JPH03252055A - Alkaline dry cell - Google Patents

Alkaline dry cell

Info

Publication number
JPH03252055A
JPH03252055A JP2047196A JP4719690A JPH03252055A JP H03252055 A JPH03252055 A JP H03252055A JP 2047196 A JP2047196 A JP 2047196A JP 4719690 A JP4719690 A JP 4719690A JP H03252055 A JPH03252055 A JP H03252055A
Authority
JP
Japan
Prior art keywords
positive electrode
manganese dioxide
dioxide powder
mixture
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2047196A
Other languages
Japanese (ja)
Other versions
JP2925630B2 (en
Inventor
Hiroyuki Takahashi
浩之 高橋
Nobuaki Chiba
千葉 信昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2047196A priority Critical patent/JP2925630B2/en
Publication of JPH03252055A publication Critical patent/JPH03252055A/en
Application granted granted Critical
Publication of JP2925630B2 publication Critical patent/JP2925630B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the heavy load discharge property and to reduce the cost by using a mixture of a chemical synthetic manganese dioxide powder mainly of gamma type crystals and an electrolytic manganese dioxide powder as a positive electrode active substance. CONSTITUTION:This alkaline dry cell is composed of a metal can 1, a positive electrode body 2, a separator 3, a gel-form negative electrode composite 4, a negative electrode collector rod 5, a gasket 6, a metal plate 7, and a metal sealing plate 8. And as a positive electrode active substance, a mixture of a chemical synthetic manganese dioxide powder mainly of rho type crystals which is obtained by acid-processing a manganese oxide made by calcinating manganese sulfate, and an electrolytic manganese dioxide powder is used, and a mixture of graphite and an oil furnace black with the volatile component in the JIS K6221 less than 0.2% and the specific surface area 90-150g/m<2> is used as the positive electrode active material to a positive electrode body 2. By incorporating the mixture of the chemical synthetic manganese dioxide powder and the electrolytic manganese dioxide powder in the positive electrode body 2 as the positive electrode active substance in such a way, the discharge maintaining time is extended. Consequently, the high load discharge property can be improved and the cost can be reduced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はアルカリ乾電池に関し、特に正極体を構成する
正極合剤を改良したアルカリ乾電池に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an alkaline dry battery, and particularly to an alkaline dry battery in which the positive electrode mixture constituting the positive electrode body is improved.

(従来の技術) アルカリ乾電池は、塩化亜鉛電解液を用いたマンガン乾
電池に比べて連続放電及び重負荷放電性能が優れている
ため、携帯用再生装置やカメラのフラッシュライトの電
源等として利用されている。
(Prior art) Alkaline batteries have better continuous discharge and heavy load discharge performance than manganese batteries using zinc chloride electrolyte, so they are used as power sources for portable playback devices and camera flashlights. There is.

ところで、上記アルカリ乾電池の正極活物質としては、
従来より優れた放電性能と高密度を有する電解二酸化マ
ンガン(EMD)が多く用いられていた。
By the way, the positive electrode active material of the alkaline dry battery is as follows:
Electrolytic manganese dioxide (EMD), which has superior discharge performance and high density, has been widely used in the past.

また、電解二酸化マンガン単体では導電性が低いため、
通常、黒鉛、アセチレンブラック等の導電助剤を5〜1
5重量%重量%台して導電性を付与していた。
In addition, because electrolytic manganese dioxide alone has low conductivity,
Usually, 5 to 1% of conductive additives such as graphite and acetylene black are added.
The conductivity was imparted by a concentration of about 5% by weight.

(発明が解決しようとする課8) ところが、EMDは電解酸化工程において、電解時間及
び電力を多量に必要とするため、コストの高いものにな
っていた。しかも、従来の化学合成二酸化マンガン(C
MD)や天然二酸化マンガン(NMD)はEMDよりも
低コストではあるが、重負荷放電については充分な性能
を発揮できなかった。従って、EMDに代わるような高
性能かつ低コストの二酸化マンガンを得るために、化学
的合成法による開発や研究が近年盛んに行なわれている
が、アルカリ乾電池として大量に使用することが可能な
化学合成二酸化マンガンは未だ見い出だされていない。
(Problem 8 to be solved by the invention) However, EMD requires a large amount of electrolysis time and electric power in the electrolytic oxidation process, making it expensive. Moreover, conventional chemically synthesized manganese dioxide (C
MD) and natural manganese dioxide (NMD) are lower in cost than EMD, but cannot exhibit sufficient performance in heavy load discharge. Therefore, in order to obtain high-performance, low-cost manganese dioxide that can replace EMD, development and research using chemical synthesis methods has been actively conducted in recent years. Synthetic manganese dioxide has not yet been discovered.

一方、導電剤として一般に用いられている黒鉛やアセチ
レンブラックはいずれも固有の欠点を有しており、十分
に満足できるものではない。すなわち黒鉛を導電剤とし
た場合、黒鉛粉中に不純物として含有している鉄、鉛、
銅等が正極作用物質と反応し、正極の電位低下や電池の
容量低下が生じたり、電解液保持性が低いことに起因し
て正極活物質の利用率が低下してしまうという問題があ
る。また黒鉛自体は電気抵抗は小さいものの、正極体に
用いた場合その粒子状の構造に起因して、正極体の電気
抵抗を充分に低くすることができない欠点があった。
On the other hand, graphite and acetylene black, which are commonly used as conductive agents, both have inherent drawbacks and are not fully satisfactory. In other words, when graphite is used as a conductive agent, iron, lead, and other impurities contained in graphite powder
There are problems in that copper and the like react with the positive electrode active material, causing a decrease in the potential of the positive electrode and the capacity of the battery, and that the utilization rate of the positive electrode active material decreases due to low electrolyte retention. Further, although graphite itself has a low electrical resistance, when used in a positive electrode body, it has a drawback that the electrical resistance of the positive electrode body cannot be made sufficiently low due to its particle structure.

