JPH03255361A - Analyzing apparatus for hydrogen in sample - Google Patents

Analyzing apparatus for hydrogen in sample

Info

Publication number
JPH03255361A
JPH03255361A JP5201790A JP5201790A JPH03255361A JP H03255361 A JPH03255361 A JP H03255361A JP 5201790 A JP5201790 A JP 5201790A JP 5201790 A JP5201790 A JP 5201790A JP H03255361 A JPH03255361 A JP H03255361A
Authority
JP
Japan
Prior art keywords
flow path
analysis
hydrogen
temperature
separation column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5201790A
Other languages
Japanese (ja)
Other versions
JP2528723B2 (en
Inventor
Katsuya Tsuji
辻 勝也
Akihiro Hirano
彰弘 平野
Morinobu Hayashi
林 守伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2052017A priority Critical patent/JP2528723B2/en
Publication of JPH03255361A publication Critical patent/JPH03255361A/en
Application granted granted Critical
Publication of JP2528723B2 publication Critical patent/JP2528723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To detect the amount of oxygen which is generated in real time continuously by providing a high-temperature oxidizing device and a separating column in a flow path for gas generated in an extracting furnace, providing a bypass flow path in parallel with the oxidizing device and the separating column, and switching the flow paths in response to an analyzing mode. CONSTITUTION:A high-temperature oxidizing device 3 and a bypass flow path 5 are provided in parallel on the output side of an extracting path 1. A separating column 9 and a bypass flow path 11 are provided in parallel. When switching operations are performed with flow-path switching devices 4A and 4B and 10A and 10B, three analyzing modes can be performed. In non- temperature rising analysis, the high-temperature oxidizing device 3 is not used, and the generating gas is made to flow. Then the total amount of hydrogen is obtained. In temperature rising analysis, the effect of the nitrogen is removed by performing the analysis corresponding to the temperature region, and the amount of the hydrogen is obtained for every pattern. In this way, the amount of hydrogen generated in real time can be continuously detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、抽出炉において金属その他の試料を加熱しそ
のとき発生するガスを分離カラムを介して分析計に導い
て試料中に含まれる水素を分析する装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention involves heating a metal or other sample in an extraction furnace and guiding the gas generated at that time to an analyzer via a separation column to extract the hydrogen contained in the sample. This invention relates to an apparatus for analyzing.

〔従来の技術〕[Conventional technology]

従来の試料中の水素分析装置(以下、分析装置と云う)
は第8図に示すように構成され、例えば金属などの試料
を収容した黒鉛るつぼ51を直接通電方式の抽出炉52
内で通電加熱し、そのとき発生するガスを、Arなどの
不活性なキャリアガスによって抽出炉52から導出し、
この発生ガスを流量制御器53を介して常温酸化器54
、CO8除去器55、H,O除去器56を順次通過させ
、さらに、分離カラム57においてH8と共存ガス(こ
の共存ガスは主としてN!である)とを分離した後、熱
伝導型分析計(以下、TCDと云う)58においてH,
を検出するようにしていた。
Conventional hydrogen analyzer in a sample (hereinafter referred to as the analyzer)
is constructed as shown in FIG.
The gas generated at that time is led out from the extraction furnace 52 using an inert carrier gas such as Ar.
This generated gas is passed through a flow rate controller 53 to a room temperature oxidizer 54.
, a CO8 remover 55, and a H, O remover 56, and further, after separating H8 from a coexisting gas (this coexisting gas is mainly N!) in a separation column 57, a thermal conductivity analyzer ( (hereinafter referred to as TCD) 58 H,
I was trying to detect it.

ところで、近年においては、単に試料中に含まれている
水素の量を測定するだけでなく、水素がどのような形態
で含まれているかも分析するといった形態別の分析を行
うことが要求されるに至っており、これに対しては抽出
炉52における黒鉛るつぼ51に対する電力制御の技術
が開発され、低温〜高温までの抽出状態の制御が可能に
なり、形態別分析はある程度可能になった。
By the way, in recent years, it has become necessary not only to measure the amount of hydrogen contained in a sample, but also to analyze the form of hydrogen contained in the sample. In response to this, a technology for power control for the graphite crucible 51 in the extraction furnace 52 has been developed, making it possible to control the extraction state from low to high temperatures, and analysis by form has become possible to some extent.

【発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の分析装置によれば、H3とN
、との分離は所謂カラム分離方式によって行われるため
、そのときの分離ガス抽出波形は第9図に示すようにな
り、従って、リアルタイムで発生するH8量を連続的に
検出することができなかった。
However, according to the above-mentioned conventional analyzer, H3 and N
, was separated by a so-called column separation method, and the separated gas extraction waveform at that time was as shown in Figure 9. Therefore, it was not possible to continuously detect the amount of H8 generated in real time. .

