JPH03252176A - Light emitting element of gallium nitride compound semiconductor - Google Patents

Light emitting element of gallium nitride compound semiconductor

Info

Publication number
JPH03252176A
JPH03252176A JP2050210A JP5021090A JPH03252176A JP H03252176 A JPH03252176 A JP H03252176A JP 2050210 A JP2050210 A JP 2050210A JP 5021090 A JP5021090 A JP 5021090A JP H03252176 A JPH03252176 A JP H03252176A
Authority
JP
Japan
Prior art keywords
layer
light emitting
carrier concentration
compound semiconductor
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2050210A
Other languages
Japanese (ja)
Other versions
JP3193980B2 (en
Inventor
Katsuhide Manabe
勝英 真部
Akira Mabuchi
彰 馬淵
Hisayoshi Kato
久喜 加藤
Michinari Sasa
道成 佐々
Masafumi Hashimoto
雅文 橋本
Isamu Akasaki
勇 赤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Japan Science and Technology Agency
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Nagoya University NUC
Research Development Corp of Japan
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Research Development Corp of Japan, Toyoda Gosei Co Ltd, Toyota Central R&D Labs Inc filed Critical Nagoya University NUC
Priority to JP5021090A priority Critical patent/JP3193980B2/en
Priority to CA002037198A priority patent/CA2037198C/en
Priority to EP91102921A priority patent/EP0444630B1/en
Priority to DE69126152T priority patent/DE69126152T2/en
Publication of JPH03252176A publication Critical patent/JPH03252176A/en
Priority to US07/926,022 priority patent/US5278433A/en
Priority to US08/556,232 priority patent/US5733796A/en
Priority to US08/956,950 priority patent/US6249012B1/en
Priority to US09/417,778 priority patent/US6593599B1/en
Priority to US09/586,607 priority patent/US6362017B1/en
Priority to US09/677,788 priority patent/US6607595B1/en
Priority to US09/677,781 priority patent/US6830992B1/en
Priority to US09/677,787 priority patent/US6472689B1/en
Priority to US09/677,789 priority patent/US6472690B1/en
Application granted granted Critical
Publication of JP3193980B2 publication Critical patent/JP3193980B2/en
Priority to US10/052,347 priority patent/US6984536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To increase blue light emitting intensity of a light emitting diode by forming a double layer structure of a low carrier concentration layer and a high carrier concentration layer sequentially from the side of connecting an N-type layer to an l-type layer. CONSTITUTION:A sapphire board 1 is vapor etched, an AlN buffer layer 2 is formed, a high carrier concentration layer 3 made of GaN is formed, and then an N<+> type low carrier concentration layer 4 made of GaN is formed. Then, an I-type layer 5 made of GaN is formed.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は青色発光の窒化ガリウム系化合物半導体発光素
子に関する。
The present invention relates to a gallium nitride compound semiconductor light emitting device that emits blue light.

【従来技術】[Prior art]

従来、青色の発光ダイオードとしてGaN系の化合物半
導体を用いたものが知られている。そのGaN系の化合
物半導体は直接遷移であることから発光効率が高いこと
、光の3原色の1つである青色を発光色とすること等か
ら注目されている。 このようなGaN系の化合物半導体を用いた発光ダイオ
ードは、サファイア基板上に直接又は窒化アルミニウム
から成るバッファ層を介在させて、N導電型のGaN系
の化合物半導体から成るN層を成長させ、そのN層の上
にP型不純物を添加してI型のGaN系の化合物半導体
から成る1層を成長させた構造をとっている(特開昭6
2−119196号公報、特開昭63−188977号
公報)。
Conventionally, blue light emitting diodes using GaN-based compound semiconductors are known. The GaN-based compound semiconductor is attracting attention because it has high luminous efficiency due to direct transition, and because it emits blue light, which is one of the three primary colors of light. A light emitting diode using such a GaN-based compound semiconductor is produced by growing an N layer made of an N-conductivity type GaN-based compound semiconductor on a sapphire substrate directly or with a buffer layer made of aluminum nitride interposed therebetween. It has a structure in which a single layer of I-type GaN-based compound semiconductor is grown on top of the N layer by doping P-type impurities (Japanese Unexamined Patent Application Publication No. 1983-1992).
2-119196, JP-A-63-188977).