この点アセチレンブラックは黒鉛粉に比較して不純物が
少なく、また鎖状構造が発達しているため、電解液の保
持性が大きく正極活物質の利用率を向上でき、かつ正極
体の電気抵抗を小さくすることができる。しかしアセチ
レンブラック表面には、正極活物質に対し還元性の強い
官能基が存在しているため、これを導電剤に用いた電池
は電位低下と放電容量低下とが大きくなるという欠点が
あった。
In this respect, acetylene black has fewer impurities than graphite powder and has a well-developed chain structure, so it can retain the electrolyte and improve the utilization rate of the positive electrode active material, while also reducing the electrical resistance of the positive electrode body. Can be made smaller. However, since the surface of acetylene black has a functional group that has strong reducing properties with respect to the positive electrode active material, batteries using this as a conductive agent have the disadvantage that the potential drop and the discharge capacity are greatly reduced.

本発明は上記従来の課題を解決するためになされたもの
で、電解二酸化マンガンを正極活物質、黒鉛を正極導電
剤として用いた場合に比べてより優れた重負荷放電特性
を有し、かつ該電解二酸化マンガンと黒鉛を使用した場
合、より低コストの正極体を備えたアルカリ乾電池を提
供しようとするものである。
The present invention has been made to solve the above-mentioned conventional problems, and has better heavy load discharge characteristics than when electrolytic manganese dioxide is used as a positive electrode active material and graphite as a positive electrode conductive agent. When electrolytic manganese dioxide and graphite are used, the present invention aims to provide an alkaline dry battery with a lower cost positive electrode body.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は硫酸マンガンを焙焼して得られるマンガン酸化
物を酸処理してなるγ形結晶を主成分とした化学合成二
酸化マンガン粉末と、電解二酸化マンガン粉末との混合
物からなる正極活物質と、黒鉛とJ I S  K62
21による揮発分が0.2%以下で、かつ、比表面積が
90〜150g/%でるオイルファーネスブラックとの
混合物を正極導電材とする正極体を用いることを特徴と
するアルカリ乾電池である。
(Means for Solving the Problems) The present invention provides a chemically synthesized manganese dioxide powder mainly composed of γ-type crystals obtained by acid-treating manganese oxide obtained by roasting manganese sulfate, and an electrolytic manganese dioxide powder. a positive electrode active material consisting of a mixture of graphite and JIS K62;
The present invention is an alkaline dry battery characterized by using a positive electrode body comprising, as a positive electrode conductive material, a mixture with oil furnace black having a volatile content of 0.2% or less according to No. 21 and a specific surface area of 90 to 150 g/%.

上記本発明に用いる化学合成二酸化マンガン粉末は、平
均粒径が20μm以下のものを使用することが望ましい
。かかる化学合成二酸化マンガンのγ形結晶の占める割
合は70%以上とすることが望ましい。
The chemically synthesized manganese dioxide powder used in the present invention preferably has an average particle size of 20 μm or less. It is desirable that the ratio of the γ-type crystals of chemically synthesized manganese dioxide be 70% or more.

上記化学合成二酸化マンガン粉末の製造方法例は、次の
通りである。まず、カリウム含有量の少ない硫酸マンガ
ン(M n S 04)溶液を加熱濃縮して硫酸マンガ
ン結晶を調製する。この場合、アルカリ金属、特にカリ
ウムが多く含まれていると、以降の工程での焙焼、酸処
理により活性の低いα形結晶の多い化学合成二酸化マン
ガンが製造されるため好ましくない。つづいて、これを
空気雰囲気又は空気より酸素分圧の大きい酸素雰囲気中
にて800〜1100℃、10分間以上焙焼し、次式(
1) 、(2)に示すように硫酸マンガンを分解してM
n3O4又はMn2O3を主成分とするマンガン酸化物
を造る。
An example of the method for producing the chemically synthesized manganese dioxide powder is as follows. First, manganese sulfate crystals are prepared by heating and concentrating a manganese sulfate (M n S 04) solution with a low potassium content. In this case, if a large amount of alkali metal, particularly potassium, is contained, chemically synthesized manganese dioxide containing many α-form crystals with low activity will be produced by roasting and acid treatment in the subsequent steps, which is not preferable. Next, this is roasted at 800 to 1100°C for 10 minutes or more in an air atmosphere or an oxygen atmosphere with a higher oxygen partial pressure than air, and the following formula (
1) As shown in (2), manganese sulfate is decomposed to produce M.
Manganese oxide whose main component is n3O4 or Mn2O3 is produced.

3MnSO4→Mn304 +SO2+2so3・・・
(1) 2Mnso4−*Mn2 o3+SO2+SO3・・・
(2) 次いで、前記Mn3O4を主成分とするマンガン酸化物
については、例えばロータリーキルン等により700〜
950℃で焙焼し、次式(3)に示す反応を行なって、
その後の工程での酸処理の歩留りのよいMn2O3を主
成分とするマンガン酸化物に変換する。
3MnSO4→Mn304 +SO2+2so3...
(1) 2Mnso4−*Mn2 o3+SO2+SO3...
(2) Next, the manganese oxide containing Mn3O4 as a main component is heated to 700 to
By roasting at 950°C and carrying out the reaction shown in the following formula (3),
It is converted into manganese oxide whose main component is Mn2O3, which has a good yield in acid treatment in the subsequent process.