これに対して、真空抽出−Pd透透性法よってHヨを遺
灰的に検出する研究レベル的な装置があるが、この装置
は真空度の維持管理がかなり困難であるなど、長期安定
性、迅速性、作業性およびコスト面からみて一般におけ
る分析には不向きで、その適用範囲が限られてしまうと
いった欠点がある。
On the other hand, there is a research-level device that detects Hyo in ashes using vacuum extraction-Pd permeability method, but this device has problems with long-term stability, such as the difficulty of maintaining and managing the degree of vacuum. However, it has the disadvantage that it is not suitable for general analysis in terms of speed, workability, and cost, and its scope of application is limited.

本発明は、上述の事柄に留意してなされたもので、その
目的とするところは、抽出炉においてリアルタイムで発
生するH8量を連続的に検出することができる汎用性の
広い分析装置を提供することにある。
The present invention has been made with the above-mentioned considerations in mind, and its purpose is to provide a versatile analytical device that can continuously detect the amount of H8 generated in real time in an extraction furnace. There is a particular thing.

〔課題を解決するための手段] 上述の目的を達成するため、本発明に係る分析装置は次
のように構成されている。
[Means for Solving the Problems] In order to achieve the above-mentioned object, an analysis device according to the present invention is configured as follows.

その一つは、抽出炉の出口側に高温酸化器を設け、この
高温酸化器の入口側および出口側のそれぞれに流路切替
え器を設け、この流路切替え器間にバイパス流路を接続
すると共に、前記分離カラムの入口側および出口側のそ
れぞれに流路切替え器を設け、この流路切替え器間にバ
イパス流路を接続し、さらに、前記分離カラムの出口側
に位置する流路切替え器と前記分析計との間に流量制御
器を設けた点に特徴がある。
One method is to install a high-temperature oxidizer on the exit side of the extraction furnace, provide a flow path switch on each of the inlet and outlet sides of this high-temperature oxidizer, and connect a bypass flow path between the flow path switchers. In addition, a flow path switching device is provided on each of the inlet side and the exit side of the separation column, a bypass flow path is connected between the flow path switching devices, and a flow path switching device located on the exit side of the separation column. It is characterized in that a flow rate controller is provided between the analyzer and the analyzer.

また、他の一つは、分離カラムの入口側および出口側の
それぞれに流路切替え器を設け、この流路切替え器間に
バイパス流路を接続すると共に、前記分離カラムの出口
側に位置する流路切替え器と前記分析針との間に流量制
御器を設けた点に特徴がある。
Another method is to provide a flow path switch on each of the inlet and outlet sides of the separation column, connect a bypass flow path between the flow path switchers, and connect the bypass flow path to the outlet side of the separation column. A feature is that a flow rate controller is provided between the flow path switching device and the analysis needle.

(作用〕 上記前者の構成の分析装置によれば、流路切替え器を適
宜切替え操作することにより、所望の水素分析を行うこ
とができる。
(Operation) According to the analyzer having the former configuration, desired hydrogen analysis can be performed by appropriately switching the flow path switching device.

先ず、形態別分析を必要としない分析、すなわち、全水
素量分析(非昇温分析)を行うとき(これを第1モード
分析と云う)は、抽出炉からの発生ガスを、高温酸化器
と並列に設けられたバイパス流路を経て常温酸化器、C
O8除去器、H80除去器を順次通過させ、さらに、分
離カラムを通した後TCDに導入する。このときの抽出
信号を表す波形は第5図に示すようになるから、Hlに
相当する信号を積算すれば全水素量が得られる。
First, when performing analysis that does not require morphological analysis, that is, total hydrogen content analysis (non-temperature raising analysis) (this is called 1st mode analysis), the gas generated from the extraction furnace is passed through a high-temperature oxidizer. A normal temperature oxidizer, C
It passes through an O8 remover and an H80 remover sequentially, and then is introduced into the TCD after passing through a separation column. Since the waveform representing the extracted signal at this time is as shown in FIG. 5, the total amount of hydrogen can be obtained by integrating the signals corresponding to Hl.