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかし、上記構造の発光ダイオードの発光強度は未だ十
分ではなく、改良が望まれている。 そこで、本発明の目的は、GaN系の化合物半導体の発
光ダイオードの青色の発光強度を向上させることである
However, the light emitting intensity of the light emitting diode with the above structure is still not sufficient, and improvements are desired. Therefore, an object of the present invention is to improve the blue light emission intensity of a GaN-based compound semiconductor light emitting diode.

【課題を解決するための手段】[Means to solve the problem]

本発明は、N型の窒化ガリウム系化合物半導体(Aムc
at−xN;X=Oを含む)からなるN層と、P型不純
物を添加したI型の窒化ガリウム系化合物半導体(Al
xGar−xN:X=Oを含む)からなる1履きを有す
る窒化ガリウム系化合物半導体発光素子において、N層
を1層と接合する側から順に、低キャリア濃度N層と高
キャリア濃度N1層との二重層構造としたことである。 尚、上記低キャリア濃度N層のキャリア濃度はlX10
14〜lXl0”/cutで膜厚は0.5〜2鴻が望ま
しい。キャリア濃度がI X 1017/ cr1以上
となると発光強度が低下するので望ましくなく、lXl
0”/el+!以下となると発光素子の直列抵抗が高く
なりすぎ電流を流すと発熱するので望ましくない。又、
膜厚が2帆以上となると発光素子の直列抵抗が高くなり
すぎ電流を流すと発熱するので望ましくなく、膜厚が0
.5−以下となると発光強度が低下するので望ましくな
い。 更に、高キャリア濃度84層のキャリア濃度は1×10
+7〜lXl0”/el+!で膜厚は2〜10虜が望ま
しい。キャリア濃度がlXl0”/ca!以上となると
結晶性が悪化するので望ましくなく、I×10′7/d
以下となると発光素子の直列抵抗が高くなりすぎ電流を
流すと発熱するので望ましくない。又、膜厚が10μs
以上となると基板が湾曲するめで望ましくなく、膜厚が
2即以下となると発光素子の直列抵抗が高くなりすぎ電
流を流すと発熱するので望ましくない。
The present invention relates to an N-type gallium nitride compound semiconductor (Amc
at-xN (including X=O), and an I-type gallium nitride compound semiconductor (Al
xGar-xN (including It has a double layer structure. Furthermore, the carrier concentration of the above-mentioned low carrier concentration N layer is lX10
It is desirable that the film thickness be 0.5 to 2 mm with a film thickness of 14 to 1X10"/cut. If the carrier concentration exceeds IX1017/cr1, the emission intensity will decrease, which is undesirable.
If it is less than 0''/el+!, the series resistance of the light emitting element will become too high and heat will be generated when current is passed, which is undesirable.
If the film thickness is 2 sails or more, the series resistance of the light emitting element will become too high and heat will be generated when current is passed, which is undesirable.
.. If it is less than 5-5, the luminescence intensity will decrease, which is not desirable. Furthermore, the carrier concentration of the high carrier concentration 84 layer is 1×10
+7 to lXl0"/el+!, and the film thickness is preferably 2 to 10 cm. The carrier concentration is lXl0"/ca! If it is more than that, the crystallinity will deteriorate, which is undesirable, and I×10'7/d
If it is below, the series resistance of the light emitting element will become too high and heat will be generated when current is passed, which is not desirable. Also, the film thickness is 10μs
If it is more than that, the substrate will be curved, which is undesirable, and if the film thickness is less than 2 mm, the series resistance of the light emitting element will become too high, causing heat to be generated when current is passed, which is undesirable.

【発明の作用及び効果】[Operation and effects of the invention]

本発明は、N層を1層と接合する側から順に、低キャリ
ア濃度N層と高キャリア濃度84層との二重層構造とす
ることで、発光ダイオードの青色の発光強度を増加させ
ることができた。 即ち、高キャリア濃度84層によりN層全体の電気抵抗
を小さくでき、発光ダイオードの直列抵抗が下がり、発
光ダイオードの発熱を抑えることができる。又、1層に
接合するN層は低キャリア濃度とすること、つまりGa
Nを高純度化して発光領域(1層及びその近傍)の青色
発光を劣化させる不純物原子濃度を抑えることができる
。以上の作用により青色の発光強度が向上した。
The present invention makes it possible to increase the blue light emission intensity of a light emitting diode by forming a double layer structure of a low carrier concentration N layer and a high carrier concentration 84 layers in order from the side where the N layer is joined to the first layer. Ta. That is, the electrical resistance of the entire N layer can be reduced by the high carrier concentration 84 layer, the series resistance of the light emitting diode can be reduced, and the heat generation of the light emitting diode can be suppressed. In addition, the N layer that is connected to the first layer should have a low carrier concentration, that is, the Ga
By highly purifying N, it is possible to suppress the impurity atom concentration that degrades blue light emission in the light emitting region (one layer and its vicinity). The above effects improved the blue light emission intensity.