4 Mn304 + 02 = 6 Mn203  −
(3)次いで、前記M n 203を主成分とするマン
ガン酸化物を硫酸(又は硝酸、塩酸、これらの混合酸)
により酸処理する。これにより、次式(4)、(5)に
示す不均化反応が起こって化学合成二酸化マンガンが生
成される。
4 Mn304 + 02 = 6 Mn203 −
(3) Next, the manganese oxide mainly composed of M n 203 is treated with sulfuric acid (or nitric acid, hydrochloric acid, or a mixed acid thereof).
Treat with acid. As a result, the disproportionation reactions shown in the following formulas (4) and (5) occur to produce chemically synthesized manganese dioxide.

Mn2 o3+H2504 一*Mn o2+Mn S 04 +H20−(4)M
 n 3 04  + 2 H2S 04→Mn 02
  + 2Mn S 04 + 2 H20−(5)次
いで、生成したM n 02を水洗、中和処理、乾燥処
理を施した後、得られた粉末を1〜10トン/ cdの
圧力下でロールプレスにより板状に圧縮成形し、更に所
定の粒度に粉砕することによりγ形結晶を主成分とする
化学合成二酸化マンガン粉末を製造する。
Mn2 o3+H2504 1*Mn o2+Mn S 04 +H20-(4)M
n 3 04 + 2 H2S 04→Mn 02
+ 2Mn S 04 + 2 H20- (5) Next, the generated Mn 02 was washed with water, neutralized, and dried, and then the obtained powder was rolled by a roll press under a pressure of 1 to 10 tons/cd. A chemically synthesized manganese dioxide powder containing γ-type crystals as a main component is produced by compression molding into a plate shape and further pulverizing to a predetermined particle size.

また前記電解二酸化マンガンとしては、市販のものを用
いることができる。
Moreover, as the electrolytic manganese dioxide, commercially available products can be used.

上記化学合成二酸化マンガン粉末と電解二酸化マンガン
粉末との配合割合は、該化学合成二酸化マンガン粉末3
0〜60重量%、電解二酸化マンガン粉末40〜70重
量%の範囲にすることが望ましい。
The mixing ratio of the chemically synthesized manganese dioxide powder and the electrolytic manganese dioxide powder is 3
It is desirable that the electrolytic manganese dioxide powder be in the range of 0 to 60% by weight and 40 to 70% by weight of the electrolytic manganese dioxide powder.

また、本発明においては導電材として用いるオイルファ
ーネスブラックは、液状炭化水素を炉内で分子状酸素お
よび水蒸気の存在下で部分酸化せしめ、合成ガス生成と
同時に生成する副生カーボンを乾燥し、次いで加熱処理
を施して得られる。
In addition, the oil furnace black used as a conductive material in the present invention is produced by partially oxidizing liquid hydrocarbons in the presence of molecular oxygen and water vapor in a furnace, drying the by-product carbon produced at the same time as synthesis gas production, and then Obtained by heat treatment.

その際に用いられる液状炭化水素とは、炭素原子/水素
原子が重量比で9以上のものを意味し、そのような液状
炭化水素としては、例えば、ナフサの熱分解油(エチレ
ンヘビーエンド)、芳香族系炭化水素にカーボンを混合
した液状炭化水素(カーボンオイル)、芳香族系液状炭
化水素にC重油などを混合した混合オイルなどが挙げら
れる。
The liquid hydrocarbon used in this case means a carbon atom/hydrogen atom weight ratio of 9 or more, and such liquid hydrocarbons include, for example, naphtha pyrolysis oil (ethylene heavy end), Examples include liquid hydrocarbons (carbon oil) in which aromatic hydrocarbons are mixed with carbon, mixed oils in which aromatic liquid hydrocarbons are mixed with C heavy oil, and the like.

かかるオイルファーネスブラックを得るためには、液状
炭化水素1トンに対し水蒸気は、200〜800kg、
好ましくは400〜goob使用する。炉内の温度は1
200〜1450℃好ましくは1300〜1450”C
テあり、反応時の圧力は10〜80気圧、好ましくは2
5〜80気圧である。
In order to obtain such oil furnace black, 200 to 800 kg of water vapor is required for 1 ton of liquid hydrocarbon.
Preferably, 400 to goob is used. The temperature inside the furnace is 1
200~1450℃ preferably 1300~1450"C
The pressure during the reaction is 10 to 80 atm, preferably 2
The pressure is 5 to 80 atmospheres.

次に、上記副生カーボンを窒素雰囲気下300〜900
℃で0.5〜3時間乾燥し、さらに不活性ガス雰囲気下
、1000〜3000℃で0.5〜5時間加熱処理を行
なうことにより得られたものが目的とするオイルファー
ネスブラックである。
Next, the above-mentioned by-product carbon was heated to 300 to 900 ml under nitrogen atmosphere.
The target oil furnace black is obtained by drying at 0.5 to 3 hours at 1000°C to 3000°C, and then heat-treating at 1000 to 3000°C for 0.5 to 5 hours in an inert gas atmosphere.

このオイルファーネスブラックは、不純物が少なく、か
つ、鎖状構造が発達しているという特徴がある。上記オ
イルファーネスブラックとアセチレンブラック及び黒鉛
との表面積(rrf/g)、塩酸吸液量(al115g
)、炭素網の面間隔d (002)(人)及び発揮骨(
%)に関する物性の比較を表1に示す。
This oil furnace black is characterized by having few impurities and a well-developed chain structure. Surface area (rrf/g) of the above oil furnace black, acetylene black and graphite, hydrochloric acid absorption amount (al115g)
), carbon mesh spacing d (002) (human) and developed bone (
%) is shown in Table 1.