また、昇温分析ではあるが、黒鉛るつぼを比較的低温で
加熱し、共存ガスであるNtを無視できる分析を行うと
き(これを第2モード分析と云う)は、抽出炉からの発
生ガスを、高温酸化器と並列に設けられたバイパス流路
を経て常温酸化器、CO□除去器、H80除去器を順次
通過させ、さらに、分離カラムと並列に設けられたバイ
パス流路を経てTCDに導入する。このときの昇温抽出
信号を表す波形は第6図に示すようになるから、この昇
温抽出信号をそのまま積分し、各温度との関係から各形
態別水素量を得ることができる。
Although it is a temperature-programmed analysis, when performing an analysis in which the graphite crucible is heated at a relatively low temperature and Nt, which is a coexisting gas, can be ignored (this is called second mode analysis), the gas generated from the extraction furnace is , passed through a normal temperature oxidizer, CO□ remover, and H80 remover in sequence through a bypass flow path installed in parallel with the high-temperature oxidizer, and then introduced into the TCD through a bypass flow path installed in parallel with the separation column. do. Since the waveform representing the temperature-raising extraction signal at this time is as shown in FIG. 6, the hydrogen amount for each form can be obtained from the relationship with each temperature by integrating this temperature-raising extraction signal as it is.

そして、昇温分析であり、黒鉛るつぼを比較的高温で加
熱し、共存ガスであるN、を無視できない分析を行うと
き(これを第3モード分析と云う)は、上記第2モード
分析と同様にして1回目の分析を行い、次いで、1回目
の分析に用いた試料と同一の試料を入れた黒鉛るつぼを
抽出炉において通電加熱し、抽出炉からの発生ガスを、
高温酸化器を経て常温酸化器、CO□除去器、Hオ0除
去器を通過させ、さらに、分離カラムと並列に設けられ
たバイパス流路を経てTCDに導入して2回目の分析を
行う、このとき、1回目の分析、2回目の分析における
昇温抽出信号を表す波形は、第7図(A)、 (B)に
示すようになるから、1回目の分析によって得られる信
号から2回目の分析によって得られる信号を弔電するこ
とにより、共存ガスの影響を除去した各形態側水素量を
得ることができるのである。
Then, when performing a temperature-raising analysis in which the graphite crucible is heated to a relatively high temperature and the coexisting gas N is not ignored (this is called 3rd mode analysis), it is the same as the 2nd mode analysis above. Then, a graphite crucible containing the same sample used for the first analysis was heated with electricity in an extraction furnace, and the gas generated from the extraction furnace was
The sample is passed through a high temperature oxidizer, a room temperature oxidizer, a CO□ remover, and a H□ remover, and then introduced into the TCD via a bypass flow path provided in parallel with the separation column for a second analysis. At this time, the waveforms representing the temperature-increased extraction signals in the first and second analyzes are as shown in Figures 7 (A) and (B). By analyzing the signals obtained from the analysis, it is possible to obtain the amount of hydrogen in each form with the influence of coexisting gases removed.

また、上記後者の構成の分析装置によれば、上述の第3
モード分析は行うことはできないが、流路切替え器を適
宜切替え操作することにより、所望の水素分析を行うこ
とができる。
Furthermore, according to the analyzer having the latter configuration, the third
Although mode analysis cannot be performed, desired hydrogen analysis can be performed by appropriately switching the flow path switching device.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第1実施例に係る分析装置の構成を発
生ガスの形態変化と共に示す図で、この図において、1
は直接通電方式の抽出炉で、試料を収容した黒鉛るつぼ
2を通電加熱し、この加熱によって発生するガスをAr
などのキャリアガスで炉外に導出できるようにしである
FIG. 1 is a diagram showing the configuration of an analyzer according to a first embodiment of the present invention together with changes in the form of generated gas.
is a direct energization type extraction furnace, in which the graphite crucible 2 containing the sample is heated by electricity, and the gas generated by this heating is heated by Ar.
It is designed so that it can be led out of the furnace using a carrier gas such as.

3は抽出炉1の出口側に設けられる高温酸化器で、その
内部には抽出炉lからの発生ガス中に含まれるH8をH
,Oに、また、C○をco!にそれぞれ酸化する酸化触
媒が設けられている。 4A、 4Bは高温酸化器3の
入口側および出口側のそれぞれに設けられる流路切替え
器で、例えば電磁式の三方弁よりなり、互いに同方向に
連動するように構成されている。そして、5は流路切替
え器4A、 4B間において、高温酸化器3と並列的に
設けられるバイパス流路である。
3 is a high-temperature oxidizer installed on the exit side of the extraction furnace 1;
, O to co! An oxidation catalyst is provided for oxidizing each of the two. Reference numerals 4A and 4B are flow path switching devices provided on the inlet side and the outlet side of the high temperature oxidizer 3, respectively, and are composed of, for example, electromagnetic three-way valves, and are configured to operate in the same direction. A bypass flow path 5 is provided in parallel with the high temperature oxidizer 3 between the flow path switching devices 4A and 4B.

