.

この発明は、上記例示のものに限らない。例えば、有機
薄膜が鉛フタロシアニン以外の材料で作られていてもよ
い。また、電気入力信号が電流で与えられるようであっ
てもよい。
This invention is not limited to the above-mentioned examples. For example, the organic thin film may be made of materials other than lead phthalocyanine. Alternatively, the electrical input signal may be provided as a current.

第1図に本発明の擬似神経機能回路の一実施例を示す。FIG. 1 shows an embodiment of the pseudo neural function circuit of the present invention.

この擬似神経機能回路は、9つの有機薄膜素子1〜9.
3つの演算増幅器10〜12.3つの入力端子13〜1
5.3つの出力端子16〜18、釦よび、3つの教師入
力端子19〜21を備えている。なお、22〜24は固
定抵抗素子である。
This pseudo neural functional circuit consists of nine organic thin film elements 1 to 9.
Three operational amplifiers 10-12. Three input terminals 13-1
5. It is equipped with three output terminals 16-18, a button, and three teacher input terminals 19-21. Note that 22 to 24 are fixed resistance elements.

有機薄膜素子1〜3は一側が入力端子13〜15にそれ
ぞれ接続され、他側が演算増幅器10の反転入力端子(
マイナス端子)に接続されている。有機薄膜素子4〜6
は一側が入力端子13〜15にそれぞれ接続され、他側
が演算増幅器11の反転入力端子に接続されている。有
機薄膜素子7〜9は一側が入力端子13〜15にそれぞ
れ接続され、他側が演算増幅器12の反転入力端子に接
続されている。そして、教師入力端子19〜21はそれ
ぞれ演算増幅器10〜12の非反転入力端子(プラス端
子)に接続されている。
One side of the organic thin film elements 1 to 3 is connected to the input terminals 13 to 15, respectively, and the other side is connected to the inverting input terminal (
(negative terminal). Organic thin film elements 4 to 6
One side is connected to the input terminals 13 to 15, respectively, and the other side is connected to the inverting input terminal of the operational amplifier 11. One side of the organic thin film elements 7 to 9 is connected to the input terminals 13 to 15, respectively, and the other side is connected to the inverting input terminal of the operational amplifier 12. The teacher input terminals 19-21 are connected to non-inverting input terminals (plus terminals) of operational amplifiers 10-12, respectively.

有機薄膜素子1〜9は、鉛フタロシアニン薄膜を用いて
おり、前述した通り、第2〜5図に示す多様な特性を有
する素子である。各素子1〜9は、絶縁基板表面に下電
極用金蒸着膜を形成し、その上に膜厚み1.2μmの鉛
フタロシアニン薄膜(有機薄膜)を真空蒸着法によシ積
層し、この膜上に上電極用の金蒸着膜を形成することに
より作られている。
Organic thin film devices 1 to 9 use lead phthalocyanine thin films, and as described above, are devices having various characteristics shown in FIGS. 2 to 5. Each element 1 to 9 has a gold vapor-deposited film for a lower electrode formed on the surface of an insulating substrate, and a lead phthalocyanine thin film (organic thin film) with a film thickness of 1.2 μm is laminated thereon by a vacuum vapor deposition method. It is made by forming a gold vapor-deposited film for the upper electrode.

つぎに、第1図の擬似神経機能回路の動作を説明する。Next, the operation of the pseudo neural function circuit shown in FIG. 1 will be explained.

1ず、入力端子13に+IOV、入力端子14に+5V
、入力端子15にOVの電気入力信号を与えるとともに
、教師入力19〜21にOVの電気入力信号を与える。
1. +IOV to input terminal 13, +5V to input terminal 14
, an OV electrical input signal is given to the input terminal 15, and an OV electrical input signal is given to the teacher inputs 19-21.

この場合、有機薄膜素子にかかる電圧は、膜3.6.9
が0■、膜2.5.8が+5V、膜1,4.7が+to
Vとなる。このため、有機薄膜素子3.6.9は高抵抗
状態の11であるが、有機薄膜素子2.5.8は低抵抗
状態となり、さらに、有機薄膜素子1,4.7はより低
抵抗状態となる。各演算増幅器10〜12の入力信号量
は等しいから、出力端子16〜18には同じ量の出力が
でる。
In this case, the voltage applied to the organic thin film element is
is 0■, membrane 2.5.8 is +5V, membrane 1, 4.7 is +to
It becomes V. Therefore, organic thin film element 3.6.9 is in a high resistance state, organic thin film element 2.5.8 is in a low resistance state, and organic thin film elements 1 and 4.7 are in a lower resistance state. becomes. Since the input signal amount of each operational amplifier 10-12 is equal, the same amount of output is outputted to the output terminals 16-18.