表   1 表1に示した各物性は、オイルファーネスブラックがア
ルカリ乾電池の正極体用導電剤として適当かどうかを判
断する上でいずれも重要である。
Table 1 The physical properties shown in Table 1 are all important in determining whether oil furnace black is suitable as a conductive agent for the positive electrode of an alkaline battery.

揮発分はカーボンブラック表面の官能基に起因するとさ
れており、アルデヒド基、カルボキシル基、水素等の還
元性を有する官能基を意味する。
The volatile content is said to be caused by functional groups on the surface of carbon black, and refers to functional groups having reducing properties such as aldehyde groups, carboxyl groups, and hydrogen.

こうした揮発分は当然値が小さいほど二酸化マンガンに
対する還元性が小さく良好であり、0.2%を越えると
正極合剤の二酸化マンガンを還元して劣化させるため好
ましくない。
Naturally, the smaller the value of such volatile content, the lower the reducing ability to manganese dioxide, which is better, but if it exceeds 0.2%, it is not preferable because it reduces manganese dioxide in the positive electrode mixture and deteriorates it.

また、本発明のオイルファーネスブラックの製造工程に
おける不活性カズ雰囲気下1000〜3000’Cでの
加熱処理は表面官能基を除去する目的で行われているが
、加熱処理が過多であると、鎖状構造が破壊され導電性
の低下がおこる。従って揮発分が0.02〜0.2であ
ることが望ましい。
In addition, in the production process of the oil furnace black of the present invention, heat treatment at 1000 to 3000'C in an inert gas atmosphere is carried out for the purpose of removing surface functional groups, but excessive heat treatment may cause The structure is destroyed and the conductivity decreases. Therefore, it is desirable that the volatile content is 0.02 to 0.2.

また黒鉛化度を示す炭素網の面間隔d (002)は小
さい方が、すなわち黒鉛の炭素網面間隔3.35人に近
い方が導電性が高くなり望ましいが、黒鉛化度が高くな
り過ぎても表面積、塩酸吸液量が低下する。従って炭素
網の面間隔は3.48〜3.40人であることが望まし
い。これらの条件における比表面積はBET法により測
定するが、その値は90〜150ゴ/gで、塩酸吸液量
は20m15g以上であることが望ましい。
Furthermore, it is desirable that the interplanar spacing d (002) of the carbon network, which indicates the degree of graphitization, is smaller, that is, the interplanar spacing of the carbon network of graphite is closer to 3.35 mm because the conductivity is higher, but the degree of graphitization becomes too high. However, the surface area and amount of hydrochloric acid absorbed decrease. Therefore, it is desirable that the interplanar spacing of the carbon mesh is 3.48 to 3.40. The specific surface area under these conditions is measured by the BET method, and it is desirable that the value is 90 to 150 g/g and the amount of hydrochloric acid absorbed is 20 m15 g or more.

尚、この黒鉛化度を示す炭素網の面間隔d (002)
は、炭素材料学会編炭素材料入門、第184〜192頁
(炭素材料学会、1979年刊)に記載の学術振興会第
117委員会によって確立されたX線口折の手法により
シリコンを標準物質として測定したちのである。
Incidentally, the interplanar spacing d (002) of the carbon network indicating the degree of graphitization
was measured using silicon as a standard material using the X-ray diffraction method established by the 117th Committee of the Japan Society for the Promotion of Science, as described in Introduction to Carbon Materials, edited by the Carbon Materials Society, pages 184-192 (published by the Carbon Materials Society, 1979). It's Shitachino.

ここで、本発明のアルカリ乾電池においては、上記オイ
ルファーネスブラックは黒鉛と混合して用いられる。オ
イルファーネスブラック及び黒鉛の単体における電気抵
抗は表2のとおりである。
Here, in the alkaline dry battery of the present invention, the oil furnace black is used in combination with graphite. Table 2 shows the electrical resistance of oil furnace black and graphite alone.

上記表2から明らかな如く、オイルファーネスブラック
と黒鉛との混合物を用いると、単位重量当りの電気抵抗
がオイルファーネスブラック単体の場合に比べて減少し
、重負荷放電性能をより一層高めることができる。この
オイルファーネスブラックと黒鉛との混合割合は重量比
で98=2〜50:50の範囲にあることが望ましい。
As is clear from Table 2 above, when a mixture of oil furnace black and graphite is used, the electrical resistance per unit weight is reduced compared to the case of oil furnace black alone, and heavy load discharge performance can be further improved. . The mixing ratio of oil furnace black and graphite is preferably in the range of 98=2 to 50:50 by weight.

黒鉛の混合量が2重量%未満では混合するメリットがな
く、一方50重量%より大きくなると前述した黒鉛の悪
影響が生ずる。
If the amount of graphite mixed is less than 2% by weight, there is no merit in mixing it, while if it is more than 50% by weight, the above-mentioned adverse effects of graphite will occur.

(作 用) 本発明によれば、γ形結晶を主成分とした化学合成二酸
化マンガン粉末と電解二酸化マンガン粉末との混合物を
正極活物質として用いることによって、電解二酸化マン
ガン粉末のみを正極活物質として用いた場合に比べて、
重負荷放電特性の優れたアルカリ乾電池を得ることがで
きる。
(Function) According to the present invention, by using a mixture of chemically synthesized manganese dioxide powder mainly composed of γ-type crystals and electrolytic manganese dioxide powder as the positive electrode active material, only the electrolytic manganese dioxide powder can be used as the positive electrode active material. Compared to using
An alkaline dry battery with excellent heavy load discharge characteristics can be obtained.