6は前記流路切替え器4Bの下流側に設けられる常温酸
化器で、発生ガス中に含まれるcoのみを選択的にCO
8に酸化させる酸化触媒が充填されている。7は常温酸
化器6の下流側に設けられるCO2除去器で、常温酸化
器6において生成されたCOlを吸着する脱C01w1
が充填されている。
Reference numeral 6 denotes a room temperature oxidizer installed downstream of the flow path switching device 4B, which selectively converts only the CO contained in the generated gas into CO.
It is filled with an oxidation catalyst that oxidizes to 8. 7 is a CO2 remover provided on the downstream side of the room temperature oxidizer 6, and is a CO2 remover that adsorbs COl generated in the room temperature oxidizer 6.
is filled.

8はCO□除去器7の下流側に設けられるH、O除去器
で、発生ガス中に含まれるH、Oを吸着する脱H,O剤
が充填されている。
Reference numeral 8 denotes an H and O remover provided downstream of the CO□ remover 7, and is filled with a deH and O agent that adsorbs H and O contained in the generated gas.

9は前記H,O除去器8の出口側に設けられる分離カラ
ムで、その内部にはHアとN!とを分離するための例え
ばモレキエラーシーブが設けられている。 IOA、 
IOBは分離カラム9の入口側および出口側のそれぞれ
に設けられる流路切替え器で、電磁式の三方弁よりなり
、互いに同方向に連動するように構成されている。そし
て、11は流路切替え器lO^110B間において、分
離カラム9と並列的に設けられるバイパス流路である。
Reference numeral 9 denotes a separation column installed on the outlet side of the H, O remover 8, and inside it there are H and N! For example, a molecular error sieve is provided to separate the two. IOA,
IOB is a flow switching device provided on each of the inlet side and outlet side of the separation column 9, and is composed of an electromagnetic three-way valve, and is configured to interlock with each other in the same direction. Further, 11 is a bypass flow path provided in parallel with the separation column 9 between the flow path switching device lO^110B.

12は前記分離カラム9の出口側に位置する流路切替え
器10BとTCD13との間に設けられる流量制御器で
、流路切替え器10A、 IOBの切替え操作によって
、ガスが分離カラム9を流れるときとバイパス流路11
を流れるときとにおいて、TCD13へ流れるガスの流
量変動を防止するものである。
Reference numeral 12 denotes a flow rate controller installed between the flow path switching device 10B and the TCD 13 located on the outlet side of the separation column 9, and when gas flows through the separation column 9 by the switching operation of the flow path switching device 10A and IOB. and bypass flow path 11
This prevents fluctuations in the flow rate of the gas flowing to the TCD 13 when the gas flows through the TCD 13.

次に、上記構成の分析装置の動作について説明する。こ
の分析装置による分析は、流路切替え器4^、 4Bお
よびIOA、 IOBを切替え操作することにより、次
の3つの分析モードで行うことができる。
Next, the operation of the analyzer having the above configuration will be explained. Analysis by this analyzer can be performed in the following three analysis modes by switching the flow path switchers 4^, 4B, IOA, and IOB.

先ず、形態側分析を必要としない分析、すなわち、全水
素量分析(非昇温分析)を行う第1モード分析において
は、抽出炉1からの発生ガスを、バイパス流路5を経て
常温酸化器6.Co、除去器7、H,O除去器8を順次
通過させ、さらに、分離カラム9を通した後、流量制御
器12を介してTCD13に導入するのである。すなわ
ち、第1モード分析においては、高温酸化器3を用いず
、従来と同様に発生ガスを流すのである。このときの抽
出波形は第5図に示すようになるから、H2に相当する
信号を積算すれば全水素量が得られる。
First, in the first mode of analysis that does not require morphological analysis, that is, total hydrogen content analysis (non-temperature-raising analysis), the gas generated from the extraction furnace 1 is passed through the bypass flow path 5 to the normal temperature oxidizer. 6. After passing through a Co, remover 7 and a H, O remover 8 in order, and further through a separation column 9, it is introduced into the TCD 13 via a flow rate controller 12. That is, in the first mode analysis, the high temperature oxidizer 3 is not used, and the generated gas is passed in the same way as in the conventional method. Since the extracted waveform at this time is as shown in FIG. 5, the total amount of hydrogen can be obtained by integrating the signals corresponding to H2.