つぎに、教師人力19はその110Vにし、教師入力2
0に+20V、教師人力21に+20Vを印加すれば、
有機薄膜素子4〜9には十分な負電圧がかかるため、高
抵抗状態に復帰する。もちろん、負電圧のかからない有
機薄膜素子1〜3は低抵抗状態の11である。したがっ
て、出力端子16の出力のみがその豊1維持され、出力
端子17.18の出力は消える。
Next, set the teacher power 19 to 110V, and set the teacher input 2 to 110V.
If you apply +20V to 0 and +20V to teacher power 21,
Since a sufficient negative voltage is applied to the organic thin film elements 4 to 9, they return to a high resistance state. Of course, organic thin film elements 1 to 3 to which no negative voltage is applied are 11 in a low resistance state. Therefore, only the output of the output terminal 16 is maintained at its full value, and the outputs of the output terminals 17 and 18 disappear.

入力端子、教師入力端子の印加電圧を切っても各有機薄
膜素子の抵抗状態は変わらない。そのため、次回に同じ
電圧を入力端子13〜15に与えた場合には、出力端子
16にのみ出力があられれる。
Even if the voltage applied to the input terminal and teacher input terminal is cut off, the resistance state of each organic thin film element does not change. Therefore, when the same voltage is applied to the input terminals 13 to 15 next time, only the output terminal 16 is outputted.

教師入力端子19〜21の電圧印加パターンを変えれば
、同様に出力端子17.18に出力があられれるように
することもできる。そのため、入カバターンの違いが出
力端子に釦ける出力有無態様により検知することができ
ることになる。
By changing the pattern of voltage application to the teacher input terminals 19 to 21, it is also possible to output output to the output terminals 17 and 18 in the same way. Therefore, a difference in the input pattern can be detected by the output/non-output mode of the button on the output terminal.

つぎに、有機薄膜素子の特性に釦いて、第2図の特性を
第6図の特性に変えたほかは全く同様にして、第1図の
擬似神経回路を構成した。そして、入力電圧は、先と同
様、入力端子13 に+IOV、入力端子14に+5■
、入力端子15にOVを掛けるようにした。他方、教師
入力は、入力端子19にOV、入力端子20に+5■、
入力端子21にも+5■を印加した。 この場合は、薄
膜1だけが最も低抵抗状態となり1出力端子16からの
出力が最も大きくなる。この後に入力、教師入力を切っ
てもこの状態が保持されるために、次に入力端子13〜
15に同じ入力を与えた場合には、出力端子16からの
み大きな出力が出るようになる。しかも、低抵抗状態か
ら高抵抗状態への変化速度が遅く、高抵抗状態から低抵
抗状態への変化速度が速いために、短時間で学習を終了
させることができ、なおかつ忘却しにくい。入力のパタ
ーンを変えれば、同様にして出力端子17.18からそ
れぞれ出力されるようにすることが出来るため、この場
合も入カバターンの違いを出力で検知することが出来る
Next, the pseudo neural circuit shown in Fig. 1 was constructed in exactly the same manner except that the characteristics of the organic thin film element were changed from those shown in Fig. 2 to those shown in Fig. 6. Then, as before, the input voltage is +IOV at input terminal 13 and +5■ at input terminal 14.
, the input terminal 15 is multiplied by OV. On the other hand, the teacher input is OV to input terminal 19, +5■ to input terminal 20,
+5■ was also applied to the input terminal 21. In this case, only the thin film 1 is in the lowest resistance state and the output from the 1 output terminal 16 is the highest. After this, even if the input and teacher input are turned off, this state will be maintained, so next input terminals 13~
If the same input is applied to terminal 15, a large output will be output only from output terminal 16. Furthermore, since the speed of change from a low resistance state to a high resistance state is slow and the speed of change from a high resistance state to a low resistance state is fast, learning can be completed in a short time and is difficult to forget. By changing the input pattern, it is possible to output the signals from the output terminals 17 and 18 in the same way, so that in this case as well, the difference in the input pattern can be detected by the output.

