JPH03252078A - Corona discharge electrode and manufacture thereof - Google Patents

Corona discharge electrode and manufacture thereof

Info

Publication number
JPH03252078A
JPH03252078A JP4825690A JP4825690A JPH03252078A JP H03252078 A JPH03252078 A JP H03252078A JP 4825690 A JP4825690 A JP 4825690A JP 4825690 A JP4825690 A JP 4825690A JP H03252078 A JPH03252078 A JP H03252078A
Authority
JP
Japan
Prior art keywords
diffusion layer
core material
plating
layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4825690A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hara
義広 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4825690A priority Critical patent/JPH03252078A/en
Publication of JPH03252078A publication Critical patent/JPH03252078A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the adhering force between a plating layer and an electrode core material and improve discharge characteristic by providing a diffusion layer formed on the electrode core material surface and the plating layer formed on the diffusion layer. CONSTITUTION:A diffusion layer 2 by metal diffusion formed on the surface of an electrode core material 1 and a plating layer 3 by metal plating formed on the diffusion layer 2 are provided. As the core material 1 of the electrode, tungsten, molybdenum and alloys thereof can be used. The metal materials used in the diffusion layer 2 and the plating layer 3 include noble metals such as gold and platinum and alloys thereof. In this way, the interposition of the diffusion layer 2 by forming the metal diffusion layer 2 on the core material 1 surface of the electrode, and plating the metal material on the diffusion layer 2 allows the prevention of plating peeling in drawing work, and the surface state of the plating layer 3 is made fine, resulting in an improvement in smoothness. Hence, the adhesion between the electrode core material and the plating layer can be improved, and discharge characteristic can be improved.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、コロナ放電電極およびその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Field of Industrial Application) The present invention relates to a corona discharge electrode and a method for manufacturing the same.

(従来の技術) コロナ放電は、たとえば鋭い先端を持った電極による電
界など、不平等電界によって部分的に持続的な気体放電
が起きている状態である。
(Prior Art) Corona discharge is a state in which a partially sustained gas discharge occurs due to an unequal electric field, such as an electric field caused by an electrode with a sharp tip.

この状態では中性分子のイオン化が起き、かなりの導電
性を示す。
In this state, ionization of neutral molecules occurs and the material exhibits considerable electrical conductivity.

コロナ放電電極の材料としては、機械的強度にすぐれし
かも安価である理由からタングステンが多く用いられて
いた。しかし、タングステンをコロナ放電電極として使
用する場合、均一で安定した放電を短時間しか持続し得
ず、ある程度の長時間の安定したコロナ放電を維持する
ために、次のようなコロナ放電電極が提案されている。
Tungsten is often used as a material for corona discharge electrodes because it has excellent mechanical strength and is inexpensive. However, when using tungsten as a corona discharge electrode, a uniform and stable discharge can only be sustained for a short period of time.In order to maintain a stable corona discharge for a certain amount of time, the following corona discharge electrode has been proposed. has been done.

たとえば、実開昭58−1+8787号公報には、タン
グステン等の芯材に白金等の貴金属をめっきや蒸着によ
り被覆させた二層構造のコロナ放電電極が記載されてい
る。
For example, Japanese Utility Model Application Publication No. 58-1+8787 describes a corona discharge electrode having a two-layer structure in which a core material such as tungsten is coated with a noble metal such as platinum by plating or vapor deposition.

また、特開昭59−204051i号公報によればタン
グステン等の芯材に白金等のバイブを被せ、これを所定
線径まで線引き加工し、芯材と被覆材との密着力と線材
表面の平滑性を向上させ、白金等の耐食性により放電特
性を向上させるクラッド法が記載されている。
According to Japanese Patent Application Laid-Open No. 59-204051i, a core material such as tungsten is covered with a vibrator such as platinum, and this is drawn to a predetermined wire diameter to improve the adhesion between the core material and the coating material and the smoothness of the wire surface. A cladding method has been described that improves discharge characteristics by using corrosion resistance of platinum or the like.