また、昇温分析ではあるが、黒鉛るつぼ2を比較的低温
で加熱し、共存ガスであるN、を無視できる分析を行う
第2モード分析においては、抽出炉1からの発生ガスを
、バイパス流路5を経て常温酸化器6、CO8除去器7
、HxO除去器8を順次通過させ、さらに、バイパス流
路11を通した後、流量制御器12を介してTCD13
に導入するのである。すなわち、第2モード分析におい
ては、共存ガスであるN!を無視できるので、発生ガス
を分離カラム9を通すことなくTCD13に導入するの
である。このときの昇温抽出信号を表す波形は第6図に
示すようになるから、この昇温抽出信号をそのまま積真
し、各温度との関係から各形態側水素量を得ることがで
きるのである。
In addition, in the second mode analysis, which heats the graphite crucible 2 at a relatively low temperature and performs analysis in which the coexisting gas N is negligible, the gas generated from the extraction furnace 1 is passed through the bypass flow. Passing through line 5, room temperature oxidizer 6, CO8 remover 7
, HxO remover 8, and further passes through the bypass flow path 11, and then the TCD 13 via the flow rate controller 12.
It will be introduced in That is, in the second mode analysis, N! which is a coexisting gas! Since this can be ignored, the generated gas is introduced into the TCD 13 without passing through the separation column 9. The waveform representing the temperature-raising extraction signal at this time is as shown in Figure 6, so by integrating this temperature-raising extraction signal as it is, it is possible to obtain the amount of hydrogen for each form from the relationship with each temperature. .

そして、昇温分析であり、黒鉛るつぼ2を比較的高温で
加熱し、共存ガスであるN3を無視できない分析を行う
第3モード分析においては、上記第2モード分析と同様
にして1回目の分析を行い、次いで、1回目の分析に用
いた試料と同一の試料を入れた黒鉛るつぽ2を抽出炉l
において通電加熱し、抽出炉1からの発生ガスを、高温
酸化器3を経て常温酸化器6、COお除去器7、H,O
除去器8を通過させ、さらに、バイパス流路11を通し
た後、流量制御器12を介してTCD13に導入して2
回目の分析を行う、このとき、1回目の分析。
In the third mode analysis, which is temperature raising analysis, in which the graphite crucible 2 is heated to a relatively high temperature and the coexisting gas N3 cannot be ignored, the first analysis is performed in the same manner as the second mode analysis. Then, the graphite crucible 2 containing the same sample used for the first analysis was placed in the extraction furnace l.
The gas generated from the extraction furnace 1 is passed through a high temperature oxidizer 3 to a room temperature oxidizer 6, a CO remover 7, H, O
After passing through the remover 8 and further passing through the bypass channel 11, it is introduced into the TCD 13 via the flow rate controller 12.
Perform the first analysis.At this time, the first analysis.

2回目の分析における昇温抽出信号を表す波形は、それ
ぞれ第7図(A)、(B)に示すようになるから、1回
目の分析によって得られる信号から2回目の分析によっ
て得られる信号を引算することにより、共存ガスの影響
を除去することができる。また、1回目の分析によって
得られる分析信号と、2回目の分析によって得られる分
析信号とを目視によって比較することによって、H,以
外のガス(共存ガス)発生状況を知ることができ、共存
ガスの発生が殆どないときは、各温度との関係から各形
態側水素量を直ちに得ることができる。
The waveforms representing the temperature increase extraction signal in the second analysis are as shown in FIGS. 7(A) and (B), respectively, so the signal obtained in the second analysis can be changed from the signal obtained in the first analysis. By subtracting, the influence of coexisting gas can be removed. In addition, by visually comparing the analysis signal obtained from the first analysis and the analysis signal obtained from the second analysis, it is possible to know the generation status of gases other than H (coexisting gas), and When there is almost no generation of hydrogen, the amount of hydrogen for each form can be immediately obtained from the relationship with each temperature.

なお、上記構成の分析装置において、第2モード分析ま
たは第3モード分析を選択した場合、上記流路切替え器
4A、 4Bおよび104. IOBは自動的に切替え
制御されるようにしである。
In addition, in the analyzer having the above configuration, when the second mode analysis or the third mode analysis is selected, the flow path switching devices 4A, 4B and 104. The IOB is designed to be automatically switched and controlled.

上記実施例では、従来の分析装置に高温酸化器3と、こ
の高温酸化器3に対して並列的に設けられるバイパス流
路5と、高温酸化器3とバイパス流路5とを切替える流
路切替え器4A、 4Bを設けると共に、分離カラム9
に対して流路切替え器10A。
In the above embodiment, a conventional analyzer includes a high-temperature oxidizer 3, a bypass channel 5 provided in parallel to the high-temperature oxidizer 3, and a channel switch for switching between the high-temperature oxidizer 3 and the bypass channel 5. In addition to providing vessels 4A and 4B, a separation column 9
Flow path switching device 10A.