即ち、上記化学合成二酸化マンガン粉末と電解二酸化マ
ンガン粉末との組成の混合物を、正極活物質とした正極
体を組み込んだアルカリ乾電池では、放電末期での電池
電圧の低下が少なく放電曲線での平坦化又は上昇現象を
生じる。これは放電末期毎のX線回折において、上記組
成の正極活物質を含む正極体ではへテロライト(ZnO
・Mn203)の結晶成長を示す回折強度が他の二酸化
マンガン混合物よりも増大しており、ヘテロライト生成
反応が起こり易い組成であることに起因する。このよう
にヘテロライトの生成によって放電電位が平坦化又は上
昇する原因は、M n 02粒子表面の放電生成物(M
nOOH)と溶液電解液中のZn (OH)4 )イオ
ンの下記(6)式に示す反応に、自由エネルギーの減少
が伴うことによるものと考えられる。
That is, in an alkaline dry battery incorporating a positive electrode body in which a mixture of the above-mentioned chemically synthesized manganese dioxide powder and electrolytic manganese dioxide powder is used as a positive electrode active material, the battery voltage decreases at the end of discharge and the discharge curve becomes flat. Or a rise phenomenon occurs. This is because in the X-ray diffraction at each final stage of discharge, the positive electrode body containing the positive electrode active material with the above composition shows heterolite (ZnO
- The diffraction intensity indicating crystal growth of Mn203) is higher than that of other manganese dioxide mixtures, and this is due to the composition of Mn203), which makes it easier for the heterolite production reaction to occur. The reason why the discharge potential flattens or increases due to the generation of heterolites is due to the discharge products (M
This is thought to be due to the fact that the reaction between Zn(OH)4) ions in the electrolyte solution and Zn(OH)4) ions in the electrolyte solution as shown in the following equation (6) is accompanied by a decrease in free energy.

2Mn0OH+Zn (OH)4 ” −Z n OφM n 203 +2 H20+20 
H−・・・(6) 以上のことから、上記化学合成二酸化マンガン粉末と電
解二酸化マンガン粉末との組成の混合物を正極活物質と
した正極体を組み込んだアルカリ乾電池では、放電持続
時間が長くなり、重負荷放電特性を著しく改善できる。
2Mn0OH+Zn (OH)4 ” -Z n OφM n 203 +2 H20+20
H-... (6) From the above, an alkaline dry battery incorporating a positive electrode body using a mixture of the chemically synthesized manganese dioxide powder and electrolytic manganese dioxide powder as the positive electrode active material has a longer discharge duration. , heavy load discharge characteristics can be significantly improved.

また、従来のアルカリ乾電池に使用されている電解二酸
化マンガンは硫酸マンガンの電解により得られ、その電
解に長時間要するばかりか、多くの電力を消費するが、
本発明の正極体に使用される二酸化マンガンは化学合成
により得られるため電解二酸化マンガンに比べて低コス
ト化を実現できる。
In addition, the electrolytic manganese dioxide used in conventional alkaline batteries is obtained by electrolyzing manganese sulfate, which not only takes a long time but also consumes a lot of electricity.
Since the manganese dioxide used in the positive electrode body of the present invention is obtained by chemical synthesis, it can be produced at a lower cost than electrolytic manganese dioxide.

また、オイルファーネスブラックは前記の如く不純物が
少なく鎖状構造が発達しているため、電解液の保持性が
大きく、正極作用物質の利用率を向上でき、かつ、正極
体の電気抵抗を小さくすることができ、かかる点からも
重負荷放電性能が向上する。本発明に用いたオイルファ
ーネスブラックは不活性ガス雰囲気下で加熱処理される
ので、表面官能基が非常に少なく、したがってアセチレ
ンブラックのように正極活物質を還元して電位及び放電
容量を低下させることが極めて少ない。
In addition, as mentioned above, oil furnace black has few impurities and has a well-developed chain structure, so it has a high electrolyte retention ability, improves the utilization rate of the positive electrode active substance, and reduces the electrical resistance of the positive electrode body. This also improves heavy load discharge performance. Since the oil furnace black used in the present invention is heat-treated in an inert gas atmosphere, it has very few surface functional groups, so it cannot reduce the positive electrode active material and reduce the potential and discharge capacity like acetylene black. are extremely rare.

(実施例) 以下、本発明の実施例を図面を参照して詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

実施例1 平均粒径が約IOμmのMnO2を92%含むγ形結晶
の化学合成二酸化マンガン粉末30重量%と市販の電解
二酸化マンガン粉末70重量%とを攪拌混合機を用いて
、均一に攪拌混合して正極活物質を調製した。
Example 1 30% by weight of chemically synthesized manganese dioxide powder containing 92% MnO2 with an average particle size of about IO μm and 70% by weight of commercially available electrolytic manganese dioxide powder were uniformly stirred and mixed using a stirring mixer. A positive electrode active material was prepared.

前述した方法で製造された正極活物質を用いて第1図に
示す構造のJIS規格LRB形(単3形)7/l、カリ
乾電池を組立てた。
A JIS standard LRB type (AA type) 7/l potash dry battery having the structure shown in FIG. 1 was assembled using the positive electrode active material produced by the method described above.