(発明が解決しようとする課題) しかし、上述した二重構造のコロナ放電電極は、芯材と
被覆材との密着力が充分でないために、放電中に被覆材
が剥離してしまうという問題が生し、放電特性を大きく
向上させるには至らなかった。
(Problem to be Solved by the Invention) However, the double-structured corona discharge electrode described above has a problem in that the coating material peels off during discharge because the adhesion between the core material and the coating material is insufficient. However, the discharge characteristics were not significantly improved.

また、二層構造の電極は表面の平滑性が良好でないとい
う問題があり、電気特性の向上を阻む阻害要因となって
いる。
Further, the two-layer structure electrode has a problem in that the surface smoothness is not good, which is an impediment to improving electrical characteristics.

さらに、上述した白金等のバイブを使用するクラッド法
では、白金等のバイブが高硬であるだけてなく、放電特
性の低下を防ぐために、線引き加工による芯材の露出を
防止する必要があり、被覆材の厚さに一定以上の量を必
要とするため、コストダウンか難しく、材料効率の点か
らも望ましくないという問題かある。
Furthermore, in the cladding method using a vibrator made of platinum or the like mentioned above, not only is the vibrator made of platinum or the like highly hard, but it is also necessary to prevent the core material from being exposed during wire drawing in order to prevent deterioration of discharge characteristics. Since a certain amount or more is required for the thickness of the coating material, it is difficult to reduce costs, and it is also undesirable from the point of view of material efficiency.

そこで、コロナ放電電極の芯材とこの芯材上に形成する
放電特性を向上させるための金属材料との密着性を向上
させ、形成した被覆層の表面平滑性を向上させることが
課題となっている。
Therefore, the challenge was to improve the adhesion between the core material of the corona discharge electrode and the metal material formed on this core material to improve the discharge characteristics, and to improve the surface smoothness of the formed coating layer. There is.

本発明はこのような課題を解決するためになされたもの
で、電極の芯材と被覆層との密着性を改善し、放電特性
に優れたコロナ放電電極およびその製造方法を提供する
ことを目的とする。
The present invention has been made to solve these problems, and an object of the present invention is to provide a corona discharge electrode that improves the adhesion between the core material and the coating layer of the electrode and has excellent discharge characteristics, and a method for manufacturing the same. shall be.

[発明の構成] (課題を解決するための手段) 本発明のコロナ放電電極は、線状の芯材と、この芯材表
面に形成された金属の拡散による拡散層と、この拡散層
上に形成された金属のめっきによるめっき層とを有する
ことを特徴占している。
[Structure of the Invention] (Means for Solving the Problems) The corona discharge electrode of the present invention includes a linear core material, a diffusion layer formed on the surface of the core material by metal diffusion, and a diffusion layer formed on the surface of the core material. It is characterized by having a plating layer formed by metal plating.

また、本発明のコロナ放電電極の製造方法は、線状の芯
材表面に金属めっきを施し、この芯材を熱処理して芯材
表面に金属拡散層を形成する工程と、前記金属拡散層表
面に金属めっきを施し、金属めっき層を形成する工程と
、前記金属拡散層と前記金属めっき層とが形成された前
記芯材を線弓き加工する工程とを有することを特徴とし
ている。
The method for manufacturing a corona discharge electrode of the present invention also includes the steps of applying metal plating to the surface of a linear core material, heat-treating the core material to form a metal diffusion layer on the surface of the core material, and forming a metal diffusion layer on the surface of the metal diffusion layer. The method is characterized by comprising a step of applying metal plating to form a metal plating layer, and a step of wire bowing the core material on which the metal diffusion layer and the metal plating layer are formed.

本発明において、電極の芯材としてはタングステン、モ
リブデンまたはこれらの合金などを使用することかでき
、中でもタングステンは碓格、機械的強度の点から適し
ている。
In the present invention, tungsten, molybdenum, or an alloy thereof can be used as the core material of the electrode, and tungsten is particularly suitable from the viewpoint of mechanical strength.