10Bを介してバイパス流路11を設けていたが、第2
図に示すように、上述の実施例における構成から、高温
酸化器3、流路切替え器4A、 4B、バイパス流路5
を除去してもよい、このように構成した場合、上記第3
モード分析は行うことができないものの、第1モード分
析および第2モード分析を行うことができ、全水素量の
測定のみならず、各形態側水素量を測定することができ
る。
Although the bypass flow path 11 was provided through 10B, the second
As shown in the figure, from the configuration of the above-described embodiment, a high temperature oxidizer 3, flow path switching devices 4A and 4B, and a bypass flow path 5 are included.
may be removed. If configured in this way, the third
Although mode analysis cannot be performed, first mode analysis and second mode analysis can be performed, and not only the total amount of hydrogen but also the amount of hydrogen in each form can be measured.

上述の実施例は何れも1つのTCDを用いて行うもので
あったが、第3図および第4図に示すように、2つのT
CDを用いるようにしてもよい。
The above embodiments were all performed using one TCD, but as shown in FIGS. 3 and 4, two TCDs were used.
A CD may also be used.

すなわち、第3図は抽出炉1の出口側に、2つの分析ラ
イン20.30を互いに並列的に設け、一方の分析ライ
ン20には、高温酸化器3、常温酸化器6、COを除去
器7、H,O除去器8、流路切替え器10^、 10B
を介して分離カラム9とバイパス流路11とを並列接続
したもの、流量制御器12、TCD13^をこの順に設
け、他方の分析ライン3oには、常温酸化器6、CO,
除去器7、H,O除去器8、流量制御器12、TCD1
3Bをこの順に設けてなるものである。このように構成
した場合、第3モードを1回の分析で行うことができる
That is, in FIG. 3, two analysis lines 20 and 30 are provided in parallel to each other on the exit side of the extraction furnace 1, and one analysis line 20 includes a high temperature oxidizer 3, a normal temperature oxidizer 6, and a CO remover. 7, H, O remover 8, flow path switch 10^, 10B
A separation column 9 and a bypass channel 11 are connected in parallel via a flow rate controller 12, and a TCD 13^ are installed in this order, and the other analysis line 3o is equipped with a room temperature oxidizer 6, CO,
Remover 7, H, O remover 8, flow rate controller 12, TCD1
3B are provided in this order. With this configuration, the third mode can be performed in one analysis.

また、第4図は抽出炉1の出口側に、常温酸化器6、C
O,除去器7、HzO除去器8、流路切替え器10A、
 IOBを介して分離カラム9とバイパス流路11とを
並列接続したもの、流量制御器12、TCD 13A、
高温酸化器3、H,O除去器8、TCD13Bをこの順
に設けてなるものである。このように構成した場合、第
3図に示すものに比べて構成が簡単になる。なお、この
実施例において、流量制御器12はカラム分離ラインと
バイパスラインとの切換え時に変動する流量を調整する
ならば、その他の位置に設けてもよい。
In addition, in FIG. 4, a room temperature oxidizer 6, a C
O, remover 7, HzO remover 8, flow path switch 10A,
Separation column 9 and bypass flow path 11 are connected in parallel via IOB, flow rate controller 12, TCD 13A,
A high temperature oxidizer 3, an H and O remover 8, and a TCD 13B are provided in this order. When configured in this way, the configuration is simpler than that shown in FIG. In this embodiment, the flow rate controller 12 may be provided at any other position as long as it adjusts the flow rate that varies when switching between the column separation line and the bypass line.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、抽出炉において
リアルタイムで発生するN2量を連続的に検出すること
ができる。そして、抽出炉に供給される電力を適宜制御
することにより時々刻々と発生する水素量の分布状態を
検出することができ、これによって、試料中に含まれる
水素の形態別分布を的確かつ迅速に把握することができ
る。
As explained above, according to the present invention, the amount of N2 generated in the extraction furnace in real time can be continuously detected. By appropriately controlling the electric power supplied to the extraction furnace, it is possible to detect the distribution of the amount of hydrogen generated from moment to moment, and thereby accurately and quickly determine the distribution of hydrogen contained in the sample by form. can be grasped.