即ち、図中の1は正極端子を兼ねる有底円筒形の金属缶
である。この金属缶1内には、円筒状に加圧成形した正
極体2が充填されている。前記正極体2は、前述した方
法で調製された正極活物質90重量部と、導電材として
オイルファーネスブラック9重量部および黒鉛1重量部
とに、30%濃度の水酸化カリウムからなるアルカリ電
解液を3重量部加え攪拌混合し、これを3トン/ cj
の圧力で中空円筒状に加圧成形したものである。なお、
前記正極体2は金属缶1に対する接触性を高めるために
金属缶1への充填後において例えば3トン/C−の圧力
で再加圧されている。
That is, 1 in the figure is a cylindrical metal can with a bottom that also serves as a positive electrode terminal. This metal can 1 is filled with a positive electrode body 2 which is press-formed into a cylindrical shape. The positive electrode body 2 includes 90 parts by weight of the positive electrode active material prepared by the method described above, 9 parts by weight of oil furnace black and 1 part by weight of graphite as conductive materials, and an alkaline electrolyte consisting of potassium hydroxide at a concentration of 30%. Add 3 parts by weight and mix with stirring to produce 3 tons/cj
It is press-molded into a hollow cylindrical shape at a pressure of . In addition,
In order to improve contact with the metal can 1, the positive electrode body 2 is repressurized at a pressure of, for example, 3 tons/C- after filling the metal can 1.

前記円筒状の正極体2の中空部には、アセタール化ポリ
ビニルアルコール繊維の不織布からなる有底円筒状のセ
パレータ3を介してゲル状負極合剤4が充填されている
。このゲル状負極合剤4は、ポリアクリル酸ソーダを3
重量%加えた水酸化カリウム電解液に負極活物質である
アマルガム化した亜鉛粉末を分散させた構成になってい
る。このゲル状負極合剤4内には、真鍮源の負極集電棒
5がその上端部を該負極合剤4より突出するように挿着
されている。この負極集電棒5の突出部外周面及び前記
金属缶1の上部内周面には、二重環状のポリアミド樹脂
からなる絶縁ガスケット6が介在されている。また、前
記ガスケット6の二重環状部の間にはリング状の金属板
7が配置され、かつ該金属板7には負極端子を兼ねる帽
子形の金属封口板8が前記集電棒5の頭部に当接するよ
うに配置されている。そして、前記金属缶1の開口縁を
内方に屈曲させることにより前記ガスケット6及び金属
封口板8で金属缶1内を密閉口している。
The hollow part of the cylindrical positive electrode body 2 is filled with a gelled negative electrode mixture 4 via a bottomed cylindrical separator 3 made of a nonwoven fabric of acetalized polyvinyl alcohol fibers. This gelled negative electrode mixture 4 contains 3 sodium polyacrylates.
It has a structure in which amalgamated zinc powder, which is a negative electrode active material, is dispersed in a potassium hydroxide electrolyte containing % by weight of potassium hydroxide. A negative electrode current collector rod 5 made of brass is inserted into the gelled negative electrode mixture 4 so that its upper end protrudes beyond the negative electrode mixture 4 . An insulating gasket 6 made of a double-ring-shaped polyamide resin is interposed on the outer circumferential surface of the protrusion of the negative electrode current collector rod 5 and on the inner circumferential surface of the upper part of the metal can 1 . Further, a ring-shaped metal plate 7 is disposed between the double annular portions of the gasket 6, and a cap-shaped metal sealing plate 8 that also serves as a negative electrode terminal is attached to the top of the current collector rod 5. It is arranged so that it comes into contact with. By bending the opening edge of the metal can 1 inward, the inside of the metal can 1 is sealed by the gasket 6 and the metal sealing plate 8.

実施例2 正極活物質として化学合成二酸化マンガン粉末40重量
%と電解二酸化マンガン粉末60重量%の組成のものを
用いた以外、実施例1と同構造のアルカリ乾電池を組立
てた。
Example 2 An alkaline dry battery having the same structure as in Example 1 was assembled, except that the cathode active material used was 40% by weight of chemically synthesized manganese dioxide powder and 60% by weight of electrolytic manganese dioxide powder.

実施例3 正極活物質として化学合成二酸化マンガン粉末50重量
%と電解二酸化マンガン粉末50重量%の組成のものを
用いた以外、実施例1と同構造のアルカリ乾電池を組立
てた。
Example 3 An alkaline dry battery having the same structure as in Example 1 was assembled, except that a cathode active material having a composition of 50% by weight of chemically synthesized manganese dioxide powder and 50% by weight of electrolytic manganese dioxide powder was used.

実施例4 正極活物質として化学合成二酸化マンガン粉末60重量
%と電解二酸化マンガン粉末40重量%の組成のものを
用いた以外、実施例1と同構造のアルカリ乾電池を組立
てた。
Example 4 An alkaline dry battery having the same structure as in Example 1 was assembled, except that a cathode active material having a composition of 60% by weight of chemically synthesized manganese dioxide powder and 40% by weight of electrolytic manganese dioxide powder was used.

比較例1 正極活物質として化学合成二酸化マンガン粉末のみから
なるものを用いた以外、実施例1と同構造のアルカリ乾
電池を組立てた。
Comparative Example 1 An alkaline dry battery having the same structure as in Example 1 was assembled, except that a cathode active material consisting only of chemically synthesized manganese dioxide powder was used.

比較例2 正極活物質として化学合成二酸化マンガン粉末20重量
%と電解二酸化マンガン粉末80重量%の組成のものを
用いた以外、実施例1と同構造のアルカリ乾電池を組立
てた。
Comparative Example 2 An alkaline dry battery having the same structure as in Example 1 was assembled, except that a cathode active material having a composition of 20% by weight of chemically synthesized manganese dioxide powder and 80% by weight of electrolytic manganese dioxide powder was used.