本発明の拡散層およびめっき層に用いる金属材料として
は、金、白金などの貴金属およびそれらの合金などが挙
げられる。
Metal materials used for the diffusion layer and plating layer of the present invention include noble metals such as gold and platinum, and alloys thereof.

この拡散層は次のようにして形成することができる。ま
ず、線状の芯材表面に、厚さ 0.1−0.3μ墨の金
属めっき、たとえば金めつきを電気めっき法にて施す。
This diffusion layer can be formed as follows. First, metal plating with a thickness of 0.1 to 0.3 μm, such as gold plating, is applied to the surface of the linear core material by electroplating.

次に、200mmのヒートゾーンを有する加熱炉中に、
水素雰囲気中、41)O”C〜soo”c程度の温度下
、3f]0〜809c■/■inの引出し速度で芯材を
通過させる。
Next, in a heating furnace with a heat zone of 200 mm,
In a hydrogen atmosphere, at a temperature of about 41) O''C to soo''c, the core material is passed through at a drawing speed of 3f]0 to 809c/■in.

これによって芯材の表面には金の拡散層が形成される。As a result, a gold diffusion layer is formed on the surface of the core material.

拡散層の厚さは芯材の直径厚によって異なるが、直径0
.09 +iui程度の芯材に対して拡散層は0.75
〜2μm程度の厚さて形成することか好ましい。
The thickness of the diffusion layer varies depending on the diameter and thickness of the core material, but
.. The diffusion layer is 0.75 for the core material of 09 +iui
It is preferable to form the film with a thickness of about 2 μm.

次いて、この拡散層上に金めつきを施し、めっき層を形
成する。
Next, gold plating is applied on this diffusion layer to form a plating layer.

めっき層形成後には、ダイスなどを用い、冷間で線引き
力【I工を行う。
After forming the plating layer, cold drawing force is applied using a die or the like.

線引き加工においては、めっき層形成直後の線材直径に
対して1/1o00■はど直径を減少させつつ伸線を繰
返17、金めつき層と拡散層との密着性を向上させる。
In the wire drawing process, the wire drawing is repeated 17 while reducing the diameter of the wire by 1/1o00 to the diameter of the wire immediately after the plating layer is formed, thereby improving the adhesion between the gold plating layer and the diffusion layer.

ある程度まで拡散層とめっき層との密着力を高めた後に
は、l/100 ll1m単位で線径を減少させながら
線引きを行ってもめっき層の剥離を生しさせずに伸線を
行うことができる。
After increasing the adhesion between the diffusion layer and the plating layer to a certain extent, it is possible to draw the wire without peeling the plating layer even if the wire diameter is reduced in units of 1/100 1 m. can.

(作 用) 本発明によれば、コロナ放電電極の芯材表面に金属の拡
散層が形成され、この拡散層上に、放電特性を向上させ
るための金属材料がめっきされている。
(Function) According to the present invention, a metal diffusion layer is formed on the surface of the core material of a corona discharge electrode, and a metal material for improving discharge characteristics is plated on this diffusion layer.

この拡散層を介することによって、めっき層の密着性が
向上し、線引き加工における剥離が防止される。
By using this diffusion layer, the adhesion of the plating layer is improved and peeling during wire drawing is prevented.

さらに、めっき層の表面状態はより緻密となり、平滑性
か向上するため、放電特性が向上する。
Furthermore, the surface condition of the plating layer becomes more dense and smoothness improves, resulting in improved discharge characteristics.

(実施例) 次に、本発明の実施例について、図面を用いて説明する
(Example) Next, an example of the present invention will be described using the drawings.

実施例1 第1図は本発明によるコロナ放電電極の一実施例を示す
断面図である。
Example 1 FIG. 1 is a sectional view showing an example of a corona discharge electrode according to the present invention.