【実施例】【Example】

以下、本発明を具体的な実施例に基づいて説明する。 第1図において、発光ダイオード1oは、サファイア基
板1を有しており、そのサファイア基板1に500人の
AINのバッファ層2が形成されている。そのバッファ
層2の上には、順に、膜厚綿22umのGaNから成る
高キャリア濃度N1層3と膜厚綿1.5帆のGaNから
成る低キャリア濃度N層4が形成されており、更に、低
キャリア濃度N層4の上に膜厚綿0.2−のGaNから
成る1層5が形成されている。そして、1層5に接続す
るアルミニウムで形成された電極7と高キャリア濃度8
4層3に接続するアルミニウムで形成された電極8とが
形成されている。 次に、この構造の発光ダイオード10の製造方法につい
て説明する。 上記発光ダイオード10は、有機金属化合物気相成長法
(以下rMOVPfi Jと記す)による気相成長によ
り製造された。 用いられたガスは、NHsとキャリアガスH2とトリメ
チルガリウム(Ga (CHs) s) (以下rTM
G Jと記す)とトリメチルアルミニウム(AI(CH
,)、) (以下rTMAJと記す)とシラン(SiH
,)とジエチル亜鉛(以下rDEZJと記す)である。 まず、有機洗浄及び熱処理により洗浄したa面を主面と
する単結晶のサファイア基板1をMOVPE装置の反応
室に載置されたサセプタに装着する。 次に、常圧でN2を流速2β/分で反応室に流しながら
温度1100℃でサファイア基板1を気相エツチングし
た。 次に、温度を400℃まで低下させて、N2を26j’
/分、NHsを101!/分、TMAを1.8x 10
−5モJl/ /分で供給してAffNのバッファ層2
が約500人の厚さに形成された。 次に、サファイア基板1の温度を1150tに保持し、
N2を20Il/分、N層5を101/分、TMGを1
.7X 10−’モル/分、■、で0.86ppmまで
希釈したシラン(Si)1.)を200m1/分の割合
で30分間供給し、膜厚綿2.2層m、キャリア濃度1
.5X 10”/ Cl1lのGaNから成る高キャリ
ア濃度N4層3を形成した。 続いて、サファイア基板1の温度を1150℃に保持し
、N2を201!/分、NH,を101/分、TMGを
1゜7X10−’モルフ分の割合で20分間供給し、膜
厚約1.5μs、キャリア濃度lXl0”/ca!のG
aNから成る低キャリア濃度N層4を形成した。 次に、サファイア基板1を900℃にして、N3を20
1/分、NH,を101/分、TMGを1.7X 10
−’モルフ分、DEZを1.5X 10−’モルフ分の
割合で2分間供給して、膜厚0.2μsのGaNから成
る1層5を形成した。 このようにして、第2図に示すような多層構造が得られ
た。 次に、第3図に示すように、1層5の上に、スパッタリ
ングによりSlO□層11を2000人の厚さに形成し
た。次に、そのSiO□層11上にフォトレジスト12
を塗布して、フォトリソグラフにより、そのフォトレジ
スト12を高キャリア濃度N3層3に対する電極形成部
位のフォトレジストを除去したパターンに形成した。 次に、第4図に示すように、フォトレジスト12によっ
て覆われていないSiO□層11をフッ酸系エツチング
液で除去した。 次ニ、第5図に示すように、フォトレジスト12及び5
iDx層11によって覆われていない部位の1層5とそ
の下の低キャリア濃度N層4と高キャリア濃度N1層3
の上面一部を、真空度0.04Torr、高周波電力0
.44W/7、CCβ2F2ガスを10m12/分の割
合で供給しドライエツチングした後、Arでドライエツ
チングした。 次に、第6図に示すように、1層5上に残っているS+
02層11をフッ酸で除去した。 次に、第7図に示すように、試料の上全面に、AI層1
3を蒸着により形成した。そして、そのA1層13の上
に7オトレジスト14を塗布して、フォトリソグラフに
より、そのフォトレジスト14が高キャリア濃度N+層
3及び1層5に対する電極部が残るように、所定形状に
パターン形成した。 次に、第7図に示すようにそのフォトレジスト14をマ
スクとして下層のAI層13の露出部を硝酸系エツチン
グ液でエツチングし、フォトレジスト14をアセトンで
除去し、高キャリア濃度N+層3の電極8.1層5の電
極7を形成した。 このようにして、第1図に示すMis(Metal−1
nsuIator Sem1conductor)構造
の窒化ガリウム系発光素を製造することができる。 このようにして製造された発光ダイオード10の発光強
度を測定したところ、Q、 2mcdであった。 これは、単純に1層とキャリア濃度5x 10”/ c
rl、厚さ4μsのN層とを接続した従来の発光ダイオ
ードに比べて、発光強度が4倍に向上した。 又、発光面を観察した所、発光点の数が増加しているこ
とも観察された。 尚、比較のために、低キャリア濃度N層4のキャリア濃
度を各種変化させた上記試料を製造して、発光強度及び
発光スペクトラムを測定した。その結果を、第8図に示
す。 キャリア濃度が増加するに連れて、発光強度が減少し、
且つ、発光波長が赤色側に変位するこ止が分かる。この
ことは、ドーピング元素のシリコンが1層5に不純物元
素として拡散または混入す
The present invention will be described below based on specific examples. In FIG. 1, a light emitting diode 1o has a sapphire substrate 1 on which a buffer layer 2 of 500 AIN is formed. On the buffer layer 2, a high carrier concentration N1 layer 3 made of GaN with a film thickness of 22 um and a low carrier concentration N layer 4 made of GaN with a film thickness of 1.5 μm are formed in order. , a layer 5 made of GaN having a thickness of 0.2 mm is formed on the low carrier concentration N layer 4. Then, an electrode 7 formed of aluminum connected to the first layer 5 and a high carrier concentration 8