比較例3 正極活物質として化学合成二酸化マンガン粉末70重量
%と電解二酸化マンガン粉末30重量%の組成のものを
用いた以外、実施例1と同構造のアルカリ乾電池を組立
てた。
Comparative Example 3 An alkaline dry battery having the same structure as in Example 1 was assembled, except that a cathode active material having a composition of 70% by weight of chemically synthesized manganese dioxide powder and 30% by weight of electrolytic manganese dioxide powder was used.

比較例4 正極活物質として電解二酸化マンガン粉末のみのものを
用いた以外、実施例1と同構造のアルカリ乾電池を組立
てた。
Comparative Example 4 An alkaline dry battery having the same structure as Example 1 was assembled, except that only electrolytic manganese dioxide powder was used as the positive electrode active material.

比較例5 正極活物質として化学合成二酸化マンガン粉末40重量
%と電解二酸化マンガン粉末60重量%の組成のものと
正極導電材として黒鉛10重量部のものを用いた以外、
実施例1と同構造のアルカリ乾電池を組立てた。
Comparative Example 5 Except for using a composition of 40% by weight of chemically synthesized manganese dioxide powder and 60% by weight of electrolytic manganese dioxide powder as the positive electrode active material and 10 parts by weight of graphite as the positive electrode conductive material.
An alkaline dry battery having the same structure as in Example 1 was assembled.

比較例6 正極活物質として化学合成二酸化マンガン粉末60重量
%と電解二酸化マンガン粉末40重量%の組成のものと
正極導電材として黒鉛10重量部のものを用いた以外、
実施例1と同構造のアルカリ乾電池を組立てた。
Comparative Example 6 Except for using a composition of 60% by weight of chemically synthesized manganese dioxide powder and 40% by weight of electrolytic manganese dioxide powder as the positive electrode active material and 10 parts by weight of graphite as the positive electrode conductive material.
An alkaline dry battery having the same structure as in Example 1 was assembled.

しかして、本実施例1〜4、比較例1〜6のアルカリ乾
電池について、2Ωの負荷抵抗による連続放電を行ない
、0.9vの放電電圧になるまでの放電持続時間を測定
した。その結果を下記表3に示す。
Thus, the alkaline dry batteries of Examples 1 to 4 and Comparative Examples 1 to 6 were continuously discharged with a load resistance of 2Ω, and the discharge duration until the discharge voltage reached 0.9V was measured. The results are shown in Table 3 below.

(以下余白) 上記表3から明らかなように、γ形結晶の化学合成二酸
化マンガン粉末と電解二酸化マンガン粉末とを混合した
正極活物質を含む正極体を備えた実施例1〜4のアルカ
リ乾電池は、γ形結晶の化学合成二酸化マンガン粉末の
みを正極活物質として含む正極体を備えた比較例1の乾
電池、電解二酸化マンガン粉末のみを正極活物質として
含む正極体を備えた比較例4の乾電池に比べて重負荷放
電特性が向上されることがわかる。そして、特にγ形結
晶の化学合成二酸化マンガン粉末30〜60重量%と電
解二酸化マンガン粉末40〜70重量%とを混合した正
極活物質を含む正極体を備えた実施例1〜4のアルカリ
乾電池は、化学合成二酸化マンガン粉末と電解二酸化マ
ンガン粉末の配合比率が前記範囲を外れる比較例2.3
のアルカリ乾電池に対しても重負荷放電特性が向上され
ることがわかる。
(Left below) As is clear from Table 3 above, the alkaline dry batteries of Examples 1 to 4 were , the dry battery of Comparative Example 1 equipped with a positive electrode body containing only chemically synthesized manganese dioxide powder of γ-type crystal as a positive electrode active material, and the dry battery of Comparative Example 4 equipped with a positive electrode body containing only electrolytic manganese dioxide powder as a positive electrode active material. It can be seen that the heavy load discharge characteristics are improved. In particular, the alkaline dry batteries of Examples 1 to 4 were equipped with a positive electrode body containing a positive electrode active material made of a mixture of 30 to 60% by weight of chemically synthesized manganese dioxide powder of γ-type crystals and 40 to 70% by weight of electrolytic manganese dioxide powder. , Comparative Example 2.3 in which the blending ratio of chemically synthesized manganese dioxide powder and electrolytic manganese dioxide powder is outside the above range.
It can be seen that the heavy load discharge characteristics are improved even for alkaline dry batteries.

また、正極導電剤にオイルファーネス90%と黒鉛10
%を用いた実施例2,4のアルカリ乾電池は、黒鉛のみ
を用いた比較例5,6に比べても重負荷放電特性がより
一層向上されることがわかる。
In addition, 90% oil furnace and 10% graphite are used as the positive electrode conductive agent.
It can be seen that the heavy load discharge characteristics of the alkaline dry batteries of Examples 2 and 4 using % were further improved compared to Comparative Examples 5 and 6 using only graphite.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれば電解二酸化マンガ
ンを正極活物質、黒鉛を正極導電剤として用いた場合に
比べてより優れた重負荷放電特性を有し、かつ該電解二
酸化マンガンおよび黒鉛を使用した場合より低コストの
正極体を備えたアルカリ乾電池を提供できる。
As detailed above, according to the present invention, the electrolytic manganese dioxide and graphite have better heavy load discharge characteristics than when using electrolytic manganese dioxide as the positive electrode active material and graphite as the positive electrode conductive agent. It is possible to provide an alkaline dry battery equipped with a positive electrode body at a lower cost than when using this method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すアルカリ乾電池の断面
図である。 1・・・金属缶、    2・・・正極体、3・・・セ
パレータ、   4・・・ゲル状負極合剤、5・・・負
極集電棒、  8・・・金属封口板。
FIG. 1 is a sectional view of an alkaline dry battery showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Metal can, 2... Positive electrode body, 3... Separator, 4... Gel-like negative electrode mixture, 5... Negative electrode current collector rod, 8... Metal sealing plate.