同図において、直径0.09mmの純タングステン線か
らなる芯材1の表面には、厚さ 1.5μ−の金からな
る拡散層2が形成されている。
In the figure, a diffusion layer 2 made of gold and having a thickness of 1.5 μm is formed on the surface of a core material 1 made of a pure tungsten wire with a diameter of 0.09 mm.

拡散層2の表面にはさらに、厚さ 1.0μ厘の金から
なるめっき層3が形成されている。
A plating layer 3 made of gold and having a thickness of 1.0 μm is further formed on the surface of the diffusion layer 2.

このようなコロナ放電電極は、次のようにして作製する
ことができる。
Such a corona discharge electrode can be produced as follows.

はじめに、表面を清浄化し7た直径0.09−一の純タ
ングステン線に厚さ 0.3μ腸のAuめっきを施す。
First, a pure tungsten wire with a diameter of 0.09-1 whose surface has been cleaned is plated with Au to a thickness of 0.3 μm.

その後、ヒートゾーン20al11の加熱炉中を、水素
雰囲気、700℃の条件下で、タングステン線を5■/
minの速度で通過させ、タングステン表面にAuを拡
散浸透させる。
After that, the tungsten wire was heated 5 cm/2 in the heating furnace of heat zone 20al11 under hydrogen atmosphere and 700°C.
The tungsten is passed through at a speed of min to diffuse and infiltrate Au into the tungsten surface.

この拡散処理後、タングステン線には第2図に示すE 
P M A (Electron Probe Mic
ro Analyzer)の結果から明らかなように、
厚さ 1.5μmのAuft散層が形成された。
After this diffusion treatment, the tungsten wire has an E
PMA (Electron Probe Mic
As is clear from the results of RO Analyzer),
An Auft scattering layer with a thickness of 1.5 μm was formed.

EPMAは、電子線で試料面を走査して元素の2次元分
布を観n1する装置であり、第2図の横軸は断面方向、
縦軸はタングステン(ν)および金(Au)検出用波長
の強度を示している。
EPMA is a device that scans the sample surface with an electron beam to observe the two-dimensional distribution of elements, and the horizontal axis in Figure 2 is the cross-sectional direction;
The vertical axis indicates the intensity of the wavelength for detecting tungsten (ν) and gold (Au).

タングステンの検出は8.983人、金の検出は5.8
40人の波長でそれぞれ行い、拡散層の厚さは^Uの変
曲幅で決定した。
8.983 people detected tungsten, 5.8 people detected gold.
40 different wavelengths were used, and the thickness of the diffusion layer was determined by the inflection width of ^U.

この拡散層の表面には、新たに厚さ 1.0μlのAu
めっき層を通常の電気めっき法にて形成する。
On the surface of this diffusion layer, a new layer of Au with a thickness of 1.0 μl was added.
A plating layer is formed by a normal electroplating method.

その後、ダイスを用い冷間で線引き加工を施し2、最終
線径の直径が0.06vmとなるまで伸線する。
Thereafter, the wire is subjected to cold wire drawing using a die 2 until the final wire diameter becomes 0.06 vm.

この線引き加工においては、まず、^Uめっき後の線径
に対して1/l000mmはど直径を減少させつつ3回
の伸線を繰返して行い、次いで、1/10(l rat
s単位で線径を減少させ、所定の最終線径とする。
In this wire drawing process, first, wire drawing is repeated three times while decreasing the diameter by 1/1000 mm with respect to the wire diameter after U plating, and then the wire diameter is reduced to 1/10 (1/1000 mm).
The wire diameter is decreased in units of s to a predetermined final wire diameter.

このようにして作製した金被覆タングステン電極は、金
めつき層の剥離もなく伸線を行うことができ、金とタン
グステンの密着力が高く、さらに電極の表面平滑性が大
きく向上していた。
The gold-coated tungsten electrode thus produced could be wire-drawn without peeling of the gold plating layer, had high adhesion between gold and tungsten, and had significantly improved surface smoothness.