第7図には、入力端子13.14を用いて、(+lOV
、OV)、(QV、+10V )の二つのパターンを学
習させたときの出力端子16.17の出力結果を示して
いる。○は出力端子16からの出力、・は出力端子17
からの出力を示す。図から分かるように、学習によシ、
それぞれのパターンに対して(−5■、−2■)、(−
2■、−5■)の出方が得られるようになシ、二つのパ
ターンを識別できるようになったことが分る。
In FIG. 7, using input terminals 13 and 14, (+lOV
, OV) and (QV, +10V) are shown to show the output results of the output terminals 16 and 17 when learning the two patterns. ○ indicates output from output terminal 16, ・ indicates output terminal 17
Shows the output from As you can see from the figure, learning
For each pattern (-5■, -2■), (-
2■, -5■), it can be seen that the two patterns can now be distinguished.

これは、ニューラルネットのひとつであるパーセブトロ
ンを材料物性を利用してハードウェア上で実現できたこ
とになる。
This means that a persebutron, a type of neural network, has been realized in hardware by utilizing the physical properties of materials.

具体的な入カバターンは何でもよく、例えば、各種セン
サーからの信号で入カバターンを作るようにすれば、各
種認識装置等に応用できる。
Any specific input pattern may be used. For example, if the input pattern is created using signals from various sensors, it can be applied to various recognition devices.

この実施例では、入力数が3つであったが、4つ以上に
増やし、−層、高度な機能をもたせるようにしてもよい
In this embodiment, the number of inputs is three, but it may be increased to four or more to provide a -layer or advanced function.

発明の効果 以上に述べたように、請求項1〜4の擬似神経機能回路
は、有機薄膜素子を組み込むようにしているため、構成
が簡潔であり、機能高度化・コンパクト化の図ジ易い実
用性の高いものとなっている0 さらに、請求項2の擬似神経機能回路では、加えて、有
機薄膜素子が、電気入力信号の解除後も変化した抵抗状
態を少なくとも一定期間保持しており、請求項3の擬似
神経機能回路では、抵抗状態の変化方向(増減方向)が
電気入力信号の極性に依存しており、請求項4の擬似神
経機能回路では抵抗値の変化速度を増加時に比べて減少
時の方を速くしてふ・す、高機能化がよシ図りやすい。
Effects of the Invention As stated above, the pseudo-neural functional circuits of claims 1 to 4 incorporate organic thin film elements, so they have a simple configuration and are easy to implement for practical use in terms of functional sophistication and compactness. Furthermore, in the pseudo neural function circuit of claim 2, the organic thin film element maintains the changed resistance state for at least a certain period of time even after the electrical input signal is released. In the pseudo-neural functional circuit of claim 3, the direction of change (increase/decrease direction) of the resistance state depends on the polarity of the electrical input signal, and in the pseudo-neural functional circuit of claim 4, the speed of change of the resistance value is decreased compared to when it increases. By speeding up time, it is easier to achieve higher functionality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例の擬似神経機能回路図、
第2〜4図は、この発明の擬似神経機能回路に使われる
有機薄膜素子に釦ける電圧−電流特性をあられす特性図
、第5図は、この有機薄膜に一定電圧を印加した場合に
流れる電流の時間変化をあられす特性図、第6図は、有
機薄膜素子の異なる電圧−電流特性をあられす特性図、
第7図は、この発明にかかる擬似神経機能回路を用いて
二つのパターン識別させたときの出力特性を示す図であ
る。 1〜9・・・有機薄膜素子、10〜12・・演算増幅器
、13〜15・・入力端子、16〜18・出力端子、 
19〜21・・・教師入力端子。
FIG. 1 is a pseudo neural function circuit diagram of an embodiment of the present invention;
Figures 2 to 4 show the voltage-current characteristics of the organic thin film element used in the pseudo-neural function circuit of this invention, and Figure 5 shows the voltage-current characteristics that flow when a constant voltage is applied to this organic thin film. Figure 6 is a characteristic diagram showing the time change of current.
FIG. 7 is a diagram showing output characteristics when two patterns are discriminated using the pseudo neural function circuit according to the present invention. 1-9... Organic thin film element, 10-12... Operational amplifier, 13-15... Input terminal, 16-18... Output terminal,
19-21...Teacher input terminals.