そして、抽出炉において発生するガスは低温域(例えば
1000°C以下)では大部分H2となっており、4゜ また、高温域(例えば1500’C)ではN3などが共
存するが、請求項(1)による分析装置においては、上
記第3モード分析を行うことによりNtの影響を除去す
ることができ、H!の真の量を知ることができる。
The gas generated in the extraction furnace is mostly H2 in the low temperature range (for example, 1000°C or less), and N3 etc. coexist in the high temperature range (for example, 1500'C). In the analyzer according to 1), the influence of Nt can be removed by performing the third mode analysis, and H! You can know the true amount of

また、本発明に係る分析装置は、構成が簡単で、操作が
簡単であり、長期にわたって安定に動作するので、広い
範囲にわたって測定することができるといった利点があ
る。
Further, the analyzer according to the present invention has a simple configuration, is easy to operate, and operates stably over a long period of time, so it has the advantage of being able to perform measurements over a wide range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る分析装置の構成を発生
ガスの形態変化と共に示す図である。 第2図は本発明の他の実施例に係る分析装置の構成を発
生ガスの形態変化と共に示す図である。 第3図および第4図はそれぞれ本発明のさらに他の実施
例に係る分析装置の構成を示すブロック図である。 第5図〜第7図はそれぞれ第1図に示す分析装置におい
て分析を行ったときの抽出信号を表す波形図で、第5図
は第1モード分析を行ったとき、第6図は第2モード分
析を行ったとき、第7図(A)、(B)は第3モード分
析を行ったときのものをそれぞれ示している。 第8図は従来の分析装置の構成を発生ガスの形態変化と
共に示すブロック図である。 第9図は従来の分析装置において分析を行ったときの抽
出信号を表す波形図である。 ■・・・抽出炉、3・・・高温酸化器、4A、 4B・
・・流路切替え器、5・・・バイパス流路、9・・・分
離カラム、10A、 IOB・・・流路切替え器、12
・・・流量制御器、13゜13A、 13B・・・分析
計。
FIG. 1 is a diagram showing the configuration of an analyzer according to an embodiment of the present invention, together with changes in the form of generated gas. FIG. 2 is a diagram showing the configuration of an analyzer according to another embodiment of the present invention, together with changes in the form of generated gas. FIG. 3 and FIG. 4 are block diagrams each showing the configuration of an analyzer according to still another embodiment of the present invention. Figures 5 to 7 are waveform diagrams representing extracted signals when analyzed using the analyzer shown in Figure 1, respectively. When the mode analysis was performed, FIGS. 7(A) and 7(B) respectively show the results when the third mode analysis was performed. FIG. 8 is a block diagram showing the configuration of a conventional analyzer along with changes in the form of generated gas. FIG. 9 is a waveform diagram showing an extracted signal when analysis is performed using a conventional analyzer. ■...Extraction furnace, 3...High temperature oxidizer, 4A, 4B.
...Flow path switching device, 5...Bypass flow path, 9...Separation column, 10A, IOB...Flow path switching device, 12
...Flow rate controller, 13°13A, 13B...Analyzer.

Claims (2)

【特許請求の範囲】[Claims] (1)抽出炉において試料を加熱しそのとき発生するガ
スを分離カラムを介して分析計に導いて試料中に含まれ
る水素を分析するようにした装置において、前記抽出炉
の出口側に高温酸化器を設け、この高温酸化器の入口側
および出口側のそれぞれに流路切替え器を設け、この流
路切替え器間にバイパス流路を接続すると共に、前記分
離カラムの入口側および出口側のそれぞれに流路切替え
器を設け、この流路切替え器間にバイパス流路を接続し
、さらに、前記分離カラムの出口側に位置する流路切替
え器と前記分析計との間に流量制御器を設けたことを特
徴とする試料中の水素分析装置。
(1) In an apparatus in which a sample is heated in an extraction furnace and the gas generated at that time is guided to an analyzer via a separation column to analyze hydrogen contained in the sample, high-temperature oxidation is performed on the exit side of the extraction furnace. A flow path switch is provided on each of the inlet side and outlet side of the high temperature oxidizer, a bypass flow path is connected between the flow path switchers, and a flow path switch is provided on each of the inlet side and outlet side of the separation column. A flow path switching device is provided in the flow path switching device, a bypass flow path is connected between the flow path switching devices, and a flow rate controller is further provided between the flow path switching device located on the outlet side of the separation column and the analyzer. An apparatus for analyzing hydrogen in a sample, which is characterized by:
(2)抽出炉において試料を加熱しそのとき発生するガ
スを分離カラムを介して分析計に導いて試料中に含まれ
る水素を分析するようにした装置において、前記分離カ
ラムの入口側および出口側のそれぞれに流路切替え器を
設け、この流路切替え器間にバイパス流路を接続すると
共に、前記分離カラムの出口側に位置する流路切替え器
と前記分析計との間に流量制御器を設けたことを特徴と
する試料中の水素分析装置。
(2) In an apparatus in which a sample is heated in an extraction furnace and the gas generated at that time is guided to an analyzer via a separation column to analyze hydrogen contained in the sample, the inlet side and outlet side of the separation column A flow path switching device is provided in each of the flow path switching devices, a bypass flow path is connected between the flow path switching devices, and a flow rate controller is provided between the flow path switching device located on the outlet side of the separation column and the analyzer. An apparatus for analyzing hydrogen in a sample, characterized in that:
JP2052017A 1990-03-03 1990-03-03 Analyzer for hydrogen in samples Expired - Lifetime JP2528723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2052017A JP2528723B2 (en) 1990-03-03 1990-03-03 Analyzer for hydrogen in samples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2052017A JP2528723B2 (en) 1990-03-03 1990-03-03 Analyzer for hydrogen in samples