さらに、この実施例で得たコロナ放電電極を用いて、直
流7KVの電圧を印加し、作動させたところ、安定した
コロナ放電を長時間持続させることができた。
Furthermore, when the corona discharge electrode obtained in this example was operated by applying a DC voltage of 7 KV, stable corona discharge could be maintained for a long time.

実施例2 実施例1で用いたタングステン線と同様の直径0.09
11mの純タングステン線に厚さ 0.3μmの^Uめ
っきを施した。
Example 2 Same diameter as the tungsten wire used in Example 1, 0.09
An 11 m long pure tungsten wire was coated with 0.3 μm thick ^U plating.

その後、ヒートゾーン200■の加熱炉中を、水素雰囲
気、500℃の条件下で、タングステン線を5m/si
nの速度で通過させ、タングステン表面に^υを拡散浸
透させた。
Thereafter, the tungsten wire was heated at 5 m/si in a hydrogen atmosphere at 500°C in a heating furnace with a heat zone of 200 cm.
It was passed at a speed of n to diffuse and infiltrate the tungsten surface.

この拡散処理後、タングステン線には第3図に示すEP
MAの結果から明らかなように、厚さ0.75μ■の^
U拡散層が形成された。
After this diffusion treatment, the tungsten wire is coated with EP as shown in Figure 3.
As is clear from the MA results, the thickness is 0.75μ■^
A U diffusion layer was formed.

その後、実施例1と同一条件でこの人υ拡散層上に^U
めっき層を形成し、最終線径の直径が0.01ilI1
mとなるまで伸線した。
After that, under the same conditions as in Example 1, this person was placed on the υ diffusion layer.
Form a plating layer and the final wire diameter is 0.01ilI1
The wire was drawn until it reached m.

このようにして作製した金被覆タングステン電極は、金
めつき層の剥離もなく伸線を行うことができ、金とタン
グステンの密着力が高く、さらに電極の表面平滑性が大
きく向上していた。
The gold-coated tungsten electrode thus produced could be wire-drawn without peeling of the gold plating layer, had high adhesion between gold and tungsten, and had significantly improved surface smoothness.

さらに、この実施例で得たコロナ放電電極を用いて、交
流5KVの電圧を印加し、作動させたとごろ、安定した
コロナ放電を長時間持続させることができた。
Furthermore, when the corona discharge electrode obtained in this example was operated by applying a voltage of 5 KV AC, stable corona discharge could be sustained for a long time.

実施例3 実施例1で用いたタングステン線と同様の直径0.09
o+iの純タングステン線に厚さ 0.3μmの^Uめ
っきを施した。
Example 3 Same diameter as the tungsten wire used in Example 1, 0.09
O+i pure tungsten wire was coated with 0.3 μm thick ^U plating.

その後、ヒートゾーン200 amの加熱炉中を、水素
雰囲気、600℃の条件下で、タングステン線を5m/
ginの速度で通過させ、タングステン表面にAuを拡
散浸透させた。
Thereafter, the tungsten wire was heated at 5 m/min in a hydrogen atmosphere at 600°C in a heating furnace with a heat zone of 200 am.
It passed at a speed of gin to diffuse and infiltrate the tungsten surface.

この拡散処理後、タングステン線には第4図に示すEP
MAの結果から明らかなように、厚さ1.25μ−のA
u拡散層が形成された。
After this diffusion treatment, the tungsten wire is coated with EP as shown in Figure 4.
As is clear from the MA results, A with a thickness of 1.25 μ-
A u-diffusion layer was formed.

その後、実施例1と同一条件でこのAυ拡散層上にAu
めっき層を形成し、最終線径の直径が0.0611とな
るまで伸線し、コロナ放電電極として、交流8KVの電
圧を印加し、作動させたところ、安定したコロナ放電を
長時間持続させることができた。
After that, Au was deposited on this Aυ diffusion layer under the same conditions as in Example 1.
A plating layer was formed, the wire was drawn until the final wire diameter was 0.0611, and when a voltage of 8 KV AC was applied and activated as a corona discharge electrode, stable corona discharge was sustained for a long time. was completed.