Claims (1)

【特許請求の範囲】[Claims]  硫酸マンガンを焙焼して得られるマンガン酸化物を酸
処理してなるγ形結晶を主成分とした化学合成二酸化マ
ンガン粉末と電解二酸化マンガン粉末との混合物からな
る正極活物質と、黒鉛とJISK6221による揮発分
が0.2%以下で、かつ比表面積が90〜150g/m
^2であるオイルファーネスブラックとの混合物を正極
導電材とする正極体を用いることを特徴とするアルカリ
乾電池。
A positive electrode active material consisting of a mixture of chemically synthesized manganese dioxide powder and electrolytic manganese dioxide powder whose main component is γ-type crystals obtained by acid-treating manganese oxide obtained by roasting manganese sulfate, and graphite according to JIS K6221. Volatile content is 0.2% or less and specific surface area is 90 to 150 g/m
An alkaline dry battery characterized by using a positive electrode body whose positive electrode conductive material is a mixture with oil furnace black, which is ^2.
JP2047196A 1990-03-01 1990-03-01 Alkaline batteries Expired - Lifetime JP2925630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2047196A JP2925630B2 (en) 1990-03-01 1990-03-01 Alkaline batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2047196A JP2925630B2 (en) 1990-03-01 1990-03-01 Alkaline batteries

Publications (2)

Publication Number Publication Date
JPH03252055A true JPH03252055A (en) 1991-11-11
JP2925630B2 JP2925630B2 (en) 1999-07-28

Family

ID=12768373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2047196A Expired - Lifetime JP2925630B2 (en) 1990-03-01 1990-03-01 Alkaline batteries

Country Status (1)

Country Link
JP (1) JP2925630B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747981A2 (en) * 1995-06-07 1996-12-11 Eveready Battery Company Manganese dioxide alkaline cell
US5938798A (en) * 1993-09-30 1999-08-17 Mitsui Mining & Smelting Co., Ltd. Cathodic active material composition for dry cells, method for preparing the same, and alkaline battery
JP2006054084A (en) * 2004-08-10 2006-02-23 Osaka Gas Co Ltd Positive electrode composition and conductive material for alkaline secondary battery and alkaline secondary battery
JP2016108212A (en) * 2013-12-20 2016-06-20 東ソー株式会社 Manganese dioxide and manganese dioxide mixture, and method for producing the same and use for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938798A (en) * 1993-09-30 1999-08-17 Mitsui Mining & Smelting Co., Ltd. Cathodic active material composition for dry cells, method for preparing the same, and alkaline battery
EP0747981A2 (en) * 1995-06-07 1996-12-11 Eveready Battery Company Manganese dioxide alkaline cell
EP0747981A3 (en) * 1995-06-07 1997-01-02 Eveready Battery Company Manganese dioxide alkaline cell
JP2006054084A (en) * 2004-08-10 2006-02-23 Osaka Gas Co Ltd Positive electrode composition and conductive material for alkaline secondary battery and alkaline secondary battery
JP2016108212A (en) * 2013-12-20 2016-06-20 東ソー株式会社 Manganese dioxide and manganese dioxide mixture, and method for producing the same and use for the same

Also Published As

Publication number Publication date
JP2925630B2 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
Yuan et al. Textural and capacitive characteristics of MnO2 nanocrystals derived from a novel solid-reaction route
CN1078748C (en) Method of producing active material of positive electrode for nonaqueous battery
JPH075318B2 (en) Manganese dioxide and its manufacturing method
Pan et al. Synthesis, characterization and electrochemical performance of battery grade NiOOH
JP4434727B2 (en) Alkaline battery with improved cathode
JPH0660870A (en) Manufacture of dry battery
US6162561A (en) Akaline cell with improved cathode
AU2006201339A1 (en) Battery positive electrode material
JP3590178B2 (en) Electrolytic manganese dioxide, method for producing the same, and manganese dry battery
Novak et al. CuO cathode in lithium cells: I. influence of the decomposition conditions of Cu (OH) 2 on the properties of CuO
JPH03252055A (en) Alkaline dry cell
JP2006012670A (en) Alkaline battery
JPH0224961A (en) Alkaline dry battery
WO2005100250A1 (en) Manganese oxide for positive electrode active material
CN111470540A (en) Method for inducing oxygen vacancy content in metal oxide to be improved by complexation effect
JPH04184867A (en) Silver oxide battery
JPH031444A (en) Alkaline dry battery
JPH0410356A (en) Manganese dry cell
CN117795739A (en) Electrolyte for metal-air battery, preparation method thereof and metal-air battery using same
JPH01292752A (en) Alkaline dry battery
JPH034447A (en) Alkaline battery
JPH01279565A (en) Nonaqueous solvent battery
JPH0660878A (en) Manufacture of dry battery
JPH01279566A (en) Alkaline dry battery
JPH05225978A (en) Magnesium-manganese dioxide dry battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100507

Year of fee payment: 11

EXPY Cancellation because of completion of term