An electrode 8 made of aluminum and connected to the four layers 3 is formed. Next, a method for manufacturing the light emitting diode 10 having this structure will be described. The light emitting diode 10 was manufactured by vapor phase growth using an organometallic compound vapor phase growth method (hereinafter referred to as rMOVPfi J). The gases used were NHs, carrier gas H2, and trimethylgallium (Ga(CHs)s) (rTM
G J) and trimethylaluminum (AI (CH
, ), ) (hereinafter referred to as rTMAJ) and silane (SiH
) and diethylzinc (hereinafter referred to as rDEZJ). First, a single-crystal sapphire substrate 1 having an a-plane main surface that has been cleaned by organic cleaning and heat treatment is mounted on a susceptor placed in a reaction chamber of a MOVPE apparatus. Next, the sapphire substrate 1 was subjected to vapor phase etching at a temperature of 1100° C. while flowing N2 into the reaction chamber at a flow rate of 2β/min at normal pressure. Next, reduce the temperature to 400°C and add 26j' of N2.
/min, 101 NHs! /min, TMA 1.8x 10
Buffer layer 2 of AffN supplied at -5MoJl//min
was formed to a thickness of about 500 people. Next, maintain the temperature of the sapphire substrate 1 at 1150t,
N2 at 20Il/min, N layer 5 at 101/min, TMG at 1
.. Silane (Si) diluted to 0.86 ppm with 7X 10-' mol/min, 1. ) was supplied for 30 minutes at a rate of 200 m1/min, the film thickness was 2.2 m, and the carrier concentration was 1 m.
.. A high carrier concentration N4 layer 3 made of GaN of 5×10"/Cl1l was formed. Subsequently, the temperature of the sapphire substrate 1 was maintained at 1150°C, and N2 was supplied at 201!/min, NH at 101/min, and TMG at 101/min. It was supplied for 20 minutes at a rate of 1°7×10−' morph, with a film thickness of about 1.5 μs and a carrier concentration of 1×10”/ca! G of
A low carrier concentration N layer 4 made of aN was formed. Next, the sapphire substrate 1 was heated to 900°C and N3 was heated to 20°C.
1/min, NH, 101/min, TMG 1.7X 10
-' morph and DEZ was supplied for 2 minutes at a rate of 1.5×10 -' morph to form one layer 5 made of GaN with a film thickness of 0.2 μs. In this way, a multilayer structure as shown in FIG. 2 was obtained. Next, as shown in FIG. 3, a SlO□ layer 11 was formed on the first layer 5 by sputtering to a thickness of 2,000 layers. Next, a photoresist 12 is placed on the SiO□ layer 11.
was coated, and the photoresist 12 was formed by photolithography into a pattern in which the photoresist at the electrode formation site for the high carrier concentration N3 layer 3 was removed. Next, as shown in FIG. 4, the SiO□ layer 11 not covered with the photoresist 12 was removed using a hydrofluoric acid etching solution. Next, as shown in FIG.
1 layer 5 in a portion not covered by the iDx layer 11, a low carrier concentration N layer 4 below it, and a high carrier concentration N1 layer 3
A part of the upper surface of the