実施例4 実施例1で用いたタングステン線と同様の直径0.09
m−の純タングステン線に厚さ 0.3μ■のAuめっ
きを施した。
Example 4 Same diameter as the tungsten wire used in Example 1, 0.09
Au plating with a thickness of 0.3 μm was applied to m- pure tungsten wire.

その後、ヒートゾーン2001■の加熱炉中を、水素雰
囲気、800℃の条件下で、タングステン線を5層/麿
1nの速度で通過させ、タングステン表面にAuを拡散
浸透させた。
Thereafter, the tungsten wire was passed through a heating furnace of Heat Zone 2001■ in a hydrogen atmosphere at a temperature of 800° C. at a rate of 5 layers/1 n to diffuse and infiltrate the tungsten surface.

この拡散処理後、タングステン線には第5図に示すEP
MAの結果から明らかなように、厚さ2.0μ厘のAu
拡散層が形成された。
After this diffusion treatment, the tungsten wire is coated with EP as shown in FIG.
As is clear from the MA results, 2.0μ thick Au
A diffusion layer was formed.

その後、実施例1と同一条件でこの^U拡散層上にAu
めっき層を形成し、最終線径の直径が0.06mmとな
るまで伸線し、コロナ放電電極として、直流4KVの電
圧を印加し、作動させたところ、安定したコロナ放電を
長時間持続させることかできた。
After that, Au was deposited on this ^U diffusion layer under the same conditions as in Example 1.
A plating layer was formed, the wire was drawn until the final wire diameter was 0.06 mm, and when a DC voltage of 4 KV was applied and activated as a corona discharge electrode, stable corona discharge was maintained for a long time. I was able to do it.

このように、電極芯材表面に金属拡散層を形成し、この
金属拡散層上にめっきを施すことにより、めっき層の密
着力を高め、表面の平滑性を向上させることができた。
In this way, by forming a metal diffusion layer on the surface of the electrode core material and plating the metal diffusion layer, it was possible to increase the adhesion of the plating layer and improve the surface smoothness.

また、これらの実施例で得たコロナ放電電極は、同径の
タングステン線と同等の強度を有し、コストダウンを図
ることができた。
Further, the corona discharge electrodes obtained in these Examples had strength equivalent to that of a tungsten wire of the same diameter, and it was possible to reduce costs.

[発明の効果] 以上説明したように、本発明によれば、電極芯材表面に
形成された拡散層と、この拡散層上に形成されためっき
層とを有するため、めっき層と芯材との密着力を向上さ
せることができ、低コストの下で放電特性に優れたコロ
ナ放電電極を得ることができる。
[Effects of the Invention] As explained above, according to the present invention, since the electrode has a diffusion layer formed on the surface of the core material and a plating layer formed on the diffusion layer, the plating layer and the core material are It is possible to improve the adhesion of the material, and to obtain a corona discharge electrode with excellent discharge characteristics at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のコロナ放電電極の一実施例を示す断
面図、第2図、第3図、第4図および第5図は、拡散処
理温度と金拡散層との関係を示すEPMA写真の模式図
である。 1・・・・・・芯材 2・・・・・・拡散層 3・・・・・・めっき層
FIG. 1 is a cross-sectional view showing one embodiment of the corona discharge electrode of the present invention, and FIGS. 2, 3, 4, and 5 are EPMA diagrams showing the relationship between the diffusion treatment temperature and the gold diffusion layer. It is a schematic diagram of a photograph. 1... Core material 2... Diffusion layer 3... Plating layer

Claims (2)