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2172696A Division JP2631836B2 (en) 1996-01-13 1996-01-13 Analyzer for hydrogen in samples

Publications (2)

Publication Number Publication Date
JPH03255361A true JPH03255361A (en) 1991-11-14
JP2528723B2 JP2528723B2 (en) 1996-08-28

Family

ID=12903049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2052017A Expired - Lifetime JP2528723B2 (en) 1990-03-03 1990-03-03 Analyzer for hydrogen in samples

Country Status (1)

Country Link
JP (1) JP2528723B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033473A (en) * 2012-12-20 2013-04-10 长沙开元仪器股份有限公司 Element analyzing system
CN110036292A (en) * 2016-12-16 2019-07-19 株式会社堀场制作所 Atomic Absorption SpectrophotometerICP and elemental analysis method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511996A (en) * 1974-06-25 1976-01-09 Hitachi Cable Kai suijoniokeru keeburuno gaisohoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511996A (en) * 1974-06-25 1976-01-09 Hitachi Cable Kai suijoniokeru keeburuno gaisohoho

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033473A (en) * 2012-12-20 2013-04-10 长沙开元仪器股份有限公司 Element analyzing system
CN110036292A (en) * 2016-12-16 2019-07-19 株式会社堀场制作所 Atomic Absorption SpectrophotometerICP and elemental analysis method

Also Published As

Publication number Publication date
JP2528723B2 (en) 1996-08-28

Similar Documents

Publication Publication Date Title
JP5817738B2 (en) Total organic carbon measuring device and method
EP0024566B1 (en) An apparatus for the analysis of oxygen, nitrogen and hydrogen contained in metals
BRPI0804747A2 (en) process for purifying a noble gas-containing gas, process for purifying a noble gas stream contaminated with unacceptable hydrogen contents and optional fuel contaminants, and process for purifying a noble gas stream having unacceptable contents of at least an absorbing fuel
CN103245552A (en) Elemental analyzer
JP5527168B2 (en) Converter exhaust gas recovery device and converter exhaust gas recovery method
US9983179B2 (en) Gas chromatograph
JPH03255361A (en) Analyzing apparatus for hydrogen in sample
JP2631836B2 (en) Analyzer for hydrogen in samples
JP2000241404A (en) Carbon fractionation analysis device
JP2013250061A (en) Element analyzer
RU191659U1 (en) GAS CHROMATOGRAPH FOR GAS DETERMINATION IN INSULATING LIQUIDS
JP3195728B2 (en) Sulfur component measurement device
JP2020118531A (en) Nitrogen oxide measuring device
JP3160827B2 (en) Method and apparatus for sequential and continuous measurement of carbon, hydrogen and nitrogen concentrations in molten steel
JPH0733158Y2 (en) Analyzer for hydrogen in sample
JP3853978B2 (en) Water quality analyzer
JP2005227045A (en) Analyzer for analyzing element in sample
WO2003025560A2 (en) Sampler for automatic elemental analysers
CN217842776U (en) Three-way electromagnetic valve for removing water vapor of methane reforming furnace of gas chromatograph
JP7406232B2 (en) Temperature programmed desorption analyzer
RU53019U1 (en) DEVICE FOR GAS-CHROMATOGRAPHIC ANALYSIS OF HYDROGEN-CONTAINING GAS MIXTURES
JPS6276459A (en) Instrument for analyzing total organic carbon
JP2023148343A (en) Element analysis method, element analysis device and program for element analysis device
RU2306555C1 (en) Method and the apparatus used for gas-chromatography analysis of the hydrogen-containing gaseous mixtures
JPH0475046B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 14