.. 44W/7, CCβ2F2 gas was supplied at a rate of 10 ml/min for dry etching, and then dry etching was performed with Ar. Next, as shown in FIG.
02 layer 11 was removed with hydrofluoric acid. Next, as shown in FIG. 7, an AI layer 1 is placed on the entire upper surface of the sample.
3 was formed by vapor deposition. Then, a 7 photoresist 14 was coated on the A1 layer 13, and the photoresist 14 was patterned into a predetermined shape by photolithography so that electrode portions for the high carrier concentration N+ layer 3 and the 1 layer 5 remained. . Next, as shown in FIG. 7, using the photoresist 14 as a mask, the exposed portion of the lower AI layer 13 is etched with a nitric acid-based etching solution, the photoresist 14 is removed with acetone, and the high carrier concentration N+ layer 3 is etched. Electrode 8.1 Electrode 7 of layer 5 was formed. In this way, Mis(Metal-1
It is possible to manufacture a gallium nitride-based light emitting device having a nsuIator Sem1 conductor) structure. When the light emitting intensity of the light emitting diode 10 manufactured in this manner was measured, it was found to be Q, 2 mcd. This is simply one layer and a carrier concentration of 5x 10”/c
Compared to a conventional light-emitting diode in which RL and an N layer with a thickness of 4 μs were connected, the light emission intensity was improved four times. Furthermore, when the light emitting surface was observed, it was also observed that the number of light emitting points was increasing. For comparison, the above samples were manufactured in which the carrier concentration of the low carrier concentration N layer 4 was varied, and the emission intensity and emission spectrum were measured. The results are shown in FIG. As the carrier concentration increases, the emission intensity decreases,
Moreover, it can be seen that the emission wavelength stops shifting toward the red side. This means that silicon, which is a doping element, is diffused or mixed into layer 5 as an impurity element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の具体的な一実施例に係る発光ダイオー
ドの構成を示した構成図、第2図乃至第7図は同実施例
の発光ダイオードの製造工程を示した断面図、第8図は
低キャリア濃度N層のキャリア濃度と発光強度及び発光
波長との関係を示した測定図である。 10 発光ダイオード 1 サファイア基板2 バッフ
ァ層 3 高キャリア濃度N゛層4 低キャリア濃度N
層 51層 7.8 電極
FIG. 1 is a block diagram showing the structure of a light emitting diode according to a specific embodiment of the present invention, FIGS. 2 to 7 are cross-sectional views showing the manufacturing process of the light emitting diode of the same embodiment, and FIG. The figure is a measurement diagram showing the relationship between the carrier concentration of the low carrier concentration N layer, the emission intensity, and the emission wavelength. 10 Light emitting diode 1 Sapphire substrate 2 Buffer layer 3 High carrier concentration N layer 4 Low carrier concentration N
Layers 51 layers 7.8 electrodes