【特許請求の範囲】[Claims] (1)線状の芯材と、 この芯材表面に形成された金属の拡散による拡散層と、 この拡散層上に形成された金属のめっきによるめっき層
と を有することを特徴とするコロナ放電電極。
(1) A corona discharge characterized by having a linear core material, a diffusion layer formed on the surface of the core material by metal diffusion, and a plating layer formed on the diffusion layer by metal plating. electrode.
(2)線状の芯材表面に金属めっきを施し、この芯材を
熱処理して芯材表面に金属拡散層を形成する工程と、 前記金属拡散層表面に金属めっきを施し、金属めっき層
を形成する工程と、 前記金属拡散層と前記金属めっき層とが形成された前記
芯材を線引き加工する工程と を有することを特徴とするコロナ放電電極の製造方法。
(2) A step of applying metal plating to the surface of the linear core material and heat-treating the core material to form a metal diffusion layer on the surface of the core material, and applying metal plating to the surface of the metal diffusion layer to form a metal plating layer. A method for manufacturing a corona discharge electrode, comprising: forming the metal diffusion layer and the metal plating layer; and drawing the core material on which the metal diffusion layer and the metal plating layer are formed.
JP4825690A 1990-02-28 1990-02-28 Corona discharge electrode and manufacture thereof Pending JPH03252078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4825690A JPH03252078A (en) 1990-02-28 1990-02-28 Corona discharge electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4825690A JPH03252078A (en) 1990-02-28 1990-02-28 Corona discharge electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03252078A true JPH03252078A (en) 1991-11-11

Family

ID=12798367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4825690A Pending JPH03252078A (en) 1990-02-28 1990-02-28 Corona discharge electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03252078A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0675272A1 (en) * 1994-03-29 1995-10-04 Dieter Dr. Kuhnert Prechamber ignition device
JP2008251380A (en) * 2007-03-30 2008-10-16 Nippon Tungsten Co Ltd Static eliminator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0675272A1 (en) * 1994-03-29 1995-10-04 Dieter Dr. Kuhnert Prechamber ignition device
JP2008251380A (en) * 2007-03-30 2008-10-16 Nippon Tungsten Co Ltd Static eliminator

Similar Documents

Publication Publication Date Title
CN109952386B (en) Alloy coated EDM wire
FR2679806A1 (en) HIGH PERFORMANCE COPPER ALLOY ELECTRODE FOR ELECTROEROSION MACHINING AND METHOD OF MANUFACTURE.
JP2915623B2 (en) Electrical contact material and its manufacturing method
US20110033692A1 (en) Composite material composed of a metal matrix in which cnt filaments are distributed, and method for the production of such a composite material
JPH03135041A (en) Manufacture of bonding fine wire for semiconductor use
JP2959872B2 (en) Electrical contact material and its manufacturing method
JP2975246B2 (en) Sn-plated wire for electrical contact and method of manufacturing the same
JPH03252078A (en) Corona discharge electrode and manufacture thereof
KR100767718B1 (en) Electrode wire for high speed working and fabrication method of the same
JP2986645B2 (en) High Fatigue Strength Low Relaxation Galvanized PC Steel Strand and Method for Producing the Same
JPH07156021A (en) Electrode wire for electric discharge machining
JPS62267480A (en) Mechanical plating method
JP2599442B2 (en) Method for producing Pt / Mo clad wire
JPH02117013A (en) Electrode wire
KR100925000B1 (en) Electrode wire for electric discharge machining and manufacturing method thereof
JP2923597B2 (en) Manufacturing method of fine diameter composite metal plated wire
JPH0845644A (en) Electrode for corona discharge and electrostatic charge removing device
JPH0366524A (en) Electrode wire for electric discharge machining
JPH11117051A (en) Production of thunder resistant electric wire
JPH06228783A (en) Platinum coating film electrode and production thereof
JP2685936B2 (en) Manufacturing method of composite material
JP2502058B2 (en) Manufacturing method of NiTi alloy
JP2700249B2 (en) Method of manufacturing Nb (3) Sn multi-core superconducting wire having high residual resistance ratio
JPS5943994B2 (en) Electrode for electrolysis
JPH08302436A (en) Silver-tin oxide combined material and its production