Claims (4)

【特許請求の範囲】[Claims] (1)電気入力信号により抵抗状態が変化する有機薄膜
素子を組み込んでなる擬似神経機能回路。
(1) A pseudo-neural functional circuit incorporating an organic thin film element whose resistance state changes depending on an electrical input signal.
(2)有機薄膜素子が、電気入力信号の解除後には変化
した抵抗状態を少なくとも一定期間保持する請求項1記
載の擬似神経機能回路。
(2) The pseudo neural function circuit according to claim 1, wherein the organic thin film element maintains the changed resistance state for at least a certain period of time after the electrical input signal is released.
(3)抵抗状態の変化方向が電気入力信号の極性に依存
している請求項1または2記載の擬似神経機能回路。
(3) The pseudo neural function circuit according to claim 1 or 2, wherein the direction of change in the resistance state depends on the polarity of the electrical input signal.
(4)有機薄膜の抵抗値の変化速度が、抵抗の増加時に
比べて抵抗の減少時の方が速い請求項1ないし3のいず
れかに記載の擬似神経機能回路。
(4) The pseudo neural function circuit according to any one of claims 1 to 3, wherein the rate of change in the resistance value of the organic thin film is faster when the resistance decreases than when the resistance increases.
JP2145661A 1989-10-23 1990-06-04 Artificial neural function circuit Pending JPH03255668A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2145661A JPH03255668A (en) 1989-10-23 1990-06-04 Artificial neural function circuit
US07/698,148 US5223750A (en) 1990-06-04 1991-05-10 Artificial neural function circuit having organic thin film elements
EP91305016A EP0460903B1 (en) 1990-06-04 1991-06-03 Artificial neural function circuit
DE69127585T DE69127585T2 (en) 1990-06-04 1991-06-03 Circuit for artificial neural function

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27530889 1989-10-23
JP1-275308 1989-10-23
JP2145661A JPH03255668A (en) 1989-10-23 1990-06-04 Artificial neural function circuit

Publications (1)

Publication Number Publication Date
JPH03255668A true JPH03255668A (en) 1991-11-14

Family

ID=26476745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2145661A Pending JPH03255668A (en) 1989-10-23 1990-06-04 Artificial neural function circuit

Country Status (1)

Country Link
JP (1) JPH03255668A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152908A1 (en) * 2007-06-14 2008-12-18 Sony Corporation Resistive element, neuron element, and neural network information processing apparatus
JP2009043792A (en) * 2007-08-06 2009-02-26 National Institute For Materials Science Quantum conducting molecule switch and neutral element using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152908A1 (en) * 2007-06-14 2008-12-18 Sony Corporation Resistive element, neuron element, and neural network information processing apparatus
JP2008311381A (en) * 2007-06-14 2008-12-25 Sony Corp Resistive element, neuron element, and neural network information processing device
JP2009043792A (en) * 2007-08-06 2009-02-26 National Institute For Materials Science Quantum conducting molecule switch and neutral element using the same

Similar Documents

Publication Publication Date Title
US6956280B2 (en) Integrated circuit apparatus and neuro element
US7978510B2 (en) Stochastic synapse memory element with spike-timing dependent plasticity (STDP)
JP3256233B2 (en) Resistive memory element
EP0487101B1 (en) Electrically device with a doped amorphous silicon channel
US8924321B2 (en) Three-layered neuron devices for neural network with reset voltage pulse
CN110647982B (en) Artificial sensory nerve circuit and preparation method thereof
Gao et al. Analog-input analog-weight dot-product operation with Ag/a-Si/Pt memristive devices
Yan et al. A low-power Si: HfO2 ferroelectric tunnel memristor for spiking neural networks
CN107909146A (en) Neuron circuit based on volatibility threshold transitions device
Lei et al. Memristive learning and memory functions in polyvinyl alcohol polymer memristors
KR102126791B1 (en) Neural networks using cross-point array and pattern readout method thereof
Singh et al. OTA and CDTA-based new memristor-less meminductor emulators and their applications
US5223750A (en) Artificial neural function circuit having organic thin film elements
JPH03255668A (en) Artificial neural function circuit
CN109346599A (en) More iron tunnel knot memristors and preparation method thereof
CN111192957A (en) Volatile and non-volatile coexisting memristor device, preparation method and alternative preparation method
FR2946788A1 (en) DEVICE WITH ADJUSTABLE RESISTANCE.
CN110690318B (en) Light-operated artificial synapse based on bipolar semiconductor and preparation method thereof
US11551749B2 (en) Neuromimetic network and related production method
Afshari et al. Unsupervised learning in hexagonal boron nitride memristor-based spiking neural networks
Joko et al. Fabrication of GaOx based crossbar array memristive devices and their resistive switching properties
CN111384943B (en) Flexible neuron-like circuit and pulse neural network based on same
Mulaosmanovic et al. Ferroelectric Field Effect Transistor for Neuromorphic Applications
Han et al. Biocompatible Memristive Devices for Brain-Inspired Applications
CN114497117A (en) Stacking memristor based on analog resistance change and threshold resistance change and preparation method thereof