Claims (1)

【特許請求の範囲】 N型の窒化ガリウム系化合物半導体(Al_xGa_1
_−_xN;X=0を含む)からなるN層と、P型不純
物を添加したI型の窒化ガリウム系化合物半導体(Al
_xGa_1_−_xN;X=0を含む)からなるI層
とを有する窒化ガリウム系化合物半導体発光素子におい
て、 前記N層を前記I層と接合する側から順に、低キャリア
濃度N層と高キャリア濃度N^+層との二重層構造とし
たことを特徴とする発光素子。
[Claims] N-type gallium nitride compound semiconductor (Al_xGa_1
____xN;
In a gallium nitride compound semiconductor light emitting device having an I layer consisting of _xGa_1_-_xN; A light emitting device characterized by having a double layer structure with a ^+ layer.
JP5021090A 1990-02-28 1990-02-28 Gallium nitride based compound semiconductor light emitting device Expired - Fee Related JP3193980B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP5021090A JP3193980B2 (en) 1990-02-28 1990-02-28 Gallium nitride based compound semiconductor light emitting device
CA002037198A CA2037198C (en) 1990-02-28 1991-02-27 Light-emitting semiconductor device using gallium nitride group compound
EP91102921A EP0444630B1 (en) 1990-02-28 1991-02-27 Light-emitting semiconductor device using gallium nitride group compound
DE69126152T DE69126152T2 (en) 1990-02-28 1991-02-27 Gallium nitride compound semiconductor light emitting device
US07/926,022 US5278433A (en) 1990-02-28 1992-08-07 Light-emitting semiconductor device using gallium nitride group compound with double layer structures for the n-layer and/or the i-layer
US08/556,232 US5733796A (en) 1990-02-28 1995-11-09 Light-emitting semiconductor device using gallium nitride group compound
US08/956,950 US6249012B1 (en) 1990-02-28 1997-10-23 Light emitting semiconductor device using gallium nitride group compound
US09/417,778 US6593599B1 (en) 1990-02-28 1999-10-14 Light-emitting semiconductor device using gallium nitride group compound
US09/586,607 US6362017B1 (en) 1990-02-28 2000-06-02 Light-emitting semiconductor device using gallium nitride group compound
US09/677,788 US6607595B1 (en) 1990-02-28 2000-10-02 Method for producing a light-emitting semiconductor device
US09/677,781 US6830992B1 (en) 1990-02-28 2000-10-02 Method for manufacturing a gallium nitride group compound semiconductor
US09/677,787 US6472689B1 (en) 1990-02-28 2000-10-02 Light emitting device
US09/677,789 US6472690B1 (en) 1990-02-28 2000-10-02 Gallium nitride group compound semiconductor
US10/052,347 US6984536B2 (en) 1990-02-28 2002-01-23 Method for manufacturing a gallium nitride group compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5021090A JP3193980B2 (en) 1990-02-28 1990-02-28 Gallium nitride based compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH03252176A true JPH03252176A (en) 1991-11-11
JP3193980B2 JP3193980B2 (en) 2001-07-30

Family

ID=12852735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5021090A Expired - Fee Related JP3193980B2 (en) 1990-02-28 1990-02-28 Gallium nitride based compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3193980B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor

Also Published As

Publication number Publication date
JP3193980B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
JP2623464B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH03252175A (en) Manufacture of gallium nitride compound semiconductor
JP3312715B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH0281484A (en) Gallium nitride-based compound semiconductor light-emitting element
JPH07131068A (en) Nitrogen-group-iii element compound semiconductor light emitting element
JP3193981B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH03252176A (en) Light emitting element of gallium nitride compound semiconductor
JP3661871B2 (en) Method for producing gallium nitride compound semiconductor
JP3026102B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH04163970A (en) Gallium nitride compound semiconductor light emitting element and manufacture thereof
JP3613190B2 (en) Gallium nitride compound semiconductor light emitting device and method for manufacturing the same
JPH04321279A (en) Gallium nitride base compound semiconductor light-emitting device
JP2681094B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH06151962A (en) Nitrogen-iii compound semiconductor luminous element and manufacture thereof
JPH08125222A (en) Method for manufacture of group iii nitride semiconductor
JP3727091B2 (en) Group 3 nitride semiconductor device
JP3232654B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JP3184203B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3498185B2 (en) Nitrogen-3 group compound semiconductor light emitting device and method of manufacturing the same
JPH05308156A (en) Gallium nitride compound semiconductor light emitting element
JP2002270892A (en) Gallium nitride compound semiconductor light-emitting element
JPH05308154A (en) Gallium nitride compound semiconductor light emitting element
JP2004080047A (en) METHOD FOR MANUFACTURIG GALLIUM NITRIDE(GaN) COMPOUND SEMICONDUCTOR
JP2001185499A (en) Manufacture of gallium nitride-based compound semiconductor
JPH04299583A (en) Gallium nitride based compound semiconductor light emitting element

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees